

RESEARCH ARTICLE

Rings such that, for each unit u, $u - u^n$ belongs to the Jacobson radical

M. Tamer Koşan^{*1}, Troung Cong Quynh², Tülay Yıldırım³, Jan Žemlička⁴

¹Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey

²Department of Mathematics, The University of Danang - University of Science and Education, 459 Ton Duc Thang, Danang city, Vietnam

³Department of Mathematics, Gebze Technical University, Kocaeli, Turkey

⁴Department of Algebra, Charles University, Faculty of Mathematics and Physics Sokolovska 83, 186 75 Praha 8, Czech Republic

Abstract

A ring R is said to be n-UJ if $u - u^n \in J(R)$ for each unit u of R, where n > 1 is a fixed integer. In this paper, the structure of n-UJ rings is studied under various conditions. Moreover, the n-UJ property is studied under some algebraic constructions.

Mathematics Subject Classification (2010). 16N20, 16D60, 16U60, 16W10

Keywords. UU-ring, UJ-ring, unit, Jacobson radical, clean ring, (semi)regular ring, reduced ring

1. Introduction

Throughout the paper, all considered rings are associative and unital. For a ring R, the Jacobson radical, the set of nilpotent elements and the set of invertible elements of R are denoted by J(R), Nil(R) and U(R), respectively. The symbols $M_n(R)$ and $T_n(R)$ stand for the $n \times n$ matrix ring and the $n \times n$ upper triangular matrix ring over R, respectively. R[x] (R[[x]], respectively) stands for the polynomial ring (the power series ring, respectively) over R. Let \mathbb{Z} be the ring of integers and \mathbb{Z}_n be the ring of \mathbb{Z} modulo n. We also use \mathbb{N} to denote the set of natural numbers.

Recall that a ring R is called a UJ-ring ([12]) if 1 + J(R) = U(R) (see also, [6] and [19]). Let $n \in \mathbb{N}$. For a fixed integer n > 1, consider the following forms of the units of a ring R which belong to J(R):

(1) $u - u^n \in J(R)$ for each $u \in U(R)$;

(2) For each $u \in U(R)$ there exists n such that $u - u^n \in J(R)$.

If a ring R satisfies the condition (1) (respectively, (2)), then we call R an n-UJ ring (respectively, an ∞ -UJ ring). Notice that all UJ rings are n-UJ and every n-UJ ring is ∞ -UJ. Let R be a UJ-ring. In [12, Proposition 1.3], it is shown that if R is a division ring, then $R \cong \mathbb{F}_2$. More generally, R/J(R) is reduced and hence abelian.

^{*}Corresponding Author.

Email addresses: mtamerkosan@gazi.edu.tr (M.T. Koşan), tcquynh@ued.udn.vn (T.C. Quynh),

tyildirim@gtu.edu.tr (T. Yıldırım), zemlicka@karlin.mff.cuni.cz (J. Žemlička)

Received: 20.03.2019; Accepted: 11.10.2019

The notions of *n*-UJ and ∞ -UJ generalize 2-UJ rings introduced in the paper [5]. In this article, it will be shown that a division ring that is ∞ -UJ is a field. Further, *R* is a UJ-ring iff there exists *k* such that *R* is a $(2^k + 1)$ -UJ ring, R/J(R) is reduced and $2 \in J(R)$ respectively.

When R is a UJ-ring with nil Jacobson radical, then R is a UU-ring (i.e., rings with unipotent units, equivalently 1 + Nil(R) = U(R)) ([4]), we get that if R is an n-UJ ring and n-1 is a unit of R, then J(R) contains Nil(R). We also study the correspondence of the clean and n-UJ property which is similar to UJ property which were handled by Koşan, Leroy and Matczuk in [12, Section 3]. We obtain that, for a (2n)-UJ ring R, R is a semiregular ring iff R is an exchange ring iff R is a clean ring. Finally, the behavior of n-UJ property under some classical ring constructions, the trivial extension and the (trivial) Morita context are studied.

2. General properties of *n*-UJ rings

Definition 2.1. Let $n \in \mathbb{N}$. A ring R is said to be an n-UJ ring if $u - u^n \in J(R)$ for each $u \in U(R)$ where n > 1 is a fixed integer.

Definition 2.2. Let $n \in \mathbb{N}$. A ring R is said to be an ∞ -UJ ring if for each $u \in U(R)$ there exists n > 1 such that $u - u^n \in J(R)$.

For $n \in \mathbb{N}$, consider the following sets:

$$\mathbb{U}_n(R) = \{ u^{n-1} : u \in U(R) \} \subseteq U(R), \\ \mathbb{V}_n(R) = \{ u \in U(R) : u^{n-1} \in 1 + J(R) \}.$$

We remark that $\mathbb{U}_n(R)$ and $\mathbb{V}_n(R)$ are subgroups of U(R) if R is a commutative ring, but they need not be subgroups of U(R) in the noncommutative case.

Lemma 2.3. The following statements are equivalent for a ring R and $n \in \mathbb{N}$:

(1) R is an n-UJ ring;

(2) $\mathbb{V}_n(R) = U(R);$

(3)
$$\mathbb{U}_n(R) \subseteq 1 + J(R)$$
,

(4)
$$U(R/J(R)) = \{\overline{u} = u + J(R/J(R) : \overline{u}^{n-1} = \overline{1}\} = \mathbb{V}_n(R/J(R)).$$

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ They are obvious.

 $(3) \Rightarrow (4)$ If $\overline{u} \in U(R/J(R))$, there exists $u \in U$ such that $\overline{u} = u + J(R)$ and $u^{n-1} \in 1 + J(R)$. Hence $\overline{u}^{n-1} = \overline{1}$. The reverse inclusion is clear.

 $(4) \Rightarrow (1)$ Let $u \in U(R)$. Then $u^{n-1} \in 1 + J(R)$. Hence $1 - u^{n-1} \in J(R)$ which implies $u - u^n \in J(R)$, as desired.

Note that every *n*-UJ ring is ∞ -UJ. Furthermore, as an easy consequence of Lemma 2.3, we obtain:

Corollary 2.4. A ring R is ∞ -UJ if and only if $\bigcup_{n \in \mathbb{N}} \mathbb{V}_n(R) = U(R)$.

In the following observation, we collect some general properties of n-UJ rings.

Proposition 2.5. Let R be a ring and $n, m \in \mathbb{N}$, n, m > 1.

- (1) If R is an n-UJ ring, then $2 \in J(R)$ if n is an even number.
- (2) If R is an n-UJ ring and n-1 divides m-1, then R is an m-UJ ring.
- (3) All UJ rings (in particular, any ring with trivial units, Boolean rings, free commutative and free noncommutative algebras over the field F₂) are n-UJ.

Proof. (1) Assume that R is an n-UJ ring with n an even number. Then $-1 = (-1)^{n-1} \in 1 + J(R)$, and so $2 \in J(R)$.

(2) This follows from Lemma 2.3(2) using the obvious fact that $\mathbb{V}_n \subseteq \mathbb{V}_m$ whenever n-1|m-1.

(3) This is obvious by Lemma 2.3(3) since $\mathbb{U}_n \subseteq U(R) = 1 + J(R)$.

Note that the claim of Proposition 2.5(1) for odd numbers generally fails. For instance, the ring \mathbb{Z}_6 is a 3-UJ ring with $2 \notin J(\mathbb{Z}_6)$.

Let us point out that, for any division ring R, we have $U(R) = R \setminus \{0\}$ and J(R) = 0. Hence a division ring R is *n*-UJ if and only if $u^{n-1} = 1$ for every $u \neq 0$.

Proposition 2.6. Let $n \in \mathbb{N}$ such that n > 1.

- (1) If R is a division ring which is ∞ -UJ then R is a field.
- (2) A field \mathbb{F} is n-UJ iff there exist a prime p and $k \in \mathbb{N}$ such that $p^k 1$ divides n 1and $\mathbb{F} \cong \mathbb{F}_{p^k}$, a field of p^k elements.
- (3) A product of rings is n-UJ if and only if each component is n-UJ.

Proof. (1) For each $u \in R$ there is n(u) > 1 such that $u^{n(u)} = u$. By [13, 12.10], Jacobson's Theorem, R is commutative.

(2) Let \mathbb{F} be an *n*-UJ field. Then all nonzero elements of \mathbb{F} are roots of the polynomial $x^{n-1} - 1$. Hence \mathbb{F} is a finite field and there exist $k \in \mathbb{N}$ and a prime number p such that $\mathbb{F} \cong \mathbb{F}_{p^k}$, i.e. \mathbb{F} is a field of p^k -elements. Finally $(p^k - 1)|(n - 1)$, since U(F) is a cyclic group of order $p^k - 1$ all of whose elements have the exponent n - 1.

The reverse implication is clear.

Observe that R satisfies the polynomial identity $x^n - x = 0$. As R is a finite-dimensional algebra over Z(R) by [10, Theorem 1], it is finite division ring, which is a field by Wedderburn Theorem. Thus R = Z(R).

The reverse implication follows from (1).

(3) This follows from Lemma 2.3(3) and the facts

$$J(\prod_{i \in I} R_i) = \prod_{i \in I} J(R_i),$$
$$U(\prod_{i \in I} R_i) = \prod_{i \in I} U(R_i)$$

and

$$\mathbb{U}_n(\prod_{i\in I} R_i) = \prod_{i\in I} \mathbb{U}_n(R_i)$$

1		

Example 2.7. (1) Let p_1, \ldots, p_r be prime numbers and $\epsilon_1, \ldots, \epsilon_r \in \mathbb{N}$. Denote by n the least common multiple of $p_1^{\epsilon_1} - 1, \ldots, p_r^{\epsilon_1} - 1$. Applying Proposition 2.6 we obtain that $\prod_i \mathbb{F}_{p_i^{\epsilon_i}}$ is an (n+1)-UJ ring which is not m-UJ for every m such that n does not divide m-1, in particular for any $m \leq n$.

(2) Let $R = \overline{\mathbb{F}_p}$ be an algebraic closure of the finite field \mathbb{F}_p for a prime p. Then R is not an n-UJ ring for any $n \in \mathbb{N}$, but it is ∞ -UJ.

The following example shows that the class of n-UJ rings is not closed under taking quotients.

Example 2.8. Recall $U(\mathbb{Z}) = \{1, -1\}$ and $J(\mathbb{Z}) = 0$. Hence $\mathbb{U}_n(\mathbb{Z}) = \{1\}$ for every odd number n, and so \mathbb{Z} is an n-UJ ring. Nevertheless, for a prime p, the ring $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p$ is not n-UJ for every n unless p-1 divides n-1 by Proposition 2.6(1).

Proposition 2.9. For a ring R, the following observations hold:

- (1) Let $I \subseteq J(R)$ be an ideal of R. Then R is an n-UJ ring if and only if R/I is an n-UJ ring.
- (2) Let R be an n-UJ ring and T a subring of R. Then T is an n-UJ ring if $T \cap J(R) \subseteq J(T)$.

Proof. (1) If $v \in U(R/I)$, then there exists an $u \in U(R)$ such that u + I = v and by the hypothesis $u - u^n \in J(R)$. So one has $v - v^n \in J(R/I) = J(R)/I$.

On the other hand, recall that $(R/I)/J(R/I) \cong R/J(R)$. So R is an n-UJ ring if and only if R/J(R) is an n-UJ ring by Lemma 2.3.

(2) Let $v \in U(T)$ ($\subseteq U(R)$). Since R is an n-UJ ring, we have $v^{n-1} - 1 \in J(R) \cap T \subseteq J(T)$. Therefore, T is an n-UJ ring.

The following observation shows that the n-UJ property passes to corners.

Proposition 2.10. If $n \in \mathbb{N}$ or $n = \infty$ and R is an n-UJ ring, then eRe is n-UJ for any $e^2 = e \in R$.

Proof. Let $n \in \mathbb{N}$. For any $u \in U(eRe)$, we have $u + (1 - e) \in U(R)$ (with the inverse v + (1 - e) for $v \in eRe$ where uv = e = vu). By the hypothesis, $[u + (1 - e)] - [u + (1 - e)]^n \in J(R)$, so $u - u^n \in J(R)$. Thus $u - u^n \in eRe \cap J(R) = eJ(R)e = J(eRe)$, which implies that eRe is an n-UJ ring.

If $n = \infty$ and $u \in U(eRe)$ then we again have $u + (1 - e) \in U(R)$, hence there exists $m \in \mathbb{N}$ such that $[u + (1 - e)] - [u + (1 - e)]^m \in J(R)$. Thus $u - u^m \in J(eRe)$ and so eRe is an ∞ -UJ ring.

A ring R is reduced if R has no nonzero nilpotent elements, and the ring R is called abelian if every idempotent is central.

Proposition 2.11. If R is an n-UJ ring and $n-1 \in U(R)$, then R/J(R) is reduced and so is abelian.

Proof. Let a + J(R) be a nilpotent element in R/J(R). There exists a $k \in \mathbb{N}$ such that $a^k + J(R) = J(R)$, and so $a^k \in J(R)$.

We may assume $k \ge 2$. One can check that $a^{k-1} + J(R)$ is a nilpotent element of R/J(R). Then $1 + a^{k-1}$ is a unit of R. Since R is an n-UJ ring, $(1 + a^{k-1})^{n-1} \in 1 + J(R)$. We can write $(1 + a^{k-1})^{n-1} = 1 + (n-1)a^{k-1} + a^k x$ for some $x \in R$. We have that $(1 + a^{k-1})^{n-1} \in 1 + J(R)$ and $n-1 \in U(R)$ and obtain that $a^{k-1} \in J(R)$. Note that $a^{k-1} + J(R)$ is a nilpotent element of R/J(R).

Repeating this process, we also have $a^{k-2} \in J(R)$. By the induction on k, we deduce that $a \in J(R)$. Thus, R/J(R) is reduced and so is abelian.

Corollary 2.12. If R is an n-UJ ring with $n - 1 \in U(R)$, then $Nil(R) \subseteq J(R)$.

The following example shows that the assumption $"n - 1 \in U(R)"$ in Proposition 2.11 is not superfluous.

Example 2.13. Consider Bergman's example of UU-ring $R = \mathbb{F}_2\langle x, y \rangle / (x^2)$ presented in [7, Example 2.5], where $\mathbb{F}_2\langle x, y \rangle$ is the free algebra generated by x and y. Recall that $0 = J(R) \subsetneq Nil(R)$ and $U(R) = 1 + \mathbb{Z}_2 x + xRx$ by [7, Example 2.5], hence R is not reduced. Since $(U(R))^2 = (1 + \mathbb{Z}_2 x + xRx)^2 = \{1\}$, we obtain that R is an example of a 3-UJ ring which is not reduced.

Theorem 2.14. The following conditions are equivalent for a ring R:

(1) R is a UJ-ring.

(2) There exists k such that R is $(2^k + 1)$ -UJ, R/J(R) is reduced and $2 \in J(R)$.

Proof. (1) \Rightarrow (2) This follows from the facts that UJ-rings are *n*-UJ, R/J(R) is reduced and $2 \in J(R)$ by [12, Proposition 2.3].

 $(2) \Rightarrow (1)$ Let u be a unit of R. Then $u^{2^k} \in 1 + J(R)$, and hence

$$(1+u)^{2^k} = 1 + u^{2^k} + 2u$$

for some $v \in R$. The assumption, $2 \in J(R)$, gives $(1 + u)^{2^k} \in J(R)$. Since R/J(R) is reduced, we have $1 + u \in J(R)$, which implies that R is a UJ-ring.

 $u \in U(R)$ is called *n*-torsion if $u^n = 1$ (see [8]).

Proposition 2.15. If R is an n-UJ ring such that $U(R) = \{u \mid u \text{ is n-torsion}\}$, then R is a UJ ring.

Proof. This is clear.

Proposition 2.16. Let R be a (2k)-UJ ring. If J(R) = 0 and every nonzero right ideal of R contains a nonzero idempotent, then R is reduced.

Proof. Suppose that there exists non-zero $a \in R$ such that $a^2 = 0$. By [13], there is an idempotent $e \in RaR$ such that $eRe \cong M_2(T)$. Since R is a (2k)-UJ ring, eRe is as well by Proposition 2.10. Thus $M_2(T)$ is a (2k)-UJ ring, but this is a contradiction, since $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in U(M_2(T))$ and $A^{2k-1} = A$ or $A^{2k-1} = -A$.

An element a in the ring R is said to be regular if there exists $b \in R$ such that a = aba. If all elements of R are regular, then R is called a regular ring.

Example 2.17. Consider the ring $R = \begin{pmatrix} \mathbb{F}_2 & \mathbb{F}_2 \\ \mathbb{F}_2 & \mathbb{F}_2 \end{pmatrix}$. It is easy to compute that |U(R)| = 6, hence $u^6 = 1$ for each $u \in U(R)$. Thus $u^7 - u \in J(R)$ for each $u \in U(R)$ which means that R is a 7-UJ ring. Moreover, J(R) = 0, since R is regular and every nonzero right ideal of R contains a nonzero idempotent. But, R is not reduced.

R is called a π -regular ring if for every $a \in R$ there exists a positive integer n such that $a^n \in a^n Ra^n$.

An element x of the ring R is called n-potent if $x^n = x$, and R is n-potent if all its elements are n-potent.

Theorem 2.18. The following statements are equivalent for a ring R.

- (1) R is a regular (2n)-UJ ring.
- (2) R is a π -regular, reduced and (2n)-UJ ring.
- (3) R satisfies the polynomial identity $x^{2n} = x$ and it is commutative.

Proof. (1) \Rightarrow (2) Since R is regular, we get J(R) = 0 and every nonzero right ideal contains a nonzero idempotent. By [14], R is reduced and clearly all regular rings are π -regular.

 $(2) \Rightarrow (3)$ Notice that reduced rings are abelian. By [2], R is strongly π -regular and $J(R) \subseteq Nil(R) = 0$. Let $x \in R$. By [18], there exist $e^2 = e \in R$ and $u \in U(R)$ such that x = e + u and $xe = ex \in Nil(R) = 0$. Thus we have x = x - xe = x(1 - e) = u(1 - e) = (1 - e)u. Since R is an (2n)-UJ ring, we get $x^{2n} = ((1 - e)u)^{2n} = u^{2n}(1 - e)^{2n} = u(1 - e) = x$, as desired. Finally, recall that R is commutative by Jacobsons Theorem [13, 12.10].

(3) \Rightarrow (1) Clearly, R is regular. Let $u \in U(R)$. Then $u^{2n} = u$ which implies that $u - u^{2n} \in J(R)$. Hence R is a (2n)-UJ ring.

1401

 \square

A ring R is semiregular ([16]) if R/J(R) is regular and idempotents lift modulo J(R), and R is exchange ([17]) if for each $a \in R$ there exists $e^2 = e \in aR$ such that $1-e \in (1-a)R$. Notice that semiregular rings are exchange.

R is called a clean ring if every element of R is a sum of an idempotent and a unit ([17]).

Theorem 2.19. The following statements are equivalent for a (2n)-UJ ring R:

(1) R is a semiregular ring.

- (2) R is an exchange ring.
- (3) R is a clean ring.

Proof. (1) \Rightarrow (2) This is obvious, since every semiregular ring is an exchange ring.

 $(2) \Rightarrow (3)$ By [9], R is clean if and only if R/J(R) is clean and idempotents lift modulo J(R). Proposition 2.16 implies that R/J(R) is an exchange (2n)-UJ ring and R/J(R) is abelian. By [17], R/J(R) is clean and so R is clean.

 $(3) \Rightarrow (1)$ Assume that R is a clean ring. Then idempotents lift modulo J(R). By Theorem 2.18, we have that R/J(R) is a regular ring. Thus, R is semiregular.

Let us close this section with the following algebraic constructions.

Proposition 2.20. Let R be a ring and $m \in \mathbb{N}$.

- (1) R is an n-UJ ring if and only if $R[x]/x^m R[x]$ is an n-UJ ring.
- (2) R is an n-UJ ring if and only if the power series ring R[[x]] is an n-UJ ring.

Proof. (1) This follows from Proposition 2.9(1) since $xR[x]/x^mR[x] \subseteq J(R[x]/x^mR[x])$ and $(R[x]/x^mR[x])/(xR[x]/x^mR[x]) \cong R$.

(2) Let us consider (x) = xR[[x]] as an ideal of R[[x]]. Then $(x) \subseteq J(R[[x]])$. Since $R \cong R[[x]]/(x)$, the result follows from Proposition 2.9(1).

Recall that a ring R is called 2-primal if its prime radical contains Nil(R).

Proposition 2.21. If the polynomial ring R[x] is an n-UJ ring, then R is an n-UJ ring. The converse holds if R is 2-primal, J(R) is nil and $n - 1 \in U(R)$.

Proof. Let $\pi : R[x] \longrightarrow R$ be a surjective ring homomorphism defined by $\pi(\sum_i a_i x_i) = a_0$. Then $\pi(J(R[x])) \subseteq J(R)$, hence $J(R[x]) \cap R \subseteq J(R)$. If $u \in U(R) \subseteq U(R[x])$, then $u - u^n \in J(R[x]) \cap R \subseteq J(R)$.

For the converse, assume R is a 2-primal n-UJ ring, J(R) is nil and and $n-1 \in U(R)$. By [3, Proposition 2.6], R[x] is 2-primal. We note also that Nil(R) = J(R), Nil(R[x]) = J(R[x]) and J(R[x]) = Nil(R)[x] = J(R)[x]. Thus $R[x]/J(R[x]) \cong (R/J(R))[x]$ is reduced. As R/J(R) is reduced by Proposition 2.11, U(R/J(R)) = U(R[x]/J(R[x])). Finally, since R/J(R) is an n-UJ ring, we get R[x]/J(R[x]) is an n-UJ ring and R[x] is an n-UJ ring by Proposition 2.9.

3. Extensions

Let R be a ring and M a bimodule over R. The trivial extension of R and M is

$$T(R, M) = \{(r, m) : r \in R \text{ and } m \in M\}$$

with an addition defined componentwise and a multiplication defined by

$$(r,m)(s,n) = (rs, rn + ms).$$

The trivial extension T(R, M) is isomorphic to the subring $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} : r \in R \text{ and } m \in M \}$ of the formal 2×2 matrix ring $\begin{pmatrix} R & M \\ 0 & R \end{pmatrix}$ and also $T(R, R) \cong R[x]/(x^2)$. We also note that the set of units of trivial extension T(R, M) is

$$U(T(R,M)) = T(U(R),M)$$

by [1, Proposition 4.9 (2)] and

$$J(T(R, M)) = T(J(R), M)$$

by [1, Corollary 4.8 (2)].

A Morita context is a 4-tuple $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$, where A and B are rings, ${}_{A}M_{B}$ and ${}_{B}N_{A}$ are bimodules, and there exist context products $M \times N \to A$ and $N \times M \to B$ written multiplicatively as (w, z) = wz and (z, w) = zw, such that $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is an associative ring with the obvious matrix operations.

A Morita context $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is called trivial if the context products are trivial, i.e., MN = 0 and NM = 0 (see [15, p. 1993]). We have

$$\begin{pmatrix} A & M \\ N & B \end{pmatrix} \cong T(A \times B, M \oplus N),$$

where $\begin{pmatrix} A & M \\ N & B \end{pmatrix}$ is a trivial Morita context by [11].

Theorem 3.1. Let R be a ring and let M be an (R, R) bimodule. Then R is an n-UJ ring if and only if the trivial extension T(R, M) is an n-UJ ring.

Proof. (:=) Let $\overline{u} = \begin{pmatrix} u & m \\ 0 & u \end{pmatrix} \in U(T(R, M)) = T(U(R), M)$ with $u \in U(R)$ and $m \in M$. We will show that $\overline{u} - \overline{u}^n \in J(T(R, M))$. In fact, we have $\overline{u}^n = \begin{pmatrix} u^n & m_1 \\ 0 & u^n \end{pmatrix}$ for some $m_1 \in M$. By the hypothesis, we have $\overline{u} - \overline{u}^n = \begin{pmatrix} u & m \\ 0 & u \end{pmatrix} - \begin{pmatrix} u^n & m_1 \\ 0 & u^n \end{pmatrix} = \begin{pmatrix} u - u^n & m - m_1 \\ 0 & u - u^n \end{pmatrix} \in J(T(R, M)).$ (\Leftarrow :) The converse is clear.

Corollary 3.2. Let S and R be rings and let M be an (R, S) bimodule. Then the formal triangular matrix ring $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ is an n-UJ ring if and only if R and S are n-UJ rings.

By [12, Page 5], the ring $M_n(R)$ is not UJ for any $n \ge 2$. But, the ring $\begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{pmatrix}$ is a 7-UJ ring.

Corollary 3.3. R is an n-UJ ring if and only if the upper triangular matrix ring $\mathbb{T}_n(R)$ is an n-UJ ring, $n \ge 1$.

For a subring C of a ring D, the set

 $\Re[D, C] := \{ (d_1, \cdots, d_n, c, c, \cdots) : d_i \in D, c \in C, n \ge 1 \},\$

with the addition and the multiplication defined componentwise is called the tail ring extension and denoted by $\mathcal{R}[D, C]$.

Example 3.4. $\mathcal{R}[D, C]$ is an *n*-UJ ring if and only if D and C are *n*-UJ rings.

Proof. (:=>) Firstly, we prove that D is an n-UJ ring. Let $u \in U(D)$. Then $\overline{u} = (u, 1, 1, 1, \dots) \in U(\mathcal{R}[D, C])$. By the hypothesis, we have $\overline{u} - \overline{u}^n \in J(\mathcal{R}[D, C])$ for any $n \in \mathbb{N}$. Thus, $\overline{u} - \overline{u}^n = (u - u^n, 0, 0, \dots) \in J(\mathcal{R}[D, C]) = R[J(D), J(C)]$. Hence $u - u^n \in J(D)$ which implies that D is an n-UJ ring.

1403

To see that C is an n-UJ ring, we can take $v \in U(C)$ such that $\overline{v} = (1, \dots, 1, v, v, \dots) \in U(\mathcal{R}[D, C])$.

(\Leftarrow :) Assume *D* and *C* are *n*-UJ rings. Let $\overline{u} = (u_1, u_2, \cdots, u_n, v, v, \cdots) \in U(\mathcal{R}[D, C])$, where $u_i, v \in U(R)$ for $1 \leq i \leq n$. Write

 $\overline{u} - \overline{u}^n = (u_1, u_2, \cdots, u_n, v, v, \cdots) - (u_1, u_2, \cdots, u_n, v, v, \cdots)^n$ $= (u_1 - u_1^n, u_2 - u_2^n, \cdots, u_n - u_n^n, v - v^n, v - v^n, \cdots).$

Then $u_i - u_i^n \in J(D)$ and $v - v^n \in J(C)$ imply $\overline{u} - \overline{u}^n \in \Re[J(D), J(C)] = J(\Re[D, C])$, as desired.

Acknowledgment. M. Tamer Koşan and Tülay Yildirim are supported by a grant (117F070) from TUBITAK of Turkey.

References

- D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extensions of rings, Rocky Mountain. J. Math. 47, 2439–2511, 2017.
- [2] A. Badawi, On abelian π -regular rings, Comm. Algebra, **25** (4), 1009–1021, 1997.
- G.F. Birkenmeier, H.E. Heatherly, and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong, 102–129, 1993.
- [4] G. Calugareanu, UU rings, Carpathian J. Math. **31** (2), 157–163, 2015.
- [5] J. Cui and X. Yin, *Rings with 2-UJ property*, Comm. Algebra, 48 (4), 1382–1391, 2020.
- [6] P. Danchev, Rings with Jacobson units, Toyama Math. J. 38, 61–74, 2016.
- [7] P. Danchev and T.Y. Lam, *Rings with unipotent units*, Publ. Math. Debrecen, 88 (3-4), 449–466, 2016.
- [8] P. Danchev and J. Matczuk, n-torsion clean rings, in: Rings, modules and codes, Contemp. Math. 727, Amer. Math. Soc. Providence, RI, 71–82, 2019.
- [9] J. Han and W.K. Nicholson, Extension of clean rings, Comm. Algebra, 29 (6), 2589– 2595, 2001.
- [10] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (6), 575– 580, 1948.
- [11] M.T. Koşan, The p.p. property of trivial extensions, J. Algebra Appl. 14 (8), 1550124, 5 pp., 2015.
- [12] M.T. Koşan, A. Leroy and J. Matczuk, On UJ-rings, Comm. Algebra, 46 (5), 2297– 2303, 2018.
- [13] T.Y. Lam, A First Course in Noncommutative Rings (second Ed.), Springer Verlag, New York, 2001.
- [14] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc. 74, 384–409, 1953.
- [15] M. Marianne, Rings of quotients of generalized matrix rings, Comm. Algebra, 15 (10), 1991–2015, 1987.
- [16] W.K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (5), 1105–1120, 1976.
- [17] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
- [18] W.K. Nicholson, Strongly clean rings and Fittings lemma, Comm. Algebra, 27, 3583– 3592, 1999.
- [19] S. Sahinkaya and T. Yildirim, UJ-endomorphism rings, The Mathematica Journal, 60 (83), 186–198, 2018.