Rings such that, for each unit $u, u-u^{n}$ belongs to the Jacobson radical

M. Tamer Koşan ${ }^{* 1}$ (©) Troung Cong Quynh ${ }^{2}$ (©) Tülay Yıldırım ${ }^{3}$ (D) Jan Žemlička ${ }^{4}$ (D)
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey
${ }^{2}$ Department of Mathematics, The University of Danang - University of Science and Education, 459 Ton Duc Thang, Danang city, Vietnam
${ }^{3}$ Department of Mathematics, Gebze Technical University, Kocaeli, Turkey
${ }^{4}$ Department of Algebra, Charles University, Faculty of Mathematics and Physics Sokolovska 83, 18675
Praha 8, Czech Republic

Abstract

A ring R is said to be n-UJ if $u-u^{n} \in J(R)$ for each unit u of R, where $n>1$ is a fixed integer. In this paper, the structure of n-UJ rings is studied under various conditions. Moreover, the n-UJ property is studied under some algebraic constructions.

Mathematics Subject Classification (2010). 16N20, 16D60, 16U60, 16W10
Keywords. UU-ring, UJ-ring, unit, Jacobson radical, clean ring, (semi)regular ring, reduced ring

1. Introduction

Throughout the paper, all considered rings are associative and unital. For a ring R, the Jacobson radical, the set of nilpotent elements and the set of invertible elements of R are denoted by $J(R), N i l(R)$ and $U(R)$, respectively. The symbols $M_{n}(R)$ and $T_{n}(R)$ stand for the $n \times n$ matrix ring and the $n \times n$ upper triangular matrix ring over R, respectively. $R[x]$ ($R[[x]]$, respectively) stands for the polynomial ring (the power series ring, respectively) over R. Let \mathbb{Z} be the ring of integers and \mathbb{Z}_{n} be the ring of \mathbb{Z} modulo n. We also use \mathbb{N} to denote the set of natural numbers.
Recall that a ring R is called a UJ-ring ([12]) if $1+J(R)=U(R)$ (see also, [6] and [19]). Let $n \in \mathbb{N}$. For a fixed integer $n>1$, consider the following forms of the units of a ring R which belong to $J(R)$:
(1) $u-u^{n} \in J(R)$ for each $u \in U(R)$;
(2) For each $u \in U(R)$ there exists n such that $u-u^{n} \in J(R)$.

If a ring R satisfies the condition (1) (respectively, (2)), then we call R an n-UJ ring (respectively, an ∞-UJ ring). Notice that all UJ rings are n-UJ and every n-UJ ring is ∞-UJ. Let R be a UJ-ring. In [12, Proposition 1.3], it is shown that if R is a division ring, then $R \cong \mathbb{F}_{2}$. More generally, $R / J(R)$ is reduced and hence abelian.

[^0]The notions of n-UJ and ∞-UJ generalize 2 -UJ rings introduced in the paper [5]. In this article, it will be shown that a division ring that is ∞-UJ is a field. Further, R is a UJ-ring iff there exists k such that R is a $\left(2^{k}+1\right)$-UJ ring, $R / J(R)$ is reduced and $2 \in J(R)$ respectively.

When R is a UJ-ring with nil Jacobson radical, then R is a UU-ring (i.e., rings with unipotent units, equivalently $1+\operatorname{Nil}(R)=U(R))([4])$, we get that if R is an n-UJ ring and $n-1$ is a unit of R, then $J(R)$ contains $\operatorname{Nil}(R)$. We also study the correspondence of the clean and n-UJ property which is similar to UJ property which were handled by Koşan, Leroy and Matczuk in [12, Section 3]. We obtain that, for a (2n)-UJ ring R, R is a semiregular ring iff R is an exchange ring iff R is a clean ring. Finally, the behavior of n-UJ property under some classical ring constructions, the trivial extension and the (trivial) Morita context are studied.

2. General properties of n-UJ rings

Definition 2.1. Let $n \in \mathbb{N}$. A ring R is said to be an n-UJ ring if $u-u^{n} \in J(R)$ for each $u \in U(R)$ where $n>1$ is a fixed integer.

Definition 2.2. Let $n \in \mathbb{N}$. A ring R is said to be an ∞-UJ ring if for each $u \in U(R)$ there exists $n>1$ such that $u-u^{n} \in J(R)$.

For $n \in \mathbb{N}$, consider the following sets:

$$
\begin{gathered}
\mathbb{U}_{n}(R)=\left\{u^{n-1}: u \in U(R)\right\} \subseteq U(R) \\
\mathbb{V}_{n}(R)=\left\{u \in U(R): u^{n-1} \in 1+J(R)\right\}
\end{gathered}
$$

We remark that $\mathbb{U}_{n}(R)$ and $\mathbb{V}_{n}(R)$ are subgroups of $U(R)$ if R is a commutative ring, but they need not be subgroups of $U(R)$ in the noncommutative case.

Lemma 2.3. The following statements are equivalent for $a \operatorname{ring} R$ and $n \in \mathbb{N}$:
(1) R is an n-UJ ring;
(2) $\mathbb{V}_{n}(R)=U(R)$;
(3) $\mathbb{U}_{n}(R) \subseteq 1+J(R)$;
(4) $U(R / J(R))=\left\{\bar{u}=u+J\left(R / J(R): \bar{u}^{n-1}=\overline{1}\right\}=\mathbb{V}_{n}(R / J(R))\right.$.

Proof. $(1) \Rightarrow(2) \Rightarrow(3)$ They are obvious.
$(3) \Rightarrow(4)$ If $\bar{u} \in U(R / J(R))$, there exists $u \in U$ such that $\bar{u}=u+J(R)$ and $u^{n-1} \in$ $1+J(R)$. Hence $\bar{u}^{n-1}=\overline{1}$. The reverse inclusion is clear.
$(4) \Rightarrow(1)$ Let $u \in U(R)$. Then $u^{n-1} \in 1+J(R)$. Hence $1-u^{n-1} \in J(R)$ which implies $u-u^{n} \in J(R)$, as desired.

Note that every n-UJ ring is ∞-UJ. Furthermore, as an easy consequence of Lemma 2.3, we obtain:

Corollary 2.4. A ring R is ∞ - UJ if and only if $\bigcup_{n \in \mathbb{N}} \mathbb{V}_{n}(R)=U(R)$.
In the following observation, we collect some general properties of n-UJ rings.
Proposition 2.5. Let R be a ring and $n, m \in \mathbb{N}, n, m>1$.
(1) If R is an n-UJ ring, then $2 \in J(R)$ if n is an even number.
(2) If R is an n - $U J$ ring and $n-1$ divides $m-1$, then R is an m - UJ ring.
(3) All UJ rings (in particular, any ring with trivial units, Boolean rings, free commutative and free noncommutative algebras over the field \mathbb{F}_{2}) are n-UJ.
Proof. (1) Assume that R is an n-UJ ring with n an even number. Then $-1=(-1)^{n-1} \in$ $1+J(R)$, and so $2 \in J(R)$.
(2) This follows from Lemma 2.3(2) using the obvious fact that $\mathbb{V}_{n} \subseteq \mathbb{V}_{m}$ whenever $n-1 \mid m-1$.
(3) This is obvious by Lemma $2.3(3)$ since $\mathbb{U}_{n} \subseteq U(R)=1+J(R)$.

Note that the claim of Proposition 2.5(1) for odd numbers generally fails. For instance, the ring \mathbb{Z}_{6} is a 3 -UJ ring with $2 \notin J\left(\mathbb{Z}_{6}\right)$.

Let us point out that, for any division ring R, we have $U(R)=R \backslash\{0\}$ and $J(R)=0$. Hence a division ring R is n-UJ if and only if $u^{n-1}=1$ for every $u \neq 0$.

Proposition 2.6. Let $n \in \mathbb{N}$ such that $n>1$.
(1) If R is a division ring which is $\infty-U J$ then R is a field.
(2) A field \mathbb{F} is n-UJ iff there exist a prime p and $k \in \mathbb{N}$ such that $p^{k}-1$ divides $n-1$ and $\mathbb{F} \cong \mathbb{F}_{p^{k}}$, a field of p^{k} elements.
(3) A product of rings is n-UJ if and only if each component is $n-U J$.

Proof. (1) For each $u \in R$ there is $n(u)>1$ such that $u^{n(u)}=u$. By [13, 12.10], Jacobson's Theorem, R is commutative.
(2) Let \mathbb{F} be an n-UJ field. Then all nonzero elements of \mathbb{F} are roots of the polynomial $x^{n-1}-1$. Hence \mathbb{F} is a finite field and there exist $k \in \mathbb{N}$ and a prime number p such that $\mathbb{F} \cong \mathbb{F}_{p^{k}}$, i.e. \mathbb{F} is a field of p^{k}-elements. Finally $\left(p^{k}-1\right) \mid(n-1)$, since $U(F)$ is a cyclic group of order $p^{k}-1$ all of whose elements have the exponent $n-1$.

The reverse implication is clear.
Observe that R satisfies the polynomial identity $x^{n}-x=0$. As R is a finite-dimensional algebra over $Z(R)$ by [10, Theorem 1], it is finite division ring, which is a field by Wedderburn Theorem. Thus $R=Z(R)$.

The reverse implication follows from (1).
(3) This follows from Lemma 2.3(3) and the facts

$$
\begin{aligned}
J\left(\prod_{i \in I} R_{i}\right) & =\prod_{i \in I} J\left(R_{i}\right), \\
U\left(\prod_{i \in I} R_{i}\right) & =\prod_{i \in I} U\left(R_{i}\right)
\end{aligned}
$$

and

$$
\mathbb{U}_{n}\left(\prod_{i \in I} R_{i}\right)=\prod_{i \in I} \mathbb{U}_{n}\left(R_{i}\right) .
$$

Example 2.7. (1) Let p_{1}, \ldots, p_{r} be prime numbers and $\epsilon_{1}, \ldots, \epsilon_{r} \in \mathbb{N}$. Denote by n the least common multiple of $p_{1}^{\epsilon_{1}}-1, \ldots, p_{r}^{\epsilon_{1}}-1$. Applying Proposition 2.6 we obtain that $\prod_{i} \mathbb{F}_{p_{i} e_{i}}$ is an $(n+1)$-UJ ring which is not m-UJ for every m such that n does not divide $m-1$, in particular for any $m \leq n$.
(2) Let $R=\overline{\mathbb{F}_{p}}$ be an algebraic closure of the finite field \mathbb{F}_{p} for a prime p. Then R is not an n-UJ ring for any $n \in \mathbb{N}$, but it is ∞-UJ.

The following example shows that the class of n-UJ rings is not closed under taking quotients.

Example 2.8. Recall $U(\mathbb{Z})=\{1,-1\}$ and $J(\mathbb{Z})=0$. Hence $\mathbb{U}_{n}(\mathbb{Z})=\{1\}$ for every odd number n, and so \mathbb{Z} is an n-UJ ring. Nevertheless, for a prime p, the ring $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}_{p}$ is not n-UJ for every n unless $p-1$ divides $n-1$ by Proposition 2.6(1).

Proposition 2.9. For a ring R, the following observations hold:
(1) Let $I \subseteq J(R)$ be an ideal of R. Then R is an n - $U J$ ring if and only if R / I is an $n-U J$ ring.
(2) Let R be an n-UJ ring and T a subring of R. Then T is an n - $U J$ ring if $T \cap J(R) \subseteq$ $J(T)$.

Proof. (1) If $v \in U(R / I)$, then there exists an $u \in U(R)$ such that $u+I=v$ and by the hypothesis $u-u^{n} \in J(R)$. So one has $v-v^{n} \in J(R / I)=J(R) / I$.

On the other hand, recall that $(R / I) / J(R / I) \cong R / J(R)$. So R is an n-UJ ring if and only if $R / J(R)$ is an n - UJ ring by Lemma 2.3 .
(2) Let $v \in U(T)(\subseteq U(R))$. Since R is an n-UJ ring, we have $v^{n-1}-1 \in J(R) \cap T \subseteq$ $J(T)$. Therefore, T is an n-UJ ring.

The following observation shows that the n-UJ property passes to corners.
Proposition 2.10. If $n \in \mathbb{N}$ or $n=\infty$ and R is an n - $U J$ ring, then $e R e$ is $n-U J$ for any $e^{2}=e \in R$.
Proof. Let $n \in \mathbb{N}$. For any $u \in U(e R e)$, we have $u+(1-e) \in U(R)$ (with the inverse $v+(1-e)$ for $v \in e R e$ where $u v=e=v u)$. By the hypothesis, $[u+(1-e)]-[u+(1-e)]^{n} \in$ $J(R)$, so $u-u^{n} \in J(R)$. Thus $u-u^{n} \in e R e \cap J(R)=e J(R) e=J(e R e)$, which implies that $e R e$ is an n-UJ ring.

If $n=\infty$ and $u \in U(e R e)$ then we again have $u+(1-e) \in U(R)$, hence there exists $m \in \mathbb{N}$ such that $[u+(1-e)]-[u+(1-e)]^{m} \in J(R)$. Thus $u-u^{m} \in J(e R e)$ and so $e R e$ is an ∞-UJ ring.

A ring R is reduced if R has no nonzero nilpotent elements, and the ring R is called abelian if every idempotent is central.

Proposition 2.11. If R is an n - $U J$ ring and $n-1 \in U(R)$, then $R / J(R)$ is reduced and so is abelian.

Proof. Let $a+J(R)$ be a nilpotent element in $R / J(R)$. There exists a $k \in \mathbb{N}$ such that $a^{k}+J(R)=J(R)$, and so $a^{k} \in J(R)$.

We may assume $k \geq 2$. One can check that $a^{k-1}+J(R)$ is a nilpotent element of $R / J(R)$. Then $1+a^{k-1}$ is a unit of R. Since R is an n-UJ ring, $\left(1+a^{k-1}\right)^{n-1} \in 1+J(R)$. We can write $\left(1+a^{k-1}\right)^{n-1}=1+(n-1) a^{k-1}+a^{k}$. x for some $x \in R$. We have that $\left(1+a^{k-1}\right)^{n-1} \in 1+J(R)$ and $n-1 \in U(R)$ and obtain that $a^{k-1} \in J(R)$. Note that $a^{k-1}+J(R)$ is a nilpotent element of $R / J(R)$.

Repeating this process, we also have $a^{k-2} \in J(R)$. By the induction on k, we deduce that $a \in J(R)$. Thus, $R / J(R)$ is reduced and so is abelian.

Corollary 2.12. If R is an $n-U J$ ring with $n-1 \in U(R)$, then $\operatorname{Nil}(R) \subseteq J(R)$.

The following example shows that the assumption " $n-1 \in U(R)^{\text {" }}$ in Proposition 2.11 is not superfluous.

Example 2.13. Consider Bergman's example of UU-ring $R=\mathbb{F}_{2}\langle x, y\rangle /\left(x^{2}\right)$ presented in [7, Example 2.5], where $\mathbb{F}_{2}\langle x, y\rangle$ is the free algebra generated by x and y. Recall that $0=J(R) \subsetneq N i l(R)$ and $U(R)=1+\mathbb{Z}_{2} x+x R x$ by [7, Example 2.5], hence R is not reduced. Since $(U(R))^{2}=\left(1+\mathbb{Z}_{2} x+x R x\right)^{2}=\{1\}$, we obtain that R is an example of a 3 -UJ ring which is not reduced.

Theorem 2.14. The following conditions are equivalent for a ring R :
(1) R is a UJ-ring.
(2) There exists k such that R is $\left(2^{k}+1\right)-U J, R / J(R)$ is reduced and $2 \in J(R)$.

Proof. (1) \Rightarrow (2) This follows from the facts that UJ-rings are n-UJ, $R / J(R)$ is reduced and $2 \in J(R)$ by [12, Proposition 2.3].
$(2) \Rightarrow(1)$ Let u be a unit of R. Then $u^{2^{k}} \in 1+J(R)$, and hence

$$
(1+u)^{2^{k}}=1+u^{2^{k}}+2 v
$$

for some $v \in R$. The assumption, $2 \in J(R)$, gives $(1+u)^{2^{k}} \in J(R)$. Since $R / J(R)$ is reduced, we have $1+u \in J(R)$, which implies that R is a UJ-ring. $u \in U(R)$ is called n-torsion if $u^{n}=1$ (see [8]).
Proposition 2.15. If R is an n-UJ ring such that $U(R)=\{u \mid u$ is n-torsion $\}$, then R is a UJ ring.
Proof. This is clear.
Proposition 2.16. Let R be a (2k)-UJ ring. If $J(R)=0$ and every nonzero right ideal of R contains a nonzero idempotent, then R is reduced.
Proof. Suppose that there exists non-zero $a \in R$ such that $a^{2}=0$. By [13], there is an idempotent $e \in R a R$ such that $e R e \cong M_{2}(T)$. Since R is a (2k)-UJ ring, $e R e$ is as well by Proposition 2.10. Thus $M_{2}(T)$ is a ($2 k$)-UJ ring, but this is a contradiction, since $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in U\left(M_{2}(T)\right)$ and $A^{2 k-1}=A$ or $A^{2 k-1}=-A$.

An element a in the ring R is said to be regular if there exists $b \in R$ such that $a=a b a$. If all elements of R are regular, then R is called a regular ring.

Example 2.17. Consider the ring $R=\left(\begin{array}{ll}\mathbb{F}_{2} & \mathbb{F}_{2} \\ \mathbb{F}_{2} & \mathbb{F}_{2}\end{array}\right)$. It is easy to compute that $|U(R)|=6$, hence $u^{6}=1$ for each $u \in U(R)$. Thus $u^{7}-u \in J(R)$ for each $u \in U(R)$ which means that R is a 7-UJ ring. Moreover, $J(R)=0$, since R is regular and every nonzero right ideal of R contains a nonzero idempotent. But, R is not reduced.
R is called a π-regular ring if for every $a \in R$ there exists a positive integer n such that $a^{n} \in a^{n} R a^{n}$.

An element x of the ring R is called n-potent if $x^{n}=x$, and R is n-potent if all its elements are n-potent.
Theorem 2.18. The following statements are equivalent for a ring R.
(1) R is a regular ($2 n$)-UJ ring.
(2) R is a π-regular, reduced and ($2 n$)-UJ ring.
(3) R satisfies the polynomial identity $x^{2 n}=x$ and it is commutative.

Proof. (1) \Rightarrow (2) Since R is regular, we get $J(R)=0$ and every nonzero right ideal contains a nonzero idempotent. By [14], R is reduced and clearly all regular rings are π-regular.
$(2) \Rightarrow(3)$ Notice that reduced rings are abelian. By [2], R is strongly π-regular and $J(R) \subseteq \operatorname{Nil}(R)=0$. Let $x \in R$. By [18], there exist $e^{2}=e \in R$ and $u \in U(R)$ such that $x=e+u$ and $x e=e x \in \operatorname{Nil}(R)=0$. Thus we have $x=x-x e=x(1-e)=u(1-e)=$ $(1-e) u$. Since R is an (2n)-UJ ring, we get $x^{2 n}=((1-e) u)^{2 n}=u^{2 n}(1-e)^{2 n}=u(1-e)=x$, as desired. Finally, recall that R is commutative by Jacobsons Theorem [13, 12.10].
$(3) \Rightarrow$ (1) Clearly, R is regular. Let $u \in U(R)$. Then $u^{2 n}=u$ which implies that $u-u^{2 n} \in J(R)$. Hence R is a (2n)-UJ ring.

A ring R is semiregular ([16]) if $R / J(R)$ is regular and idempotents lift modulo $J(R)$, and R is exchange ([17]) if for each $a \in R$ there exists $e^{2}=e \in a R$ such that $1-e \in(1-a) R$. Notice that semiregular rings are exchange.
R is called a clean ring if every element of R is a sum of an idempotent and a unit ([17]).

Theorem 2.19. The following statements are equivalent for a (2n)-UJ ring R :
(1) R is a semiregular ring.
(2) R is an exchange ring.
(3) R is a clean ring.

Proof. (1) \Rightarrow (2) This is obvious, since every semiregular ring is an exchange ring.
$(2) \Rightarrow(3) \mathrm{By}[9], R$ is clean if and only if $R / J(R)$ is clean and idempotents lift modulo $J(R)$. Proposition 2.16 implies that $R / J(R)$ is an exchange (2n)-UJ ring and $R / J(R)$ is abelian. By [17], $R / J(R)$ is clean and so R is clean.
$(3) \Rightarrow(1)$ Assume that R is a clean ring. Then idempotents lift modulo $J(R)$. By Theorem 2.18, we have that $R / J(R)$ is a regular ring. Thus, R is semiregular.

Let us close this section with the following algebraic constructions.
Proposition 2.20. Let R be a ring and $m \in \mathbb{N}$.
(1) R is an n - UJ ring if and only if $R[x] / x^{m} R[x]$ is an $n-U J$ ring.
(2) R is an n-UJ ring if and only if the power series ring $R[[x]]$ is an n-UJ ring.

Proof. (1) This follows from Proposition 2.9(1) since $x R[x] / x^{m} R[x] \subseteq J\left(R[x] / x^{m} R[x]\right)$ and $\left(R[x] / x^{m} R[x]\right) /\left(x R[x] / x^{m} R[x]\right) \cong R$.
(2) Let us consider $(x)=x R[[x]]$ as an ideal of $R[[x]]$. Then $(x) \subseteq J(R[[x]])$. Since $R \cong R[[x]] /(x)$, the result follows from Proposition 2.9(1).

Recall that a ring R is called 2-primal if its prime radical contains $\operatorname{Nil(R)}$.
Proposition 2.21. If the polynomial ring $R[x]$ is an $n-U J$ ring, then R is an $n-U J$ ring. The converse holds if R is 2-primal, $J(R)$ is nil and $n-1 \in U(R)$.
Proof. Let $\pi: R[x] \longrightarrow R$ be a surjective ring homomorphism defined by $\pi\left(\sum_{i} a_{i} x_{i}\right)=a_{0}$. Then $\pi(J(R[x])) \subseteq J(R)$, hence $J(R[x]) \cap R \subseteq J(R)$. If $u \in U(R) \subseteq U(R[x])$, then $u-u^{n} \in J(R[x]) \cap R \subseteq J(R)$.

For the converse, assume R is a 2 -primal n-UJ ring, $J(R)$ is nil and and $n-1 \in U(R)$. By [3, Proposition 2.6], $R[x]$ is 2-primal. We note also that $\operatorname{Nil}(R)=J(R), \operatorname{Nil}(R[x])=$ $J(R[x])$ and $J(R[x])=\operatorname{Nil}(R)[x]=J(R)[x]$. Thus $R[x] / J(R[x]) \cong(R / J(R))[x]$ is reduced. As $R / J(R)$ is reduced by Proposition 2.11, $U(R / J(R))=U(R[x] / J(R[x]))$. Finally, since $R / J(R)$ is an n-UJ ring, we get $R[x] / J(R[x])$ is an n-UJ ring and $R[x]$ is an n-UJ ring by Proposition 2.9.

3. Extensions

Let R be a ring and M a bimodule over R. The trivial extension of R and M is

$$
T(R, M)=\{(r, m): r \in R \text { and } m \in M\}
$$

with an addition defined componentwise and a multiplication defined by

$$
(r, m)(s, n)=(r s, r n+m s) .
$$

The trivial extension $T(R, M)$ is isomorphic to the subring $\left\{\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right): r \in R\right.$ and $\left.m \in M\right\}$ of the formal 2×2 matrix ring $\left(\begin{array}{cc}R & M \\ 0 & R\end{array}\right)$ and also $T(R, R) \cong R[x] /\left(x^{2}\right)$.

We also note that the set of units of trivial extension $T(R, M)$ is

$$
U(T(R, M))=T(U(R), M)
$$

by [1, Proposition 4.9 (2)] and

$$
J(T(R, M))=T(J(R), M)
$$

by [1, Corollary 4.8 (2)].
A Morita context is a 4-tuple $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$, where A and B are rings, ${ }_{A} M_{B}$ and ${ }_{B} N_{A}$ are bimodules, and there exist context products $M \times N \rightarrow A$ and $N \times M \rightarrow B$ written multiplicatively as $(w, z)=w z$ and $(z, w)=z w$, such that $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is an associative ring with the obvious matrix operations .
A Morita context $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is called trivial if the context products are trivial, i.e., $M N=0$ and $N M=0$ (see [15, p. 1993]). We have

$$
\left(\begin{array}{cc}
A & M \\
N & B
\end{array}\right) \cong T(A \times B, M \oplus N),
$$

where $\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ is a trivial Morita context by [11].
Theorem 3.1. Let R be a ring and let M be an (R, R) bimodule. Then R is an $n-U J$ ring if and only if the trivial extension $T(R, M)$ is an n-UJ ring.
Proof. (: \Rightarrow) Let $\bar{u}=\left(\begin{array}{cc}u & m \\ 0 & u\end{array}\right) \in U(T(R, M))=T(U(R), M)$ with $u \in U(R)$ and $m \in M$. We will show that $\bar{u}-\bar{u}^{n} \in J(T(R, M))$. In fact, we have $\bar{u}^{n}=\left(\begin{array}{cc}u^{n} & m_{1} \\ 0 & u^{n}\end{array}\right)$ for some $m_{1} \in$ M. By the hypothesis, we have $\bar{u}-\bar{u}^{n}=\left(\begin{array}{cc}u & m \\ 0 & u\end{array}\right)-\left(\begin{array}{cc}u^{n} & m_{1} \\ 0 & u^{n}\end{array}\right)=\left(\begin{array}{cc}u-u^{n} & m-m_{1} \\ 0 & u-u^{n}\end{array}\right) \in$ $J(T(R, M))$.
$(\Leftarrow:)$ The converse is clear.
Corollary 3.2. Let S and R be rings and let M be an (R, S) bimodule. Then the formal triangular matrix ring $\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ is an n-UJ ring if and only if R and S are n-UJ rings.

By [12, Page 5], the ring $M_{n}(R)$ is not UJ for any $n \geq 2$. But, the ring $\left(\begin{array}{ll}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ \mathbb{Z}_{2} & \mathbb{Z}_{2}\end{array}\right)$ is a 7-UJ ring.
Corollary 3.3. R is an n-UJ ring if and only if the upper triangular matrix ring $\mathbb{T}_{n}(R)$ is an n-UJ ring, $n \geq 1$.
For a subring C of a ring D, the set

$$
\mathcal{R}[D, C]:=\left\{\left(d_{1}, \cdots, d_{n}, c, c, \cdots\right): d_{i} \in D, c \in C, n \geq 1\right\},
$$

with the addition and the multiplication defined componentwise is called the tail ring extension and denoted by $\mathcal{R}[D, C]$.
Example 3.4. $\mathcal{R}[D, C]$ is an n-UJ ring if and only if D and C are n-UJ rings.
Proof. (: \Rightarrow) Firstly, we prove that D is an n-UJ ring. Let $u \in U(D)$. Then $\bar{u}=$ $(u, 1,1,1, \cdots) \in U(\mathcal{R}[D, C])$. By the hypothesis, we have $\bar{u}-\bar{u}^{n} \in J(\mathcal{R}[D, C])$ for any $n \in \mathbb{N}$. Thus, $\bar{u}-\bar{u}^{n}=\left(u-u^{n}, 0,0, \cdots\right) \in J(\mathcal{R}[D, C])=R[J(D), J(C)]$. Hence $u-u^{n} \in$ $J(D)$ which implies that D is an n-UJ ring.

To see that C is an n-UJ ring, we can take $v \in U(C)$ such that $\bar{v}=(1, \cdots, 1, v, v, \cdots) \in$ $U(\mathcal{R}[D, C])$.
$\left(\Leftarrow\right.$:) Assume D and C are n-UJ rings. Let $\bar{u}=\left(u_{1}, u_{2}, \cdots, u_{n}, v, v, \cdots\right) \in U(\mathbb{R}[D, C])$, where $u_{i}, v \in U(R)$ for $1 \leq i \leq n$. Write

$$
\begin{aligned}
\bar{u}-\bar{u}^{n} & =\left(u_{1}, u_{2}, \cdots, u_{n}, v, v, \cdots\right)-\left(u_{1}, u_{2}, \cdots, u_{n}, v, v, \cdots\right)^{n} \\
& =\left(u_{1}-u_{1}^{n}, u_{2}-u_{2}^{n}, \cdots, u_{n}-u_{n}^{n}, v-v^{n}, v-v^{n}, \cdots\right) .
\end{aligned}
$$

Then $u_{i}-u_{i}^{n} \in J(D)$ and $v-v^{n} \in J(C)$ imply $\bar{u}-\bar{u}^{n} \in \mathcal{R}[J(D), J(C)]=J(\mathcal{R}[D, C])$, as desired.

Acknowledgment. M. Tamer Koşan and Tülay Yildirim are supported by a grant (117F070) from TUBITAK of Turkey.

References

[1] D.D. Anderson, D. Bennis, B. Fahid and A. Shaiea, On n-trivial extensions of rings, Rocky Mountain. J. Math. 47, 2439-2511, 2017.
[2] A. Badawi, On abelian π-regular rings, Comm. Algebra, 25 (4), 1009-1021, 1997.
[3] G.F. Birkenmeier, H.E. Heatherly, and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong, 102-129, 1993.
[4] G. Calugareanu, $U U$ rings, Carpathian J. Math. 31 (2), 157-163, 2015.
[5] J. Cui and X. Yin, Rings with 2-UJ property, Comm. Algebra, 48 (4), 1382-1391, 2020.
[6] P. Danchev, Rings with Jacobson units, Toyama Math. J. 38, 61-74, 2016.
[7] P. Danchev and T.Y. Lam, Rings with unipotent units, Publ. Math. Debrecen, 88 (3-4), 449-466, 2016.
[8] P. Danchev and J. Matczuk, n-torsion clean rings, in: Rings, modules and codes, Contemp. Math. 727, Amer. Math. Soc. Providence, RI, 71-82, 2019.
[9] J. Han and W.K. Nicholson, Extension of clean rings, Comm. Algebra, 29 (6), 25892595, 2001.
[10] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (6), 575580, 1948.
[11] M.T. Koşan, The p.p. property of trivial extensions, J. Algebra Appl. 14 (8), 1550124, 5 pp., 2015.
[12] M.T. Koşan, A. Leroy and J. Matczuk, On UJ-rings, Comm. Algebra, 46 (5), 22972303, 2018.
[13] T.Y. Lam, A First Course in Noncommutative Rings (second Ed.), Springer Verlag, New York, 2001.
[14] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc. 74, 384-409, 1953.
[15] M. Marianne, Rings of quotients of generalized matrix rings, Comm. Algebra, 15 (10), 1991-2015, 1987.
[16] W.K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28 (5), 1105-1120, 1976.
[17] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
[18] W.K. Nicholson, Strongly clean rings and Fittings lemma, Comm. Algebra, 27, 35833592, 1999.
[19] S. Sahinkaya and T. Yildirim, UJ-endomorphism rings, The Mathematica Journal, 60 (83), 186-198, 2018.

[^0]: * Corresponding Author.

 Email addresses: mtamerkosan@gazi.edu.tr (M.T. Koşan), tcquynh@ued.udn.vn (T.C. Quynh), tyildirim@gtu.edu.tr (T. Yıldırım), zemlicka@karlin.mff.cuni.cz (J. Žemlička)
 Received: 20.03.2019; Accepted: 11.10.2019

