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Abstract
A ring R is said to be n-UJ if u − un ∈ J(R) for each unit u of R, where n > 1 is a fixed
integer. In this paper, the structure of n-UJ rings is studied under various conditions.
Moreover, the n-UJ property is studied under some algebraic constructions.
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1. Introduction
Throughout the paper, all considered rings are associative and unital. For a ring R,

the Jacobson radical, the set of nilpotent elements and the set of invertible elements of
R are denoted by J(R), Nil(R) and U(R), respectively. The symbols Mn(R) and Tn(R)
stand for the n × n matrix ring and the n × n upper triangular matrix ring over R,
respectively. R[x] (R[[x]], respectively) stands for the polynomial ring (the power series
ring, respectively) over R. Let Z be the ring of integers and Zn be the ring of Z modulo
n. We also use N to denote the set of natural numbers.

Recall that a ring R is called a UJ-ring ([12]) if 1+J(R) = U(R) (see also, [6] and [19]).
Let n ∈ N. For a fixed integer n > 1, consider the following forms of the units of a ring R
which belong to J(R):

(1) u − un ∈ J(R) for each u ∈ U(R) ;
(2) For each u ∈ U(R) there exists n such that u − un ∈ J(R).

If a ring R satisfies the condition (1) (respectively, (2)), then we call R an n-UJ ring
(respectively, an ∞-UJ ring). Notice that all UJ rings are n-UJ and every n-UJ ring is
∞-UJ. Let R be a UJ-ring. In [12, Proposition 1.3], it is shown that if R is a division ring,
then R ∼= F2. More generally, R/J(R) is reduced and hence abelian.
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The notions of n-UJ and ∞-UJ generalize 2-UJ rings introduced in the paper [5]. In
this article, it will be shown that a division ring that is ∞-UJ is a field. Further, R is
a UJ-ring iff there exists k such that R is a (2k + 1)-UJ ring, R/J(R) is reduced and
2 ∈ J(R) respectively.

When R is a UJ-ring with nil Jacobson radical, then R is a UU-ring (i.e., rings with
unipotent units, equivalently 1 + Nil(R) = U(R)) ([4]), we get that if R is an n-UJ ring
and n − 1 is a unit of R, then J(R) contains Nil(R). We also study the correspondence
of the clean and n-UJ property which is similar to UJ property which were handled by
Koşan, Leroy and Matczuk in [12, Section 3]. We obtain that, for a (2n)-UJ ring R, R
is a semiregular ring iff R is an exchange ring iff R is a clean ring. Finally, the behavior
of n-UJ property under some classical ring constructions, the trivial extension and the
(trivial) Morita context are studied.

2. General properties of n-UJ rings
Definition 2.1. Let n ∈ N. A ring R is said to be an n-UJ ring if u − un ∈ J(R) for each
u ∈ U(R) where n > 1 is a fixed integer.
Definition 2.2. Let n ∈ N. A ring R is said to be an ∞-UJ ring if for each u ∈ U(R)
there exists n > 1 such that u − un ∈ J(R).

For n ∈ N, consider the following sets:
Un(R) = {un−1 : u ∈ U(R)} ⊆ U(R),

Vn(R) = {u ∈ U(R) : un−1 ∈ 1 + J(R)}.

We remark that Un(R) and Vn(R) are subgroups of U(R) if R is a commutative ring, but
they need not be subgroups of U(R) in the noncommutative case.
Lemma 2.3. The following statements are equivalent for a ring R and n ∈ N:

(1) R is an n-UJ ring;
(2) Vn(R) = U(R);
(3) Un(R) ⊆ 1 + J(R);
(4) U(R/J(R)) = {u = u + J(R/J(R) : un−1 = 1} = Vn(R/J(R)).

Proof. (1)⇒(2)⇒(3) They are obvious.
(3)⇒(4) If u ∈ U(R/J(R)), there exists u ∈ U such that u = u + J(R) and un−1 ∈

1 + J(R). Hence un−1 = 1. The reverse inclusion is clear.
(4)⇒(1) Let u ∈ U(R). Then un−1 ∈ 1 + J(R). Hence 1 − un−1 ∈ J(R) which implies

u − un ∈ J(R), as desired. �
Note that every n-UJ ring is ∞-UJ. Furthermore, as an easy consequence of Lemma

2.3, we obtain:
Corollary 2.4. A ring R is ∞-UJ if and only if

∪
n∈NVn(R) = U(R).

In the following observation, we collect some general properties of n-UJ rings.
Proposition 2.5. Let R be a ring and n, m ∈ N, n, m > 1.

(1) If R is an n-UJ ring, then 2 ∈ J(R) if n is an even number.
(2) If R is an n-UJ ring and n − 1 divides m − 1, then R is an m-UJ ring.
(3) All UJ rings (in particular, any ring with trivial units, Boolean rings, free com-

mutative and free noncommutative algebras over the field F2) are n-UJ.
Proof. (1) Assume that R is an n-UJ ring with n an even number. Then −1 = (−1)n−1 ∈
1 + J(R), and so 2 ∈ J(R).

(2) This follows from Lemma 2.3(2) using the obvious fact that Vn ⊆ Vm whenever
n − 1|m − 1.

(3) This is obvious by Lemma 2.3(3) since Un ⊆ U(R) = 1 + J(R). �
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Note that the claim of Proposition 2.5(1) for odd numbers generally fails. For instance,
the ring Z6 is a 3-UJ ring with 2 ̸∈ J(Z6).

Let us point out that, for any division ring R, we have U(R) = R \ {0} and J(R) = 0.
Hence a division ring R is n-UJ if and only if un−1 = 1 for every u ̸= 0.

Proposition 2.6. Let n ∈ N such that n > 1.
(1) If R is a division ring which is ∞-UJ then R is a field.
(2) A field F is n-UJ iff there exist a prime p and k ∈ N such that pk − 1 divides n − 1

and F ∼= Fpk , a field of pk elements.
(3) A product of rings is n-UJ if and only if each component is n-UJ.

Proof. (1) For each u ∈ R there is n(u) > 1 such that un(u) = u. By [13, 12.10],
Jacobson’s Theorem, R is commutative.

(2) Let F be an n-UJ field. Then all nonzero elements of F are roots of the polynomial
xn−1 − 1. Hence F is a finite field and there exist k ∈ N and a prime number p such that
F ∼= Fpk , i.e. F is a field of pk-elements. Finally (pk − 1)|(n − 1), since U(F ) is a cyclic
group of order pk − 1 all of whose elements have the exponent n − 1.

The reverse implication is clear.
Observe that R satisfies the polynomial identity xn −x = 0. As R is a finite-dimensional

algebra over Z(R) by [10, Theorem 1], it is finite division ring, which is a field by Wed-
derburn Theorem. Thus R = Z(R).

The reverse implication follows from (1).
(3) This follows from Lemma 2.3(3) and the facts

J(
∏
i∈I

Ri) =
∏
i∈I

J(Ri),

U(
∏
i∈I

Ri) =
∏
i∈I

U(Ri)

and
Un(

∏
i∈I

Ri) =
∏
i∈I

Un(Ri).

�

Example 2.7. (1) Let p1, . . . , pr be prime numbers and ϵ1, . . . , ϵr ∈ N. Denote by n the
least common multiple of pϵ1

1 − 1, . . . , pϵ1
r − 1. Applying Proposition 2.6 we obtain that∏

i Fp
ϵi
i

is an (n + 1)-UJ ring which is not m-UJ for every m such that n does not divide
m − 1, in particular for any m ≤ n.

(2) Let R = Fp be an algebraic closure of the finite field Fp for a prime p. Then R is
not an n-UJ ring for any n ∈ N, but it is ∞-UJ.

The following example shows that the class of n-UJ rings is not closed under taking
quotients.

Example 2.8. Recall U(Z) = {1, −1} and J(Z) = 0. Hence Un(Z) = {1} for every odd
number n, and so Z is an n-UJ ring. Nevertheless, for a prime p, the ring Z/pZ ∼= Zp is
not n-UJ for every n unless p − 1 divides n − 1 by Proposition 2.6(1).

Proposition 2.9. For a ring R, the following observations hold:
(1) Let I ⊆ J(R) be an ideal of R. Then R is an n-UJ ring if and only if R/I is an

n-UJ ring.
(2) Let R be an n-UJ ring and T a subring of R. Then T is an n-UJ ring if T ∩J(R) ⊆

J(T ).



1400 M.T. Koşan, T.C. Quynh, T. Yıldırım, J. Žemlička

Proof. (1) If v ∈ U(R/I), then there exists an u ∈ U(R) such that u + I = v and by the
hypothesis u − un ∈ J(R). So one has v − vn ∈ J(R/I) = J(R)/I.

On the other hand, recall that (R/I)/J(R/I) ∼= R/J(R). So R is an n-UJ ring if and
only if R/J(R) is an n-UJ ring by Lemma 2.3.

(2) Let v ∈ U(T ) (⊆ U(R)). Since R is an n-UJ ring, we have vn−1 − 1 ∈ J(R) ∩ T ⊆
J(T ). Therefore, T is an n-UJ ring. �

The following observation shows that the n-UJ property passes to corners.

Proposition 2.10. If n ∈ N or n = ∞ and R is an n-UJ ring, then eRe is n-UJ for any
e2 = e ∈ R.

Proof. Let n ∈ N. For any u ∈ U(eRe), we have u + (1 − e) ∈ U(R) (with the inverse
v+(1−e) for v ∈ eRe where uv = e = vu). By the hypothesis, [u+(1−e)]−[u+(1−e)]n ∈
J(R), so u − un ∈ J(R). Thus u − un ∈ eRe ∩ J(R) = eJ(R)e = J(eRe), which implies
that eRe is an n-UJ ring.

If n = ∞ and u ∈ U(eRe) then we again have u + (1 − e) ∈ U(R), hence there exists
m ∈ N such that [u + (1 − e)] − [u + (1 − e)]m ∈ J(R). Thus u − um ∈ J(eRe) and so eRe
is an ∞-UJ ring. �

A ring R is reduced if R has no nonzero nilpotent elements, and the ring R is called
abelian if every idempotent is central.

Proposition 2.11. If R is an n-UJ ring and n − 1 ∈ U(R), then R/J(R) is reduced and
so is abelian.

Proof. Let a + J(R) be a nilpotent element in R/J(R). There exists a k ∈ N such that
ak + J(R) = J(R), and so ak ∈ J(R).

We may assume k ≥ 2. One can check that ak−1 + J(R) is a nilpotent element of
R/J(R). Then 1 + ak−1 is a unit of R. Since R is an n-UJ ring, (1 + ak−1)n−1 ∈ 1 + J(R).
We can write (1 + ak−1)n−1 = 1 + (n − 1)ak−1 + ak.x for some x ∈ R. We have that
(1 + ak−1)n−1 ∈ 1 + J(R) and n − 1 ∈ U(R) and obtain that ak−1 ∈ J(R). Note that
ak−1 + J(R) is a nilpotent element of R/J(R).

Repeating this process, we also have ak−2 ∈ J(R). By the induction on k, we deduce
that a ∈ J(R). Thus, R/J(R) is reduced and so is abelian. �
Corollary 2.12. If R is an n-UJ ring with n − 1 ∈ U(R), then Nil(R) ⊆ J(R).

The following example shows that the assumption "n − 1 ∈ U(R)" in Proposition 2.11
is not superfluous.

Example 2.13. Consider Bergman’s example of UU-ring R = F2⟨x, y⟩/(x2)presented in
[7, Example 2.5], where F2⟨x, y⟩ is the free algebra generated by x and y. Recall that
0 = J(R) ( Nil(R) and U(R) = 1 + Z2x + xRx by [7, Example 2.5], hence R is not
reduced. Since (U(R))2 = (1 + Z2x + xRx)2 = {1}, we obtain that R is an example of a
3-UJ ring which is not reduced.
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Theorem 2.14. The following conditions are equivalent for a ring R:
(1) R is a UJ-ring.
(2) There exists k such that R is (2k + 1)-UJ, R/J(R) is reduced and 2 ∈ J(R).

Proof. (1) ⇒ (2) This follows from the facts that UJ-rings are n-UJ, R/J(R) is reduced
and 2 ∈ J(R) by [12, Proposition 2.3].

(2) ⇒ (1) Let u be a unit of R. Then u2k ∈ 1 + J(R), and hence

(1 + u)2k = 1 + u2k + 2v

for some v ∈ R. The assumption, 2 ∈ J(R), gives (1 + u)2k ∈ J(R). Since R/J(R) is
reduced, we have 1 + u ∈ J(R), which implies that R is a UJ-ring. �

u ∈ U(R) is called n-torsion if un = 1 (see [8]).
Proposition 2.15. If R is an n-UJ ring such that U(R) = {u | u is n-torsion}, then R
is a UJ ring.
Proof. This is clear. �
Proposition 2.16. Let R be a (2k)-UJ ring. If J(R) = 0 and every nonzero right ideal
of R contains a nonzero idempotent, then R is reduced.
Proof. Suppose that there exists non-zero a ∈ R such that a2 = 0. By [13], there is
an idempotent e ∈ RaR such that eRe ∼= M2(T ). Since R is a (2k)-UJ ring, eRe is as
well by Proposition 2.10. Thus M2(T ) is a (2k)-UJ ring, but this is a contradiction, since

A =
(

0 −1
1 0

)
∈ U(M2(T )) and A2k−1 = A or A2k−1 = −A. �

An element a in the ring R is said to be regular if there exists b ∈ R such that a = aba.
If all elements of R are regular, then R is called a regular ring.

Example 2.17. Consider the ring R =
(
F2 F2
F2 F2

)
. It is easy to compute that |U(R)| = 6,

hence u6 = 1 for each u ∈ U(R). Thus u7 −u ∈ J(R) for each u ∈ U(R) which means that
R is a 7-UJ ring. Moreover, J(R) = 0, since R is regular and every nonzero right ideal of
R contains a nonzero idempotent. But, R is not reduced.

R is called a π-regular ring if for every a ∈ R there exists a positive integer n such that
an ∈ anRan.

An element x of the ring R is called n-potent if xn = x, and R is n-potent if all its
elements are n-potent.
Theorem 2.18. The following statements are equivalent for a ring R.

(1) R is a regular (2n)-UJ ring.
(2) R is a π-regular, reduced and (2n)-UJ ring.
(3) R satisfies the polynomial identity x2n = x and it is commutative.

Proof. (1) ⇒ (2) Since R is regular, we get J(R) = 0 and every nonzero right ideal
contains a nonzero idempotent. By [14], R is reduced and clearly all regular rings are
π-regular.

(2) ⇒ (3) Notice that reduced rings are abelian. By [2], R is strongly π-regular and
J(R) ⊆ Nil(R) = 0. Let x ∈ R. By [18], there exist e2 = e ∈ R and u ∈ U(R) such that
x = e + u and xe = ex ∈ Nil(R) = 0. Thus we have x = x − xe = x(1 − e) = u(1 − e) =
(1−e)u. Since R is an (2n)-UJ ring, we get x2n = ((1−e)u)2n = u2n(1−e)2n = u(1−e) = x,
as desired. Finally, recall that R is commutative by Jacobsons Theorem [13, 12.10].

(3) ⇒ (1) Clearly, R is regular. Let u ∈ U(R). Then u2n = u which implies that
u − u2n ∈ J(R). Hence R is a (2n)-UJ ring. �
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A ring R is semiregular ([16]) if R/J(R) is regular and idempotents lift modulo J(R),
and R is exchange ([17]) if for each a ∈ R there exists e2 = e ∈ aR such that 1−e ∈ (1−a)R.
Notice that semiregular rings are exchange.

R is called a clean ring if every element of R is a sum of an idempotent and a unit
([17]).

Theorem 2.19. The following statements are equivalent for a (2n)-UJ ring R:
(1) R is a semiregular ring.
(2) R is an exchange ring.
(3) R is a clean ring.

Proof. (1) ⇒ (2) This is obvious, since every semiregular ring is an exchange ring.
(2) ⇒ (3) By [9], R is clean if and only if R/J(R) is clean and idempotents lift modulo

J(R). Proposition 2.16 implies that R/J(R) is an exchange (2n)-UJ ring and R/J(R) is
abelian. By [17], R/J(R) is clean and so R is clean.

(3) ⇒ (1) Assume that R is a clean ring. Then idempotents lift modulo J(R). By
Theorem 2.18, we have that R/J(R) is a regular ring. Thus, R is semiregular. �

Let us close this section with the following algebraic constructions.

Proposition 2.20. Let R be a ring and m ∈ N.
(1) R is an n-UJ ring if and only if R[x]/xmR[x] is an n-UJ ring.
(2) R is an n-UJ ring if and only if the power series ring R[[x]] is an n-UJ ring.

Proof. (1) This follows from Proposition 2.9(1) since xR[x]/xmR[x] ⊆ J(R[x]/xmR[x])
and (R[x]/xmR[x])/(xR[x]/xmR[x]) ∼= R.

(2) Let us consider (x) = xR[[x]] as an ideal of R[[x]]. Then (x) ⊆ J(R[[x]]). Since
R ∼= R[[x]]/(x), the result follows from Proposition 2.9(1). �

Recall that a ring R is called 2-primal if its prime radical contains Nil(R).

Proposition 2.21. If the polynomial ring R[x] is an n-UJ ring, then R is an n-UJ ring.
The converse holds if R is 2-primal, J(R) is nil and n − 1 ∈ U(R).

Proof. Let π : R[x] −→ R be a surjective ring homomorphism defined by π(
∑

i aixi) = a0.
Then π(J(R[x])) ⊆ J(R), hence J(R[x]) ∩ R ⊆ J(R). If u ∈ U(R) ⊆ U(R[x]), then
u − un ∈ J(R[x]) ∩ R ⊆ J(R).

For the converse, assume R is a 2-primal n-UJ ring, J(R) is nil and and n − 1 ∈ U(R).
By [3, Proposition 2.6], R[x] is 2-primal. We note also that Nil(R) = J(R), Nil(R[x]) =
J(R[x]) and J(R[x]) = Nil(R)[x] = J(R)[x]. Thus R[x]/J(R[x]) ∼= (R/J(R))[x] is re-
duced. As R/J(R) is reduced by Proposition 2.11, U(R/J(R)) = U(R[x]/J(R[x])). Fi-
nally, since R/J(R) is an n-UJ ring, we get R[x]/J(R[x]) is an n-UJ ring and R[x] is an
n-UJ ring by Proposition 2.9. �

3. Extensions

Let R be a ring and M a bimodule over R. The trivial extension of R and M is
T (R, M) = {(r, m) : r ∈ R and m ∈ M}

with an addition defined componentwise and a multiplication defined by
(r, m)(s, n) = (rs, rn + ms).

The trivial extension T (R, M) is isomorphic to the subring {
(

r m
0 r

)
: r ∈ R and m ∈ M}

of the formal 2 × 2 matrix ring
(

R M
0 R

)
and also T (R, R) ∼= R[x]/(x2).



Rings such that, for each unit u, u − un belongs to the Jacobson radical 1403

We also note that the set of units of trivial extension T (R, M) is
U(T (R, M)) = T (U(R), M)

by [1, Proposition 4.9 (2)] and
J(T (R, M)) = T (J(R), M)

by [1, Corollary 4.8 (2)].

A Morita context is a 4-tuple
(

A M
N B

)
, where A and B are rings, AMB and BNA

are bimodules, and there exist context products M × N → A and N × M → B written

multiplicatively as (w, z) = wz and (z, w) = zw, such that
(

A M
N B

)
is an associative ring

with the obvious matrix operations .

A Morita context
(

A M
N B

)
is called trivial if the context products are trivial, i.e.,

MN = 0 and NM = 0 (see [15, p. 1993]). We have(
A M
N B

)
∼= T (A × B, M ⊕ N),

where
(

A M
N B

)
is a trivial Morita context by [11].

Theorem 3.1. Let R be a ring and let M be an (R, R) bimodule. Then R is an n-UJ
ring if and only if the trivial extension T (R, M) is an n-UJ ring.

Proof. (:⇒) Let u=
(

u m
0 u

)
∈ U(T (R, M)) = T (U(R), M) with u ∈ U(R) and m ∈ M .

We will show that u − un ∈ J(T (R, M)). In fact, we have un =
(

un m1
0 un

)
for some m1 ∈

M . By the hypothesis, we have u − un =
(

u m
0 u

)
−

(
un m1
0 un

)
=

(
u − un m − m1

0 u − un

)
∈

J(T (R, M)).
(⇐:) The converse is clear. �

Corollary 3.2. Let S and R be rings and let M be an (R, S) bimodule. Then the formal

triangular matrix ring
(

R M
0 S

)
is an n-UJ ring if and only if R and S are n-UJ rings.

By [12, Page 5], the ring Mn(R) is not UJ for any n ≥ 2. But, the ring
(
Z2 Z2
Z2 Z2

)
is a

7-UJ ring.

Corollary 3.3. R is an n-UJ ring if and only if the upper triangular matrix ring Tn(R)
is an n-UJ ring, n ≥ 1.

For a subring C of a ring D, the set
R[D, C] := {(d1, · · · , dn, c, c, · · · ) : di ∈ D, c ∈ C, n ≥ 1},

with the addition and the multiplication defined componentwise is called the tail ring
extension and denoted by R[D, C].

Example 3.4. R[D, C] is an n-UJ ring if and only if D and C are n-UJ rings.

Proof. (:⇒) Firstly, we prove that D is an n-UJ ring. Let u ∈ U(D). Then u =
(u, 1, 1, 1, · · · ) ∈ U(R[D, C]). By the hypothesis, we have u − un ∈ J(R[D, C]) for any
n ∈ N. Thus, u − un = (u − un, 0, 0, · · · ) ∈ J(R[D, C]) = R[J(D), J(C)]. Hence u − un ∈
J(D) which implies that D is an n-UJ ring.
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To see that C is an n-UJ ring, we can take v ∈ U(C) such that v = (1, · · · , 1, v, v, · · · ) ∈
U(R[D, C]).

(⇐:) Assume D and C are n-UJ rings. Let u = (u1, u2, · · · , un, v, v, · · · ) ∈ U(R[D, C]),
where ui, v ∈ U(R) for 1 ≤ i ≤ n . Write

u − un = (u1, u2, · · · , un, v, v, · · · ) − (u1, u2, · · · , un, v, v, · · · )n

= (u1 − un
1 , u2 − un

2 , · · · , un − un
n, v − vn, v − vn, · · · ).

Then ui − un
i ∈ J(D) and v − vn ∈ J(C) imply u − un ∈ R[J(D), J(C)] = J(R[D, C]), as

desired. �
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