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Abstract
Roughly speaking, the digital Lusternik-Schnirelmann category of digital images studies
how far a digital image is away from being digitally contractible. The digital Lusternik-
Schnirelmann category (digital LS category, for short) is defined in [A. Borat and T.
Vergili, Digital Lusternik-Schnirelmann category, Turkish J. Math. 2018]. In this paper,
we introduce the digital LS category of digital functions. We will give some basic properties
and discuss how this new concept will behave if we change the adjacency relation in the
domain and in the image of the digital function and discuss its relation with the digital
LS category of a digital image.
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1. Introduction
The Lusternik-Schnirelmann category of a space X, first introduced in [21], is the least

number n such that there is an open cover {U1, . . . , Un+1} of X with the property that
the inclusion ij : Uj ↪→ X is nullhomotopic in X for each j. For more details, see [11].
The Lusternik-Schnirelmann category of maps is first introduced in [14] and is studied in
detail in [1]. For more details see [11,18,24] and for a simplicial analog see [23].

The digital LS category of a digital image is introduced in [3] and its close relative,
digital topological complexity, is introduced in [19]. For the definition of usual topological
complexity and its basic properties, see [13].

This paper is organized as follows. In Section 2, we will recall some basic definitions
and theorems from digital topology that we will use throughout this paper. We will also
recall the definition of the digital LS category of a digital image and discuss digital LS
category of simple closed κ-curves.

In Section 3, we will introduce the definition of the digital LS category of a digital
function and introduce the main theorems of this paper, answering questions such as
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how digitally homotopic functions and digital homotopy equivalence affect the digital
Lusternik-Schnirelmann category of the given functions or the digital images. Moreover,
relations between the digital LS category of a digital function and the digital LS category
of a digital image are studied in this section and Section 4.

2. Background
In this section we will recall some basic definitions and theorems from digital topology

and recall the digital Lusternik-Schnirelmann category of digital images. At the end of
this section we will give a discussion on simple closed κ-curves and compute their digital
LS category.

A digital image X is a subset of Zn for a positive integer n. We impose an adjacency
relation on Zn in order to work on a digital image X ⊂ Zn as follows [7]: Let p =
(p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) be two points in Zn. Then for 1 ≤ ` ≤ n, p and q
are said to be c`-adjacent whenever

• there are at most ` indices i such that |pi − qi| = 1 and
• pj = qj for all other indices j satisfying |pi − qi| 6= 1.

Note that c` indicates the number of adjacent points in Zn, according to this adjacency.
For instance, we have c1 = 2 in Z, c1 = 4 and c2 = 8 in Z2, and c1 = 6, c2 = 18, c3 = 26
in Z3. We usually denote an adjacency relation by Greek letters such as κ, λ, etc., and
a digital image by a pair (X, κ) where X ⊆ Zn and κ is an adjacency relation inherited
from Zn.

A digital image (X, κ) is said to be κ-connected if for any pair of elements x and x′ in
X, there exists a sequence {xi}n

i=0 ⊂ X such that x = x0, x′ = xn and xi and xi+1 are
κ-adjacent for 0 ≤ i < n [17].

In [4], a digital interval is defined as a subset of Z of the form

[a, b]Z = {n ∈ Z | a ≤ n ≤ b}.

where 2-adjacency is assumed.

Definition 2.1. ([5]) Let (X, κ) and (Y, λ) be digital images. A function f : X → Y is
(κ, λ)-continuous if f(x) and f(x′) are λ-adjacent or equal in Y whenever x and x′ are
κ-adjacent in X.

Let (X, κ) and (Y, λ) be digital images. A function f : X → Y is called (κ, λ)-
isomorphism [8] (called a homeomorphism rather than isomorphism in [4,5]) if f is (κ, λ)-
continuous and bijective and further its inverse f−1 : Y → X is (λ, κ)-continuous.

Theorem 2.2. ([5]) Let f : X → Y and g : Y → Z be (κ0, κ1)-continuous and (κ1, κ2)-
continuous functions respectively. Then the composite function g ◦ f : X → Z is (κ0, κ2)-
continuous.

Definition 2.3. ([5,20]) Let f, g : X → Y be (κ, λ)-continuous functions. If there exist a
positive integer m and a function

F : X × [0, m]Z → Y

with the following conditions, then F is said to be a (κ, λ)-homotopy, and f and g are
called (κ, λ)-homotopic in Y (denoted by f 'κ,λ g).

(i) For all x ∈ X, F (x, 0) = f(x) and F (x, m) = g(x).
(ii) For all x ∈ X, the induced function Fx : [0, m]Z → Y defined by Fx(t) = F (x, t) is

(2, λ)-continuous.
(iii) For all t ∈ [0, m]Z, the induced function Ft : X → Y defined by Ft(x) = F (x, t) is

(κ, λ)-continuous.
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Definition 2.4. ([6]) A (κ, λ)-continuous map f : X → Y is said to be a (κ, λ)-homotopy
equivalence if there exists a (λ, κ)-continuous map g : Y → X such that g ◦ f 'κ,κ IdX

and f ◦ g 'λ,λ IdY where IdX and IdY are the identity maps on X and Y respectively.
We say X and Y are (κ, λ)-homotopy equivalent if there is a (κ, λ)-homotopy equivalence
from X to Y .

We call a (κ, λ)-continuous map f : X → Y (κ, λ)-nullhomotopic if it is (κ, λ)-homotopic
to a constant function c : X → Y , c(x) = c0 for some c0 ∈ Y [4].

Throughout the paper, a cover of a digital image (X, κ) means a collection of subsets
{Ui} of X whose union equals X.

Definition 2.5. ([3]) The digital LS category of a digital image (X, κ) is the least integer
n such that there exists a cover {U1, U2, . . . , Un+1} of X where each inclusion map ii :
Ui ↪→ X for i = 1, . . . , n + 1 is (κ, κ)-nullhomotopic (or κ-nullhomotopic for short) in X.
This will be denoted by catκ(X) = n.

Notice that catκ(X) can be at most the number of lattice points in X.

The following definition is given in [10]. Suppose κ1 and κ2 are two adjacency relations
on a set X. Then we say that κ1 dominates κ2, κ1 ≥d κ2, if for x, x′ ∈ X, if x and x′ are
κ1-adjacent then x and x′ are κ2-adjacent.

Remark 2.6. Suppose u ≤ v. In [3], the authors used the notations "κ ≤ λ" or "λ ≥ κ"
in such a way that "cu ≤ cv"; however, by the definition of these notations in [10] we have
"cv ≤ cu". For consistency in the literature, we have chosen to use the definition of [10].

As in the traditional algebraic topology setting, the digital LS category is a homotopy
invariant in the digital sense.

Theorem 2.7. ([3]) If the digital images (X, κ) and (Y, λ) are (κ, λ)-homotopy equivalent,
then catκ(X) = catλ(Y ).

A simple closed κ-curve S in a digital image (X, κ) is a sequence {xi}m−1
i=0 for m ≥ 4 in

X such that xi and xj are κ-adjacent if and only if j = (i ± 1) mod m [5].
Recall that if the identity map IdX : X → X is (κ, κ)-homotopic to a constant function

c : X → X, c(x) = c0 for some c0 in X, then (X, κ) is called κ-contractible [4, 20].

Theorem 2.8. ([9]) A simple closed κ-curve S which contains more than four points is
not κ-contractible.

However, if we remove a point from a simple closed κ-curve S with |S| > 4, we get a
κ-contractible digital image.

Proposition 2.9. Let S = {xi}m
i=0 be a simple closed κ-curve with m ≥ 4. Then S \{xm}

is κ-contractible.

Proof. The desired digital κ-homotopy function between the identity map and a constant
map on S \ {xm} as follows.

H : S \ {xm} × [0, m − 1]Z → S \ {xm}

(xi, t) 7→ H(xi, t) =
{

xi−t 0 ≤ t ≤ i

x0 otherwise.

�

Theorem 2.10. Let S be a simple closed κ-curve with |S| > 4. Then catκ(S) = 1.
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Proof. Let S = {xi}m
i=0 with m ≥ 4. Then catκ(S) > 0 since S is not κ-contractible.

Consider the subsets of S, U1 = {xm} and U2 = S \ {xm}. Then the inclusion map
ii : Ui → S for i = 1, 2 is κ-nullhomotopic since U1 is a singleton set and U2 is κ-
contractible by Proposition 2.9. �

3. Digital Lusternik-Schnirelmann category of digital functions
Definition 3.1. The digital LS category of a (κ, λ)-continuous function f : X → Y is
defined to be the least integer n such that there is a cover {U1, . . . , Un+1} of X such that
f |Uj is (κ, λ)-nullhomotopic for each j.

We will denote it by catκ,λ(f).

Notice that catκ,λ(f) can be no more than the number of lattice points of X.

Remark 3.2. It is obvious that catκ(X) = catκ,κ(IdX) (it follows from the definition of
digital LS category).

Proposition 3.3. Suppose κ1 and κ2 are two adjacency relations on a set X with κ1 ≥d κ2
and λ is an adjacency relation on a set Y . If f is (κ1, λ)-continuous then catκ1,λ(f) ≥
catκ2,λ(f).

Proof. Since κ1 ≥d κ2, a function that is (κ1, λ)-continuous is (κ2, λ)-continuous. There-
fore, f is (κ2, λ)-continuous, and (κ1, λ)-homotopies are (κ2, λ)-homotopies. The assertion
follows easily from Definition 3.1. �
Proposition 3.4. Suppose λ1 and λ2 are two adjacency relations on a set Y with λ2 ≥d λ1
and κ is an adjacency relation on a set X. If f is (κ, λ2)-continuous then catκ,λ1(f) ≤
catκ,λ2(f)

Proof. Since f is (κ, λ2)-continuous and λ2 ≥d λ1, f is also (κ, λ1)-continuous. Let
catκ,λ2(f) = n. Then there are U1, . . . , Un+1 subsets of X covering X such that f |Uj :
Uj → X is (κ, λ2)-nullhomotopic, for each j. That is, there is a (κ, λ2)-homotopy Hj :
Uj×[0, m]Z → Y between f |Uj and a constant function cj : (Uj , κ) → (Y, λ2). If we consider
λ1-adjacency on Y and consider Gj : Uj × [0, m]Z → Y defined by Gj(x, t) = Hj(x, t), the
function Gj becomes a (κ, λ1)-homotopy which follows from the idea that two λ2-adjacent
points are λ1-adjacent since λ2 ≥d λ1. Thus catκ,λ1(f) ≤ n. �
Example 3.5. Let (X, κ) and (Y, λ) be digital images. If f : X → Y is (κ, λ)-nullhomotopic,
catκ,λ(f) = 0.

Theorem 3.6. Suppose X is κ-connected and Y is λ-connected. If f : X → Y is a
(κ, λ)-continuous function, then catκ,λ(f) ≤ min{catκ(X), catλ(Y )}.

Proof. Let catκ(X) = n. Then there is a cover {U1, . . . , Un+1} of X such that the
inclusion ij : Uj ↪→ X is κ-nullhomotopic in X for each j. So for each j, we can write a
(κ, κ)-homotopy

Hj : Uj × [0, m]Z → X satisfying
(1a) For all x ∈ Uj , Hj(x, 0) = ij(x) and Hj(x, m) = cj for some cj ∈ X.
(1b) For all x ∈ Uj , Hj

x : [0, m]Z → X defined by Hj
x(t) = Hj(x, t) is (2, κ)-continuous.

(1c) For all t ∈ [0, m]Z, Hj
t : Uj → X defined by Hj

t (x) = Hj(x, t) is (κ, κ)-continuous.

Define functions as follows.
F j : Uj × [0, m]Z → Y

(x, t) → F j(x, t) = f(Hj(x, t))



1418 T. Vergili, A. Borat

If we verify that the following three conditions hold (i.e., F j is a (κ, λ)-homotopy), then
it follows that catκ,λ(f) ≤ catκ(X).

(2a) For all x ∈ Uj , F j(x, 0) = f(Hj(x, 0)) = f(ij(x)) = f |Uj (x) and F j(x, m) =
f(Hj(x, 1)) = f(cj) is constant in Y .

(2b) For all x ∈ Uj , F j
x : [0, m]Z → Y defined by F j

x(t) = F j(x, t) = f(Hj
x(t)) is (2, λ)-

continuous by Theorem 2.2 since it is a composition of a (κ, λ)-continuous map f
and a (2, κ)-continuous map Hj

x.
(2c) For all t ∈ [0, m]Z, F j

t : Uj → Y defined by F j
t (x) = F j(x, t) = f(Hj

t (x)) is (κ, λ)-
continuous by Theorem 2.2 since it is a composition of a (κ, λ)-continuous map f

and a (κ, κ)-continuous map Hj
t .

For the second half of the proof, suppose that catλ(Y ) = k. Then there is a cover
{V1, . . . , Vk+1} of Y such that the inclusion ij : Vj ↪→ Y is λ-nullhomotopic in Y for each
j. So for each j, we can write a (λ, λ)-homotopy

Hj : Vj × [0, m]Z → Y satisfying
(3a) For all y ∈ Vj , Hj(y, 0) = ij(y) and Hj(y, m) = d̄j(y) = dj where d̄j : Vj → Y

defined by d̄j(y) = dj is a constant function for some dj ∈ Y .
(3b) For all y ∈ Vj , Hj

y : [0, m]Z → Y defined by Hj
y(t) = Hj(y, t) is (2, λ)-continuous.

(3c) For all t ∈ [0, m]Z, Hj
t : Vj → Y defined by Hj

t (y) = Hj(y, t) is (λ, λ)-continuous.

Define functions as follows.
F j : f−1(Vj) × [0, m]Z → Y

(x, t) → F j(x, t) = Hj(f(x), t)
If we verify that it is a (κ, λ)-homotopy, then it follows that catκ,λ(f) ≤ catλ(Y ) and

this completes the proof.
(4a) For all x ∈ f−1(Vj), F j(x, 0) = Hj(f(x), 0) = ij(f(x)) = f |f−1(Vj)(x) and F j(x, m) =

Hj(f(x), m) = d̄j(f(x)) = dj is constant in Y .
(4b) For all x ∈ f−1(Vj), F j

x : [0, m]Z → Y defined by F j
x(t) = F j(x, t) = Hj

f(x)(t) is
(2, λ)-continuous from (3b).

(4c) For all t ∈ [0, m]Z, F j
t : f−1(Vj) → Y defined by F j

t (x) = F j(x, t) = Hj
t (f(x)) is

(κ, λ)-continuous by Theorem 2.2 since it is a composition of a (κ, λ) continuous
map f and a (λ, λ)-continuous map Hj

t .
�

Proposition 3.7. If f : X → Y is (κ, λ)-continuous and g : Y → Z is (λ, η)-continuous
then catκ,η(g ◦ f) ≤ min{catκ,λ(f), catλ,η(g)}.

Proof. In the first half of the proof we show that catκ,η(g◦f) ≤ catκ,λ(f). Let catκ,λ(f) =
n. Then there is a cover {U1, . . . , Un+1} of X such that f |Uj : Uj → Y is (κ, λ)-
nullhomotopic (i.e., it is (κ, λ)-homotopic to a constant function cj : (Uj , κ) → (Y, λ))
for each j.

(g ◦ f)|Uj = g ◦ (f |Uj ) 'κ,η g ◦ cj 'κ,η c̄j where c̄j : (Uj , κ) → (Z, η) is a constant
function. So catκ,λ(g ◦ f) ≤ n.

In the second half of the proof, we show that catκ,η(g◦f) ≤ catλ,η(g). Let catλ,η(g) = m.
Then there is a cover {V1, . . . , Vm+1} of Y such that g|Vj : Vj → Y is (λ, η)-nullhomotopic
(i.e., it is (λ, η)-homotopic to a constant function dj : (Vj , λ) → (Z, η)) for each j.
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Take Uj := f−1(Vj) for each j. Notice that the union of Uj ’s is X.

For all x ∈ f−1(Vj), we have

(g ◦ f)(x) = g
(
f |f−1(Vj)(x)

)
= g|Vj

(
f |f−1(Vj)(x)

)
=

(
g|Vj ◦ f |f−1(Vj)

)
(x).

In other words, (g ◦ f)|Uj = g|Vj ◦ f |Uj .

From the assumption, g|Vj 'λ,η dj . Hence (g ◦ f)|Uj = g|Vj ◦ f |Uj 'κ,η dj ◦ f |Uj 'κ,η d̄j

where d̄j : (Uj , κ) → (Z, η) is some constant function. Hence catκ,η(g ◦ f) ≤ m. �

Proposition 3.8. If f, g : X → Y are (κ, λ)-homotopic, then catκ,λ(f) = catκ,λ(g).

Proof. It suffices to show that catκ,λ(f) ≤ catκ,λ(g). Let catκ,λ(g) = n. Then there is a
cover {U1, . . . , Un+1} of X such that g|Uj : Uj → Y is (κ, λ)-nullhomotopic (that is, it is
(κ, λ)-homotopic to a constant function cj : (Uj , κ) → (Y, λ) for each j). Since f 'κ,λ g,
we have f |Uj 'κ,λ g|Uj for each j. Hence f |Uj is (κ, λ)-nullhomotopic. �

Corollary 3.9. Let f : X → Y be a (κ, λ)-continuous function. Then catκ,λ(f) = 0 if
and only if f 'κ,λ c where c : X → Y is a constant function.

Proof. This follows from Definition 3.1 and Proposition 3.8. �

Theorem 3.10. If f : X → Y is (κ, λ)-homotopy equivalence, then catκ,λ(f) = catκ(X) =
catλ(Y ).

Proof. By Remark 3.2, catκ(X) = catκ,κ(IdX). Let g be a homotopy inverse of f . That
is, g : Y → X is a (λ, κ)-continuous function such that g ◦ f 'κ,κ IdX and f ◦ g 'λ,λ IdY .
Then we have

catκ(X) = catκ,κ(IdX) = catκ,κ(g ◦ f) ≤ catκ,λ(f) ≤ catκ(X).

Note that the second equality and the first and the second inequalities follow from
Proposition 3.8, Proposition 3.7, and Theorem 3.6 respectively.

The assertion follows from Theorem 2.7. �

Corollary 3.11. Let f : X → Y be a (κ, λ)-homotopy equivalence from a κ-contractible
digital image (or to a λ-contractible digital image). Then catκ,λ(f) = 0.

Proof. This follows from Theorem 3.10. �

Note that a set X in Zn is symmetric with respect to the origin if X has the property
that x is an element in X if and only if −x is an element in X. If X ⊂ Zn and Y ⊂ Zm are
two digital images and X is symmetric, a map f : X → Y which satisfies f(−x) = −f(x)
for all x ∈ X is called an antipodal map [9]. For the definition of a symmetric subset of an
Euclidean space with respect to the origin and an antipodal map on it, see [12], pp. 261.

Example 3.12. Let MSC4 be a digital image in Z2 4-isomorphic to

{c0 = (1, −1), c1 = (1, 0), c2 = (1, 1), c3 = (0, 1), c4 = (−1, 1), c5 = (−1, 0), c6 = (−1, −1), c7 = (0, −1)}

(see Figure 1). Then cat4(MSC4) = 1. Note that this assertion appeared in [3], but the
argument offered as proof in [3] only establishes that cat4(MSC4) ∈ {0, 1}. To complete
the proof, it suffices to show that cat4(MSC4) 6= 0 and this follows from the observation
that MSC4 is not 4-contractible [9]; Corollary 3.9, which shows that cat4,4(IdMSC4) 6= 0;
and Remark 3.2.

Remark 3.13. The proof of cat4(MSC4) = 1 also follows from Theorem 2.10 since MSC4
is a simple closed 4-curve.
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Figure 1. MSC4

The definition of wedge in digital topology was introduced in [16]. We refer to [8]
for a corrected definition. Let (X, κ) be a digital image such that X = X0 ∪ X1 where
X0 ∩ X1 = {x0} and if x and y are κ-adjacent for x ∈ X0 and y ∈ X1 then x0 ∈ {x, y}. In
this case, X is called the wedge of X0 and X1 and denoted X = X0 ∨ X1 and x0 is called
the wedge point.

Lemma 3.14. Let X0 = X1 = MSC4 and consider X = X0 ∨ X1 where x0 is the wedge
point of X. Then X is not 4-contractible.

Proof. Assume that X is 4-contractible. Then there exists a digital homotopy H :
X × [0, m]Z → X such that H(x, 0) = x and H(x, 1) = x0. Consider the digital (4, 4)-
continuous function r : X → X0 where r(x) = x for x ∈ X0 and r(x) = x0 otherwise.
Then the digital map G : X0 × [0, m]Z → X0 defined by G(x, t) = r ◦ H(x, t) gives a
digital (4, 4)-homotopy between an identity map on X0 and a constant map at x0 which
is a contradiction with the fact that MSC4 is not 4-contractible [9]. �
Example 3.15. Consider the digital image MSC4 ∨ MSC4 with the wedge point c0 as
shown in Figure 2. It can easily be seen that the subsets U = {c4, c3, c2, c1, c0, d1, d2, d3, d4}
and V = {c5, c6, c7, c0, d7, d6, d5} are 4-contractible and cover MSC4 ∨ MSC4 so that the
inclusion maps iU : U → MSC4 ∨ MSC4 and iV : V → MSC4 ∨ MSC4 are both 4-
nullhomotopic. Hence cat4(MSC4 ∨ MSC4) ≤ 1. By Lemma 3.14, the identity function
on MSC4 ∨ MSC4 cannot have LS category value 0 for 4-adjacency and it follows from
Remark 3.2 that cat4(MSC4 ∨ MSC4) 6= 0. Hence cat4(MSC4 ∨ MSC4) = 1.

Figure 2. MSC4 ∨ MSC4

Example 3.16. Define the antipodal map f : (MSC4, κ1) → (MSC4, κ2), f(ci) = ci+4(mod8)
(see Figure 3). Note that f is (κ1, κ2)-continuous whenever κ2 ≥ κ1 or κ1 = κ2 where
κ1, κ2 ∈ {4, 8}.

• Take κ1 = κ2 = 8. Since MSC4 is 8-contractible [15, 16], 1 '8,8 c where 1 and c
are the identity map and constant map respectively. Then f '8,8 f ◦ c, that is f
is also homotopic to a constant map. Hence cat8,8(f) = 0.

• Take κ1 = 4 and κ2 = 8. By Theorem 3.6 and Example 2.7 in [3], we have
cat4,8(f) ≤ min{cat4(MSC4) = 1, cat8(MSC4) = 0}

and hence cat4,8(f) = 0.
• Take κ1 = κ2 = 4. Since f ◦f is the identity function, it follows from Theorem 3.10

that cat4,4(f) = 1.
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Figure 3. The antipodal map f from MSC4 to itself.

4. Digital LS category of digital diagonal map
Definition 4.1. ([2,22]) For (X, κ) and (Y, λ), the normal (or strong) product adjacency,
NP (κ, λ), on X × Y is defined as follows. Two elements (x1, y1) and (x2, y2) in X × Y are
NP (κ, λ)-adjacent if either

(i) x1 = x2 and y1, y2 are λ-adjacent or
(ii) y1 = y2 and x1, x2 are κ-adjacent or
(iii) x1, x2 are κ-adjacent and y1, y2 are λ-adjacent.

It is an easy exercise to see that the digital diagonal map ∆X : X → X × X, ∆X(x) =
(x, x), is (κ, NP (κ, κ))-continuous.

Theorem 4.2. catκ,NP (κ,κ)(∆X) = catκ(X).

Proof. We can regard the function ∆X as from X to ∆X(X). Let pr1 : ∆X → X be
the projection map pr1(x, x) = x. We see easily that pr1 is (NP (κ, κ), κ)-continuous and
is the inverse of the function ∆X . Therefore, ∆X is a (κ, NP (κ, κ))-isomorphism. The
assertion follows from Theorem 3.10. �
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