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Abstract  

The brain and the immune system are the only two systems of the human body that can 

dominate all others by extracting resources, including glucose. The brain  dominates  during  

daytime  hours  and  stressful  situations,  whereas  the immune system protects us principally 

at night, during periods of infection and when wounds are healing. Both systems are similarly 

capable of drawing on energy and other essential resources using strategies beneficial to their 

own function and anatomy. Human evolution has made the brain the most important of the 

body’s systems, resulting in a shift from strong to smart. However, the immune system is very 

old and robust; when necessary it is activated by a variety of non-specific immune challenges 

such as psychoemotional stress and most often when immune activating risk factors (including 

endotoxemia) are not solved in an appropriate timeframe. When chronically activated, the 

immune system demonstrates even more  selfish  behaviour  than  the  selfish  brain,  inducing  

chronic  low-grade inflammation and multiple related diseases. But before castigating the 

immune system for this behaviour, it is crucial to recognise that it is only doing what it is made 

for: trying to protect us. 
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Introduction  

1.1. The selfish brain and immune system in evolution 

Low-grade inflammation; the cause of causes Chronic  inflammatory  diseases  (CID)  are  

increasing  in  frequency,  while treatments for these conditions are still in their infancy (1). 

Many of these diseases hardly existed 200 years ago (2) and proximate interventions 

addressing their genuine  aetiologies  have  not  been  very  successful  (3).  Chronic  

inflammation involves the innate and adaptive immune system (Ghigliotti 2014), which 

can be considered very costly at the level of the use of resources, including energy (Bajgar, 

PLoS Biol. 2015;13(4):e1002135.), proteins and certain minerals, such as calcium (4) and 

magnesium (5-7). Long-term activation of the innate and adaptive immune system causes 

further maturation of antigen presenting cells (Montserrat 2016). It is therefore plausible 

that low-grade inflammation is a direct cause of multiple diseases related with increased 

activity of the innate and adapted immune system including multiple autoimmune disorders 

and cancer. A recent meta analysis showed a linear association between C reactive protein 

(CRP), a marker for low grade inflammation and risk for breast cancer (Chan 2015). 

Physiological  processes  in  all  living  organisms  are  direct  consequences  of evolutionary 

pressure promoting overall evolutionary fitness, defined as survival taking  precedence  

over  reproduction  and  direct  survival/reproduction  taking precedence over long-term 

survival/growth (8). Because of this precedence being set, injuries or atrophy of tissues 

such as skin, bone and tendons occur when resources needed for survival are scarce, 

including situations of starvation (9), and in times of energy depletion due to acute and 

even chronic inflammation (1). Many CIDs manifest at older age and therefore exert little 

selection pressure. Our ancestors had much lower life expectancies and rarely suffered from 

CIDs or the resulting adverse health consequences, and when they did this would hardly 

have affected survival and reproduction (Finch 2006). Nevertheless, although inflammation 

can affect important organs such as the liver and liver inflammatory mechanisms are 

essential for the maintenance of liver health (Robinson 2016), it is important to note that, 

even in these situations, hepatic gluconeogenesis is maintained during immune activation, 

providing the energy required for survival and reproduction (10, 11). During the 

preparation of this review, which started in 2008, other authors published the term “selfish 

immune system” and therefore it is obvious that this topic is highly actual at this moment 

(Straub. Arthritis Res Ther. 2014;16 Suppl 2:S4. Straub. Ann N Y Acad Sci. 2014;1318:7-

17) 

1.2.  Protective role of the immune system during human evolution 

Robust adaption to new environmental challenges involves epigenetic changes that  

influence  rapid  (epigenetic;  individuals,  some  generations)  and  long-term (genetic; 

generations) adjustment of the phenotype, for instance by epimutation, single  nucleotide  

polymorphisms  and  gene  copy  number  variation  (12,  13). Numerous  environmental  

factors  have  shaped  the  human  genome,  including climate, food and microbial load 

(12). Although the first two challenges certainly show selective pressure in humans, the 

main selective pressure seems to derive from pathogens because of their high degree of 

potential lethality (14). When  hominins  began  exploring  new  environments  looking  

for  food  and scavenging, they were exposed to new pathogens. For example, dead meat, 

when spoiled, is a perfect source of pathogens such as Escherichia coli, Salmonella and 

other possible lethal microbes (15). The struggle to survive in new situations led to the 

development of an incredibly effective and robust immune system. The survival 
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mechanisms evolved at least four times and entailed: upregulation of anti- inflammatory 

and anti-pathogenic strategies (16), spontaneous physical activity (17,18), the development 

of a highly sophisticated behavioural immune system (19), and higher immunological 

reactivity, when compared with our evolutionary closest counterpart, the chimpanzee (20, 

21). 

The higher reactivity of the immune system enabled the exploration of new environments 

and, when necessary, the ability to mount a massive innate immune response to prevent 

lethal infection (22). This response is extremely costly and would have hardly permitted 

the further brain growth observed in later hominins if the pro-inflammatory reaction to 

pathogens had prevailed over the needs of the brain on a chronic basis. The use of the first 

three strategies might have been necessary because of a much lower energetic cost, thus 

protecting against pathogenic load, without suffering from the possible secondary 

damaging effects of a pro-inflammatory strategy (23). It is therefore conceivable that the 

combination of these three strategies ‘liberated’ energy for larger brains and an expansion 

of brain functions. 

Failure of these three strategies (i.e. upregulation of anti-inflammatory and anti- pathogenic 

strategies, spontaneous physical activity and the development of a highly sophisticated 

behavioural immune system) necessitates a protective high- cost pro-inflammatory 

response and the entire body is then at the disposal of the immune system; “prima vivere e 

dopo filosofare” (first live and then philosophise). This selfish behaviour of the immune 

system is observed not only in acute inflammation but also in chronic inflammation, the 

major difference between these two states being a shift from a hypermetabolic state to a 

hypometabolic state. Figures 1 and 2 show how the immune system puts the body at its 

disposal in acute inflammatory (Figure 1) and chronic inflammatory (Figure 2) states. 

Observing the actual pandemic increase of non-communicable diseases, we consider that 

it is this selfish behaviour of the immune system that causes the majority, if not all, of these 

diseases. Although the selfish immune system gave humans the ability to explore the entire 

world, it now seems to be responsible for most modern diseases, including cardiovascular 

disorders, autoimmune and neurodegenerative diseases. 
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Figure 1. The immune/metabolic response during acute inflammation. The increased need 

for energy during acute inflammation causes a hypermetabolic state and allocation of 

resources, including proteins and minerals, to the immune system. Insulin levels are down-

regulated by inhibition of pancreatic B-cells and glucose can be used by the immune system 

through development of adaptive insulin resistance of competing organs such as muscles, 

fat and liver. Short-term use of neurotransmitters by the immune system increases the 

activity level of the innate immune inflammatory response, ‘helping’ the need to mount an 

intense but optimal reaction that will resolve in a maximum of 4 to 7 days. Sickness 

behaviour induced by hyperleptinaemia and pro-inflammatory cytokines further saves 

energy, induces sleep and adaptive cachexia. The optimal IIS response is short-term and 

will moderately activate antigen-presenting cells. The adaptive immune system will 

produce anti-inflammatory memory cells that can be recruited when the host encounters a 

different immune challenge of the same type. This adaptive immune response generally 

ends after a maximum of 27 days, leaving sufficient energy to maintain health of the organs 

disposed of during the start of the immune response. Resolving substances such as 

protectins and resolvins finish immune activation and homeostasis of the  whole body is 

recovered  through normalised energy distribution. Ach, acetylcholine; APC, antigen 

presenting cell; IIS, innate immune system. 
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Figure 2. Chronic low-grade inflammation and hypometabolism. In the modern world, 

long-term pro-inflammatory activity of the immune system is frequently caused by 

anthropogenic factors and other conditions that challenge the immune system only weakly, 

but chronically. In normal situations any inflammation would produce a compensatory 

immune suppression, which is why low-grade inflammation needs a logical explanation. 

To maintain pro-inflammatory activity, the immune system itself puts the entire body at its 

disposal, but at the same time protects the body against multiple organ failure by inducing 

a hypometabolic state. Cortisol and noradrenaline induce gluconeogenesis and this extra 

glucose is allocated to the immune system by increasing insulin resistance of competing 

organs. At the same time, leptin reactivates the immune system, whereas brain regions 

associated with satiety develop leptin resistance, inducing increased food craving. Low 

thyroid hormone (rT3>T3) decreases total energy expenditure (protective 

hypometabolism) and rT3 is needed to fight pathogens. Nerve-driven immunity provides 

the immune system software (serotonin and dopamine) to maintain pro-inflammatory 

activity, whereas immune-suppressive mediators are down-regulated (cannabinoids and 

acetylcholine). Retraction of sympathetic fibres of inflamed/immune tissue and increase of 

sensory fibres are hardware strategies of nerve-driven immunity. Chronic pro- 

inflammatory activity is further maintained by a shift from an anti-inflammatory 

androgenic to a pro- inflammatory oestrogenic state in both males and females. The total 

picture of this ‘selfish immune system behaviour’ might be considered protective when it 

does not last too long; it is however highly deleterious when the human body starts 

developing all kinds of modern disorders such as autoimmune diseases, neurodegeneration 

and other maladies. Nevertheless, even today it is usually better to develop a CNCD than 

to die of cancer or infection. 
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1.3. Acute inflammation resolves itself; controlled resolution 

The immune system is self-regulating through negative biofeedback mechanisms, just like 

any other system in the human body. Acute inflammation induces the production of several 

substances responsible for finishing the immune reaction, including arachidonic acid 

derived lipoxins, EPA-derived protectins and DHA-derived resolvins (1), but only if the 

aforementioned fatty acids, notably the fish-derived fatty acids EPA and DHA, are 

available in sufficient amounts (24-26). These substances decrease the activity of pro-

inflammatory cells of the innate immune system and, at the same time, stimulate migration 

of phagocytizing macrophages to the danger zone/battlefield (27-29). 

Another more intrinsic negative biofeedback signal is lactic acid. The activated immune 

system uses (cytoplasmic) glycolysis as energy metabolism, in which 90% of  glucose  

molecules  are  converted  into  lactic  acid,  a  metabolic  shift  from mitochondrial  

oxidative  phosphorylation  (MOP)  to  cytoplasmic  substrate  level phosphorylation  (SLP)  

(30).  This  metabolic  shift  seems  counterintuitive  when considering that only 2 molecules 

of ATP are generated from 1 molecule of glucose during SLP, whereas MOP yields 36 

molecules of ATP. This is, however, conceivable in the light of the velocity of SLP which 

is a hundred times faster than MOP (30, 31). A second benefit of SLP is that the glucose 

molecule is only partially used for ATP generation. Lactic acid and other macromolecules 

are metabolites of SLP that confer  several  favourable  positive  conditions  during  acute  

inflammation  that guarantee cell division and cytokine production and render the immune 

system to a state independent of food and oxygen. The immune system’s capacity to engage 

in SLP is also known as the ‘Warburg effect’, which not only provides the immune system 

with fast energy, but also the precursor (glucose) needed for the synthesis of structural 

elements for the production of all DNA, RNA, organelles and the majority of  cell  

membranes  (for  an  excellent  review,  see  32).  The  oxygen-independent fermentation 

of glucose in the cytoplasm thus leads to the production of amino acids as precursors of 

proteins, (deoxy)ribose for DNA and RNA, glycerol for lipids and NADPH through the 

pentose phosphate pathway, needed for the production of phospholipids and glutathione 

(32). The activated immune system is now capable of growth and proliferation, largely 

without the need to uptake oxygen and building blocks.  Considering  the  sickness  

behaviour  associated  with  acute  infectious disorders,  characterised  by  cachexia  {food  

absence}  and  even  diaphragmatic breakdown {low oxygen} (33, 34), this makes sense. 

Lactic acid supports the role of lipoxins, resolvins and protectins in finishing the 

inflammatory response in a maximum of 4 to 7 days. Finishing the inflammatory response 

in time protects the body against possible deleterious secondary effects caused by the 

immune system itself. Not only have intrinsic mechanisms emerged to end an acute 

inflammatory response, but brain-coordinated strategies, including the production of 

substances such as cortisol (35), certain cannabinoids (36), acetylcholine (37) and 

catecholamines (38, 39), are able to switch off the immune system. These inhibiting 

mechanisms are activated through coordinated processes during acute inflammation and 

the same holds true for the serotonin and dopamine pathways (see chapter ‘behaviour at 

the disposal of the immune system’). Observing the multiple mechanisms responsible for 

inhibiting the pro-inflammatory activity of the immune system, it can only be concluded 
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that the inflammatory response should be finalised in time, leading to controlled resolution 

even after infection (40). 

Therefore, why is immune-inhibition absent when people suffer from weak inflammation 

caused by anthropogenic factors (AF)? AF activate the immune system through indirect 

pathways and causes a weak, ‘cold’ inflammation, without any of the typical signs of ‘hot’ 

inflammation (41). Usually adipocytes are activated by AF, such as high caloric food intake 

and psycho-emotional stress. Although this type of inflammation is not as strong, it still 

produces a metabolic shift of the immune system, giving rise to the production of 

substantial amounts of lactic acid, which serves as a potent immune suppressor through the 

creation of significant acidosis (42, 43). The question therefore remains how the immune 

system ‘manages’ its activity for years and years, in spite of intrinsic and extrinsic 

mechanisms that inhibit the immune system and generally protect the body, but especially 

the selfish brain, against secondary damaging effects. 

We suggest that the immune system manages long-term activity by pursuing at least two 

strategies, firstly to achieve energy (glucose) and secondly to reactivate itself. The first 

strategy has to induce constant gluconeogenesis and energy allocation to the immune 

system and the second strategy has to reactivate the immune system. Pro-inflammatory 

immune system activity depends on several conditions. 1. Pro-inflammatory cytokines 

have to be produced through activation of the key regulator of the immune system being 

nuclear factor-κB (NFkB), 2. Immune cell growth and cell proliferation depends on 

activation of the mammalian target of rhapamacin (mTOR), 3. cytoplasmic glycolysis is 

needed for the production of macromolecules and energy during immune activation and 

this requires the activation of hypoxia-induced factor-1 (HIF-1) and 4. The activated 

immune system demands large amounts of glucose and therefore a higher number of 

glucose transporters type 1, achieved by upregulation of c-myc (44-46). 

Strategies used by the immune system to reactivate itself include: 

• Insulin resistance and high insulin levels 

• Leptin resistance and hyperleptinaemia 

• Low thyroid hormone syndrome 

• Catecholamine resistance of the immune system 

• Cortisol resistance of the immune system 

• Systemic androgens to oestrogens shift 

• Peripheral serotonin recruitment 

• Peripheral dopamine recruitment 

 

The majority of these different strategies are associated with sickness behaviour exhibited 

during acute infection (47). This behaviour is characterised by symptoms such as cachexia, 

fatigue, increased sleep and fever. It suggests that the activated immune system itself is 

responsible for fasting during infection and ‘senses’ that food will not be available under 

these conditions. The outcome is the mentioned shift from MOP to SLP, resulting in 

immune cell proliferation and activity becoming independent from food intake, all to 

enable the infection to be cured (48). Chronic activity of the immune system, during which 

the same metabolic shift occurs, would require a large amount of glucose, which is the 

basic energy fuel of the activated immune system and, of which, the limited availability 
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constitutes the basic problem in chronic non-communicable diseases (CNCD) (48). This 

‘nutrition-independent’ state may be responsible for the recently evidenced decrease in 

basal metabolic rate in chronic inflammatory disorders, rendering the subject vulnerable to 

the development of multiple metabolic disorders, including metabolic syndrome and 

diabetes mellitus type 2 (49). 

In summary, the metabolic shift observed in conditions of an activated immune system 

renders the system glucose-dependent and will therefore activate all strategies to maintain 

glucose homeostasis through systemic gluconeogenesis (35). The immune system can 

apply multiple strategies to maintain activity, although at a low level and puts the whole 

body at its disposal, including the brain, if necessary. This selfish behaviour has a protective 

effect during acute infection, but may have a dramatically deleterious effect in the long run, 

evidenced by the number of people suffering from CNCD in our society (50, 51). Low-

grade inflammation should therefore be regarded as the cause for the majority, if not all, 

cases of CNCD. Treatment should therefore target the strategies used by the immune 

system to maintain its activity over a prolonged period of time. The only way to provide 

the correct treatment is to understand the ways the immune system puts the whole body at 

its disposal, which is the aim of this review. 

 

1.4. The selfish immune system; brain damage leads to more brain damage caused by 

the immune system and overriding the brain as most dominant organ. 

 

The immune  system is  one of  the systems  with a high  level of  biological robustness 

(52). Some diseases and their effects produced by the robust character of the immune 

system will not necessarily benefit the host, but that is the price to pay. We provide 

evidence that the mechanisms leading to pathologies affecting the whole body, including 

the brain, should be considered robust and part of the survival strategies developed during 

hominin evolution (53). 

The interactive neuro-endocrine-immune system evolved to cope with acute 

immunological challenges such as infection and wound healing, but is also activated by 

non-immunological danger for which it was not designed (2, 54). Theories explaining 

biological priorities consistently put the human brain in first place (55, 56). However, brain 

functions, blood circulation and anatomy are disrupted in those suffering from Alzheimer’s 

disease, Parkinson’s disease, fibromyalgia syndrome (FMS), chronic fatigue syndrome 

(CFS) and depression (57-60), which suggests that certain pathophysiological processes 

override the protective behaviour of the selfish brain. 

FMS depression and Alzheimer’s disease (AD) are obviously not diseases of choice, but 

may rather reflect the involuntary alternative of suffering from a low energetic state leading 

to a non-permissive brain disorder (e.g. AD, depression and FMS), rather than dying from 

multiple organ failure (61-63) caused by a chronic activated pro-inflammatory immune 

system. 

Rogers (64) stated that “Inflammation seems useful when controlled, but deadly when it is 

not. For example, ‘head trauma may kill hundreds of thousands of neurons, but the 

secondary inflammatory response to head trauma may kill millions of neurons or the 

patient” and the same holds true for people who suffer a stroke (65, 66). The inflammatory 

response of the immune system causing severe secondary damage to the brain after 

traumatic brain injury or ischaemic stroke seems maladaptive in the face of the ‘selfish’ 

http://www.jiacm.com/


                         Leo Pruimboom et al.                                                                         J Immunol Clin Microbiol 2020; 5(1) 

  
 

Available at http://www.jiacm.com 

 

 

brain hypothesis. It would, however, correspond with the ‘selfish’ immune system 

hypothesis, which states that danger gives precedence to the immune system, and thereby 

overriding the selfish brain. 

It may even be the case that dramatic inflammatory response following brain injury is not 

caused by the injury itself, but by the presence of infectious pathogens. Pre-existing 

infection is present in one third of clinical ischaemic stroke patients (67). Clinical data 

suggest that stroke risk peaks at three days after infection onset and that this risk remains 

high for three months (68). Almost three out of every four 

people in the world who suffer a fatal stroke live in developing countries and malaria, 

Chagas disease and Gnathostomiasis seem to be the major causes for this surprising fact 

(69). Children and young adults are less susceptible to all-cause strokes with the 

exception of infectious stroke and diseases such as sickle cell disease. A recent case- 

control study revealed that pre-existing infection is an independent risk factor for stroke in 

33% of affected children also in developed countries, such as the USA where 2,400 children 

suffer from strokes every year (70). These data suggest that a possible pathogenic presence 

‘programmed’ a severe pro-inflammatory immune response when the brain or the heart 

muscle are damaged. The selfish behaviour of the immune in these cases should be 

considered as adaptive but also possibly deleterious. Nevertheless the fact that people 

suffering from immune suppression after stroke are highly susceptible for sepsis and dead 

(71) suggests that the selfish behaviour of the immune system should be considered as 

needed when damage to the heart or the brain has been done. 

 

2. It’s all about energy – The selfish immune system 

2.1. Robustness and energy reallocation between visceral organs, muscles, the 

immune system and the brain 

The immune system is one of the energetically most costly systems in humans when 

‘activated’. Consequently, immune metabolism has a profound effect on the functioning of 

the body. Metabolic conflicts between organs seem to explain the emergence of several 

disorders and, more specifically, modern non-communicable diseases such as autoimmune 

disorders (72). 

Anthropogenic danger signals, such as psychoemotional stress and sleep deprivation, are 

capable of activating the immune system and a chronically activated immune system 

demands high energy, protein and immune-specific minerals such as calcium (2). Such high 

costs would never have permitted the development of the phylogenetic newer metabolic 

expensive brain in general and, more specifically, the neocortex during evolution. A recent 

review describes how exercise (searching for food, water and shelter) in primates and early 

hominids produced a shift from a pro-inflammatory immune reaction with a high metabolic 

demand to an anti-inflammatory response with a low metabolic demand (23). This shift 

made it possible to allocate energy to other organs e.g. the brain without large amounts of 

energy, proteins and minerals having to be invested in the immune system, whilst at the 

same time maintaining protection against microbes. 

 

2.2. Energy and energetic conflict as the driving force behind evolution 

Changes in energy allocation between organs are a consequence of energy conflicts that 

affect all animals, but non-human primates and humans in particular (73, 74). Several 

scenarios have been proposed, with the brain being the organ to benefit from loss of colon 
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length and high caloric dense food [the expensive tissue hypothesis] (73, 74)], a decrease 

in muscle mass, an increase in fat mass (57), cooking (75), human locomotion costing less 

energy (76) and, very recently, a change in the expression of glucose transporters beneficial 

to the brain (77). To our knowledge, as yet it has not been suggested that immune function 

may also have benefitted from a smaller gut, a lower energy demand for locomotion, an 

increase in fat mass and tissue-specific differences in the expression of glucose 

transporters. The latter entails a higher expression of GLUT1 in activated immune cells, 

when energy is needed to protect against pathogens and other immune challenges (78), at 

the expense of GLUT4 expression in muscles and adipocytes (79-82). 

The work of Fedrigo et al. (77) shows that glucose transport capacity has been essential for 

brain growth and function during human evolution. They demonstrated that human brain 

cells express more activity of the SLC2A1 gene, which is the genetic code for the 

production of GLUT-1 glucose transporters compared with the chimpanzee and macaque 

(human > chimpanzee > macaque). At the same time, SLC2A4 expression in muscle is 

significantly higher in chimpanzee > human > macaque. 

Logical reasoning makes it plausible that a concomitant per gram tissue reduction of 

SLC2A4 in skeletal muscle and an increase of SLC2A1 in the brain will lead to higher 

glucose uptake by the brain at a given plasma glucose concentration. This would result in 

a shift of glucose allocation away from the body (strong) and towards the brain (smart). 

 

2.3. Glucose to the immune system – prioritising energy guidance 

Along a similar vein, the same holds true for glucose allocation to the immune system. The 

energy demand of lymphocytes and leukocytes increases dramatically upon activation (2, 

4) and all activated immune cells express GLUT1 glucose transporters (78, 83). Higher 

expression of GLUT1 will promote energy allocation to the immune system, which could 

be considered to be an ‘energy demand reaction’ (84). Glucose allocation to the immune 

system maintains its function even under strong energy restriction (72). 

The foregoing demonstrates that activation of the immune system through danger signs  

will  attract and  redistribute  energy, favouring  the  brain and  the immune system. 

Prolonged activation of the immune system (as has been observed in people with CIDs) 

would allocate glucose chronically to the immune system through immune-controlled 

down-regulation of GLUT1 transporters at the level of the blood-brain barrier and would 

decrease GLUT4 transporters at the level of muscle and adipose tissue (85-88). 

 

3. Evolution shaped the selfish immune system 

3.1. Evolution and the human selfish immune system - over-reactivity of the human 

immune system when compared with chimpanzees 

It has been shown that the human immune system is relatively over-reactive when 

compared with our closest evolutionary relative, the chimpanzee (89). The increased 

activity of the human immune system holds true for both the innate and the adaptive 

immune systems (90). It seems that all major cell groups of the human immune system 

show lower levels of mediators capable of down-regulation of the immune response against 

pathogens and phytohaemagglutinin (20). These mediators, called inhibitory sialic acid-

recognising Ig-superfamily lectins (SIGLEC), are expressed on most immune cells 

including B lymphocytes (91). The difference between chimpanzees and humans is three-

fold. Firstly, humans express different SIGLECs; secondly, humans exhibit lower SIGLEC 
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numbers and little or none are present on T lymphocytes, and thirdly, they show a lower 

production rate of inhibitory SIGLECs when challenged with pathogens or other immune 

stimuli (91, 92). 

The observed development of a more reactive immune response in humans is probably a 

consequence of being faced by unique immune challenges to numerous pathogens through 

scavenging, increased population density, hunting and migration (93, 94). 

 

3.2. The selfish brain is less selfish than the much more ancient immune system. 

The brain is selfish in almost every situation, including mild and severe stress (95) and 

multiple studies support the ‘selfish brain’ hypothesis. Acute mild mental stress requires 

12% additional energy from the human brain (96) and the same holds when humans are 

challenged by intense exercise (97). The group of Peters showed that social stress also 

augments the brain’s energy need (98) and that the brain switches to the use of ketone 

bodies (99) and lactic acid (99) when glucose is unavailable. Therefore, several lines of 

research give evidence for the ‘selfish brain’ hypothesis in which it is stated that brain 

energy is maintained through multiple pathways, including activation of central stress axes 

and the use of multiple energy sources (glucose, ketone bodies, lactic acid). Immune 

activation also produces activity of central stress axes and a state of high arousal of the 

central nervous system, the purpose being to sense and avoid further danger (100). An acute 

inflammatory response produces energy allocation to the immune system until this is 

resolved, and only when the system is challenged by mono-metabolic danger signals (100). 

However, multi-metabolic risk factors produce an energetic conflict between the immune 

system and the brain. The combined need for resources (energy-producing macronutrients, 

blood, oxygen) of the stressed brain, of the activated immune system and of other organs 

responsible for maintaining organ functions during multiple metabolic signalling 

challenges, caused by psychogenic, psychosocial and physical factors at the same time, 

would probably override the maximum capacity of energy uptake by the gut and, although 

speculative, would demand a maintained heart rate of around 180/minute and a chronically 

increased blood pressure at around 160/120 mm Hg. This would lead to severe damage to 

the heart and probably the brain, which is contrary to the evolutionary drive of maintaining 

brain function and anatomy against at any cost (98). The only feasible response to maintain 

life throughout chronic situations of high energy demands of ‘conflicting’ organs, is the 

‘creation’ of an organ-specific low thyroid hormone syndrome and other adaptations with 

the purpose of lowering the activity of all organs and puts the body at the disposal of the 

immune system. This is evidenced by the development of immunological sickness 

behaviour, immunologically induced secondary damage of vital organs, protective 

depression, gluconeogenesis by the liver and kidneys, and the use of metabolic hormones 

and neurotransmitters by the immune system to benefit its pro-inflammatory activity and 

thereby protect against possible lethal pathogens (101, 102, 103, 104). 

It is definitely true that the brain ‘behaves’ selfishly in almost every situation, including an 

energy deficient intra-uterine environment. Nevertheless, although it seems that one of the 

most fundamental biological drivers in humans is supplying the brain with nutrients and 

energy, how is it possible for people to suffer from diseases related with lack of brain 

energy?’ Something has to be so wrong that it may even cause a reaction that overrides this 

interest and ‘accept’ the collateral damage to the selfish brain. Acute sepsis, severe burn 

wounds, multiple traumata and major surgery are known to allocate up to 100% of resting 
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energy expenditure to the immune system, but these are acute situations which often lead 

to instant death, even in children (3, 4, 105-108). Neurodegenerative disease, fibromyalgia, 

and chronic fatigue disorders develop slowly and should therefore be caused by factors that 

demand long-term energy allocation to systems other than the brain, e.g. the immune 

system, ultimately affecting the transport of resources to the selfish brain. Sedentary 

lifestyle, overeating, childhood abuse, oral sepsis, chronic life stress, leaky barriers, 

perceived social stress, environmental toxins, social jetlag, meal frequency and even father-

daughter conflict all activate the immune system and an energy demand response based on 

activation of the SAM and HPA axes (109-113). This latter response should provide energy 

for, primarily, the brain and secondarily, the immune system. When brain allocation fails, 

brain functions and possibly anatomy will be disturbed. The latter occurs in people 

suffering from acute infection, but also in those suffering from Alzheimer’s disease, FMS, 

CFS, depression and other diseases affecting the central nervous system. It seems that 

multiple metabolic danger signals produce a state mimicking acute life threatening danger, 

allocating energy to the immune system and disposing of energy from the rest of the body, 

including the brain. 

  

4. Genetic and environmental evidence supporting the hypothesis 

4.1. Genetic evidence for the selfish immune system hypothesis 

Depression and other maladies, including FMS and neurodegenerative disorders, such as 

Parkinson’s and Alzheimer’s diseases, are related to increased immune activity (122, 123, 

124). All of these disorders seem to have a genetic predisposition and the majority of the 

genes related with neuro-degenerative disorders and depression influence the immune 

system. Raison hypothesised that if depression is related to certain polymorphisms, then 

these genes are primarily protective in the face of infection (for review see 125). The same 

holds for genes related to Alzheimer’s disease and FMS. 

The gene most widely accepted to be associated with Alzheimer’s disease susceptibility is 

ApoE 4 (apolipoprotein E4), although many others have been proposed as Alzgenes (126). 

Classical functions of apolipoprotein E relate to metabolism (transporter of lipids in the 

periphery and in the central nervous system (127)). More recently, it was found that ApoE 

influences the innate and adaptive immune systems (128). The overall influence of ApoE 

on the innate immune system is complex and depends on ApoE polymorphism. ApoE4 

induces an inflammatory response, whereas ApoE3 inhibits inflammation and enhances 

repair (see references in 128). The pro-inflammatory activity of ApoE4 is classically seen 

as deleterious, but can also be considered protective in the light of the pathogen-host 

defence (PATHOS-D) hypothesis proposed by Raison and Miller (125). In our recent 

evolution, the share of the ApoE3 allele appears to have increased at the expense of the 

ancestral ApoE4 (129). ApoE3 has spread significantly in first world populations, whereas 

the prevalence of ApoE4 is still very high in cultures historically exposed to disease-

causing pathogens (127, 130-132). The observation seems consistent with the protective 

role of ApoE4 against infection. The Yoruban population in Nigeria has a 70% lower 

incidence of dementia when compared to African Americans. This difference is probably 

caused by the lifelong low-fat diet of the Yorubans   (133). 

Candidate genes possibly associated with increased susceptibility to fibromyalgia 

syndrome have been reported, but no definite conclusions can be drawn as yet (134). The 

serotonin transporter gene SLC6A4 is perhaps the strongest candidate in terms of its 
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relation to FMS (51, 135, 136). Two major SLC6A4 polymorphisms have been identified. 

The short allele carrier produces a protein, which is less efficient in the reuptake of 

serotonin and carriers show an increased risk for the development of depression when 

facing psychosocial challenges. Carriers of the short allele further show higher levels of 

circulating pro- inflammatory cytokines compared with anti-inflammatory cytokines (IL-

6/IL-10 rate) when challenged with a psychosocial stressor (137). 

Another diseases with an immunological genetic background is celiac disease. Celiac 

disease is caused by the intake of gluten and it’s interaction with a great number of genes, 

of which most are related with an increased reactivity of the immune system (138). More 

specific, it are alleles related with IL18, IL23, IL2 and IL12 that increase the susceptibility 

for celiac disease, but at the same time people expressing these genes are probably better 

protected against pathogens, including virus and bacteria (139). 

 

4.2. Pathogens shaped genetics to the benefit of the immune system and pathogen load 

prioritises the immune system over the brain 

If the PATHOS-D hypothesis is correct, that the microbial world is co- responsible for the 

chronically increased activity of the immune system and disposal of expensive brain 

functions, then pathogenic load should not only affect brain function and anatomy of older 

people, but also younger individuals. Evidence for this supporting the PATHOS-D 

hypothesis comes from studies investigating the development of intelligence during human 

evolution in general and, more recently, the past two hundred years. A recent study of Eppig 

(140) showed that infectious disease and the consequent immune activity is the most 

important predictor of lower intelligence in almost every population on earth. Nutrition was 

also correlated with IQ, but became insignificant when corrected for infection. The 

connection between pathogen load, infection and intelligence seems plausible considering 

the high energetic cost of infectious disease. (141). 

 

5. Long -term immune activity: the need for reactivation and fuelling strategies 

5.1. Evolutionary stored energy limits the timescale of immune activity 

Both the innate and adaptive immune responses are normally self-limiting (142). The self-

limiting timeframe of 28 days is probably based on the energy-resource model. A (much) 

longer massive activity of both systems would lead to severe secondary damage and even 

death because of sustained energy deficit of vital organs including the liver, kidneys and 

heart muscle (143). Recruitment of the adaptive immune system, although very expensive 

at first exposure time (141), and the generation of immune memory, should be considered 

beneficial from an evolutionary point of view, because of the shortening of the immune 

response and protection against energy depletion, when the host is newly exposed to the 

pathogen (64). Chronic low-grade inflammation literally means long-term low activity of 

the innate immune system and lack of the production of self-limiting substances, such as 

resolvins and protectins (129). Chronic low-grade inflammation probably starts after a non-

optimal acute inflammatory response (supranormal or subnormal) and when self-limiting 

mechanisms or strategies fail (131). Sterile wounds, low pathogenic load and non-specific 

immunological challenges such as psychogenic stress activate the immune system, but lack 

the strength of optimal immune activation which would normally lead to complete 

resolution (164). Nevertheless if the factors that activate the immune system in a subnormal 

manner are not resolved, the capacity to maintain immune activity is essential for survival, 
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as evidenced in people suffering from inflammation-associated immune suppression. 

People suffering from inflammation-associated immune suppression (IAIS) are highly 

susceptible  for  the  development  of  different  types  of  cancer  and  secondary infections, 

and IAIS significantly increases the mortality rate (132, 133). IAIS is induced by 

immunological intrinsic (e.g lactic acid)., but also multiple brain derived strategies 

including the activation of the parasympathetic nervous system. This is where the immune 

system has to put the body at its disposal, thereby overriding the selfish brain. 

  

5.2. The consequence: the whole body at the disposal of the selfish immune system 

The way in which the immune system puts the body at its disposal might follow a 

coordinated sequence. The initial activation of energy demanding central stress axes 

allocates resources to the immune system through induction of gluconeogenesis and insulin 

resistance of competing organs, such as, bone, muscle, adipose tissue and the liver (1, 48). 

Once the innate immune system (maximum 4-7 days) and, when necessary, the adaptive 

immune system (27–42 days) has/have triggered the immune response, problems should 

have been resolved. If immune activation is required for a longer period of time, this 

induces further insulin resistance/hyperinsulinemia, hyperleptinaemia/leptin resistance, 

and hypercortisolism/glucocorticoid resistance. The possible hypermetabolic state 

produced by the constantly activated immune system could cause multiple organ disorders, 

failure and even death (MODFD). The development of a low thyroid hormone state 

(rT3>T3) protects the body against MODFD, putting homeostatic regulation at the disposal 

of the immune system. The pro-inflammatory activity can also be maintained by higher 

aromatase activity and the production of pro- inflammatory oestrogens (see below): a 

further step in putting the whole body, including the reproductive system, at the disposal 

of the immune system. 

 

6. Fuelling and reactivation strategies of the immune system 

6.1. Thyroid hormone prevents multiple organ failure during hypermetabolism and 

maintains immune homeostasis; thyroid hormone at the disposal of the selfish 

immune system 

Immune activity depends on aerobic glycolysis (134). It is only possible to maintain aerobic 

glycolysis when the intrinsic inhibitory pathways of the immune system can be overruled. 

Low T3 and high rT3 can maintain aerobic glycolysis in immune cells. Thyroid hormone 

T3 induces mitochondrial activity in all kinds of cells, including immune cells (135). T3 

can even strongly activate mitochondrial oxidation in cancer cells and render them more 

sensitive for chemotherapy (135). Intracellular T3 would therefore inhibit the inflammatory 

activity of the immune system, which would be highly deleterious during severe infection 

or other immunological challenges. Extracellular T4 and T3 are necessary for immune 

activation (137), but intracellular T4 is converted by deiodinase 3 (D3) into rT3 and T3 is 

rapidly downregulated by the same enzyme, preventing mitochondrial activation and 

maintenance of cytoplasmic substrate level phosphorylation through upregulation of D3 by 

the pro-inflammatory cytokine IL-6 (138). The final state is that of a low thyroid hormone 

syndrome (LTHS).  

LTHS does not only benefit the immune system, but is also protective against the possible 

secondary damage of chronic immune system activation. These rather deleterious effects 

of immune activation on other organs and tissues is prevented by down-regulation of the 
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conversion of T4 into T3 both systemically and tissue specifically, causing  the  reduction  

of overall  metabolic  rate,  but especially  the activity of organs less important for direct 

survival during immune activity, such as muscle tissue, liver, kidneys, the heart muscle and 

the digestive system (139-141). The lower activity of these organs protects them against 

acute organ failure and sudden death of the host. The protection and lower metabolic rate 

is a product of low thyroid syndrome and high reverse T3 (rT3) (138). This state is 

protective initially, but can be deleterious in the long run (53). 

A recent discovery by the group of Klein and Schaefer has shed new light on the interaction 

between the immune system and metabolism. Their group proposed a new model of 

controlled metabolic regulation by an activated immune system (143- 145). They showed 

that TSH can be produced by several tissues other than the thyroid gland. Dendritic cells 

(DCs) and several cells from the small intestine are capable of producing TSH and this 

happens mostly during bacterial or viral infection (192). Certain leukocytes also produce 

TSH, but with a slightly different structure and this hormone has been named TSHbeta 

splice variant (146). The TSHbeta splice variant seems to change the thyroid phenotype 

inducing a shift from T3 to rT3. This shift decreases total body metabolism because of 

lower systemic T3(192) and initially saves the brain by continued conversion of T4 to T3 

in the brain itself (147). 

The possible function of D3 expression in activated innate immune cells is intriguing. 

Thyroid hormones (TH) play a role in differentiation and proliferation of cells, with high 

T3 inducing cell differentiation and low T3 inducing cell proliferation. Granulocytes are 

short-lived, fully differentiated cells that migrate to the site of infection and do not 

proliferate, which may argue against a role for D3 induction in differentiation or 

proliferation of activated granulocytes. Studies in the 1960s suggested a role for thyroid 

hormone in the bacterial killing capacity of leukocytes. Iodide in combination with 

hydrogen peroxide (H2O2) provides one of the most effective antibacterial substances of 

the immune system. Thyroid hormones are an important source of iodide, and leukocytes 

generate inorganic iodide by the uptake of iodide and by de-iodinating T4, (148). In 

combination with the recent demonstration of D3 induction in infiltrating leukocytes during 

infection, we suggest that D3 induction helps to generate iodide as part of the innate 

immune response (147). Studies in S. pneumonia-infected D3 knockout mice indeed 

showed a defective bacterial clearance compared with wild-type mice, which supports this 

hypothesis (150). Further evidence is given by the work of Kwakkel et al, showing a 

dramatic increase of D3 production by neutrophils when challenged with bacterial LPS 

(149). 

The resulting state of immune activation, low T3, high rT3, combined with the energy 

demand reaction of the HPA axis and the sympathetic nervous system maintains  

immunological  homeostasis  during  prolonged  stress.  The  brain  will maintain anatomy 

and function as long as brain metabolism can be guaranteed. The same holds for the 

immune system, although long-term stress and inflammation suppress immune activity 

(38). The latter situation could expose the host to possible infection and death. Protection 

of the host integrity will now depend on the use of alternative mechanisms to postpone this 

dangerous state whilst maintaining pro- inflammatory immune activity. This would be the 

time at which the immune system 

1. puts every possible organ at its disposal to guarantee its own metabolic homeostasis, 2. 

induces resistance to hormones with pleiotropic immunological functions (leptin, insulin, 
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cortisol) and 3. produces a state of nerve-driven immunity, putting almost all 

neurotransmitters, including dopamine, serotonin, acetylcholine, glutamate and GABA at 

its disposal (151-155). 

 

6.2. Gluconeogenesis and glucocorticoid resistance at the disposal of the immune 

system 

Endogenous cortisol has several effects on the immune system, including suppression 

through activation of the inhibiting factor kappa B (IkB) (156), apoptosis of immune cells 

that are no longer needed (157) and migration of immune cells to the so-called ‘battlefield’ 

(dangerous zone) or back into the ‘barracks’ (lymph knots, bone marrow, thymus) (158) 

and through activation of macrophage migration activating factor (159). Intact cortisol 

signalling in the immune system would lead to suppression of the immune system, which 

is why immune cells show an intrinsic mechanism to develop cortisol resistance, which is 

essential during acute infection but at the same time co-responsible for low-grade 

inflammation (160). Glucocorticoid resistance (GR) of the immune system leads to 

hypercortisolaemia and constant gluconeogenesis. The glucose produced by GR-

gluconeogenesis can cover the energetic needs of the selfish immune system. GR-

gluconeogenesis can be induced in muscle, the liver, kidneys and perhaps even the pancreas 

(161-164). So GR serves two basic strategies to maintain immune activity: immunological 

GR prevents inhibition of the immune system and GR-induced hypercortisolaemia 

increases glucose production, necessary for the constant nourishment of chronic active 

selfish immune cells. 

Glucocorticoid resistance itself seems to protect the host against possible viral infection, 

including HIV, by maintaining high activity of the anti-viral Th1 component of the adapted 

immune system (165, 166), although GR can be highly deleterious (167). The GR observed 

during chronic inflammation is universal and mostly occurs along with another ancient 

protective mechanism: insulin resistance (168). Cells of the immune system show inherent 

genetically imprinted resistance mechanisms, which protect the body against the immune-

suppressive effects of glucocorticoids, although side-effects can be severe, including 

chronic leukaemia (160). 

GR is observed in rheumatoid arthritis, inflammatory bowel disease and COPD and is 

mostly considered deleterious (169). Treatment of these diseases normally focuses on 

increasing cortisol sensitivity (170) with contrasting results (1). Increasing GC-sensitivity 

can even lead to higher mortality when animals are challenged with pathogens such as E. 

Coli (171). If intrinsic or acquired GR conveys protection against pathogenic load, than 

asthma, rheumatoid arthritis and inflammatory bowel disease should be associated with 

increased pathogenic microbial load. Indeed, the group of Siala showed that reactive and 

undifferentiated oligoarthritis is associated with the presence of a high number of bacteria 

in the synovial fluid (172, 173). Patients with arthritis also show a high incidence of 

glucocorticoid resistance (203). Those with chronic asthma present higher bacterial 

colonisation of the lower airways, linked to the severity and duration of asthma (159), 

whilst GR is also a characteristic of asthmatic patients (174). Inflammatory bowel disease 

(IBD) normally evolves with pathogenic bacteria (20) and, as mentioned above, patients 

suffering from IBD also show a high prevalence of GR (175). 

It therefore appears that GR prevents suppression of the innate immune system and the 

glucocorticoids-induced shift from Th1 to Th2 activity of the adapted immune system 
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(175), thus maintaining protection against microbial infiltration and infection (179). GR 

serves the selfish immune system to maintain activity, nourish itself with glucose, but with 

just one purpose, which is to protect the individual from lethal infection. 

  

6.3. Leptin and insulin at the disposal of the selfish immune system 

Leptin and insulin are needed to maintain long-term activity of the immune system and the 

immune system itself increases the production of leptin by adipocytes via 

TNF signalling (176). Leptin is highly inflammogenic (177)  and hyperleptinaemia,  

together  with  central   leptin   resistance,   maintains    pro- inflammatory activity and 

energy allocation to  the  immune  system  (178,  180). Proinflammatory cytokines induce 

leptin production by adipocytes, as does food intake. 

Adipose tissue is present in immune-cell-harbouring tissues, such as lymphoid organs, bone 

marrow and adipocytes that infiltrate wounds (26) and so adipocyte derived leptin can have 

direct influence on immune cell functioning. 

Leptin activates all types of immune cells and increases glucose uptake during 

immunological activity. The principal target of leptin-induced immune cell reactivation is 

the key immune response regulator nuclear factor-κB, responsible for transcription of genes 

encoding for IL1, IL6 and TNF (181). In summary,  leptin activates the immune system 

through different pathways with a focus on the innate immune system and Th1. Under 

physiological circumstances, this leads to increased protection  against  infection  and  

pathogenic  growth.  During    low-grade inflammation, leptin should be considered to be 

a re-activator, which can perpetuate immune activity. 

The strategies used by the immune system to maintain its activity and guarantee glucose 

availability could merely have evolved for their beneficial effects; a basic rule in 

evolutionary biology. This also holds true for the leptin and insulin responses observed 

during acute and chronic inflammation. The leptin response during inflammation supports 

different protective traits. Hyperleptinaemia during immune activity informs the brain 

about the adequacy of long-term energy stores in adipose tissue, asking for/demanding 

permission to produce a costly fever reaction and a short-term hypermetabolic state, 

following immune activation (182, 83). The hyper-leptinaemic state will also produce 

inflammatory cachexic behaviour, which is protective at the start when facing an acute 

inflammatory response, but could be deleterious when chronic, as is observed in patients 

and animals with chronic kidney inflammation (184). 

Long-term hyperleptinaemia leads to central leptin resistance (54). Several researchers 

noted that hyperleptinaemia is required for the development of leptin resistance (185). 

Central leptin resistance is responsible for an increased risk of overeating (186) and 

overeating rapidly produces leptin resistance (187). Central leptin resistance can be 

considered to be an evolutionary advantage when energy availability is low, or when the 

need for energy is chronically increased as observed during prolonged immune activity 

(188). The beneficial effect of hyperleptinaemia and LR is observed in different situations. 

Hyperleptinaemia and LR protect against cardiovascular disorders by preventing lipid 

deposition in the heart muscle itself (189, 190), although recent publications have 

challenged this view (191). The influence of leptin on the anti-pathogenic function of the 

immune system has recently been demonstrated in two new studies from the same group 

(192, 193). Children with low leptin levels are more susceptible to infection (194). The 

required pro-inflammatory effect of leptin to fight against pathogens has also been 
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demonstrated in a recent in vitro study (195). The overall effect of leptin on the immune 

system seems to be permissive, which implies that intact leptin-signalling towards the 

immune  system maintains Th1-Th2 functioning and,  if necessary, ‘permits’ pro-

inflammatory activity (196). 

Like leptin, insulin is also recognised as a pleiotropic hormone. Energy demands of the 

brain, or the immune system during starvation, infection or stress are covered by 

gluconeogenesis and the temporary development of insulin resistance of various organs, 

caused by proinflammatory cytokines and stress hormones (197, 198). Energy allocation 

to the immune system is achieved by activating the energy- demand stress systems 

(sympatho-adrenomedullary, axis, SAM and hypothalamic- pituitary-adrenocortical axis, 

HPA) and stress systems-induced gluconeogenesis. Hyperinsulinaemia precedes stress-

induced and inflammation-induced insulin resistance (199). Hyperinsulinaemia is seen 

immediately after a stress challenge and/or direct immunological activators, such as injuries 

and pathogen invasion (51, 98, 200). Low insulin levels increase the susceptibility to 

develop infections, suggesting that insulin protects against pathogens (201). Acute 

inflammation produces down-regulation of insulin levels through inhibition of pancreatic 

-cells 

(202) and also insulin resistance in competing organs for glucose uptake (such as liver, 

muscles and adipose tissue (197). In this way, glucose becomes available for the energy-

demanding immune system. Chronic inflammation maintains the state of insulin resistance 

and enhances insulin production, leading to hyperinsulinemia (203). In the latter situation, 

glucose remains available for the immune system and insulin can now be used as reactivator 

through the mTOR pathway in immune cells, protecting against possible infections which 

is, however, deleterious in the long run (204). Insulin can also upregulate the specific 

glucose transporters on immune cells, including GLUT1, GLUT3 and GLUT4, thereby 

increasing glucose uptake by leukocytes and lymphocytes (205). Insulin signalling through 

insulin receptors on immune cells stimulate the IRS-1/PI3K/AKT pathway that activates 

mTOR1 and mTOR2 (206). mTOR signalling recruits c-myc, NFkB and HIF1, facilitating 

further glucose uptake, production of pro-inflammatory cytokines and maintenance of 

cytoplasmic aerobic glycolysis, respectively (207-209). 

It seems clear that leptin and insulin pathways are capable of fuelling and reactivating the 

immune system, not only during acute infection, but also to maintain long-term activation. 

The capacity of redistributing glucose to the immune system and away from peripheral 

tissues mediates the immune response and has been crucial to human survival. In other 

words: leptin and insulin signalling beneficial to immune system activity are vital for 

survival, and are meanwhile also responsible for chronic low-grade inflammation and its 

associated diseases. 

 

6.4.The reproductive system at the disposal of the selfish immune system 

The combined metabolic shift produced at the disposal of the pro-inflammatory activity of 

the immune system is directly responsible for the pro-inflammatory systemic 

hypoandrogenic state observed in individuals suffering from low- grade inflammatory 

disorders (210). This systemic hypoandrogenic state is not produced because of lower 

testosterone production in the sex organs. To the contrary, obese males, characterised by 

increased plasma leptin and low-grade inflammation, exhibit a higher testosterone-
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dependent risk of prostate cancer (211), while the same holds true for the polycystic ovaria 

syndrome in females (212). 

The testosterone boost produced by metabolic hormones precedes the increased systemic 

and tissue-specific conversion of testosterone into pro-inflammatory oestrogens. This shift 

has been observed in different diseases, including obesity and inflammation-related breast 

cancer (213). 

The systemic shift from testosterone to oestrogens could benefit the anti- pathogenic pro-

inflammatory activity of the immune system. Males with higher testosterone levels are 

more susceptible to parasite infection, microbial transmission 

(214) and have decreased resistance against tick infection (215). Conversely, low 

testosterone protects against bacterial infection in general and specifically against prostate 

infection (216). It is therefore conceivable, but at the same time striking, that both males 

and females exhibit higher aromatase activities during inflammation as evidenced in 

patients with rheumatic diseases, characterised by high pro- inflammatory oestrogens and 

low testosterone levels (217). The protective effect of oestrogens against microbial 

infiltration and infection is supported by epidemiological data showing that 

postmenopausal women are disproportionately susceptible to recurrent urinary tract 

infections (218). Urinary tract infections (UTI) in elderly patients are more treatment 

resistant and oestrogen replacement diminishes UTI frequency (92, 219). Chronic 

inflammation and stress lead to low testosterone and high oestrogens in men (220) and high 

oestrogen levels protect against possible infection. 

A possible negative effect of this shift from testosterone to oestrogen is the loss of fertility 

(32). Obese men, characterised by high aromatase activity in adipocytes 

(221) and low-grade inflammation (222), have lower fertility (223). Individuals engaged in 

a chronic struggle against pathogens rather not reproduce, preventing damage to offspring, 

which is beneficial to overall reproductive success (114). The septic danger posed by non-

sterile wounds is included in the selective pressure factors shaping human behaviour 

(phenotype) and genome (genotype). It has been shown that the shift from testosterone to 

oestrogen in the skin is highly protective against pathogenic infection, prolonged infection, 

wound healing and overall cutaneous repair (224). It is consequently conceivable that the 

immune system also puts the reproductive system at its disposal. Immediate survival 

overrules reproduction. Once again, the immune system dominates the whole body, 

including the timing of reproduction and, if necessary, protecting genetically-related 

individuals against possible pathogenic damage, or damage to the immune system itself 

(225). Oestrogens activate the immune system through several mechanisms including 

stimulation of NFkB, c-myc and mTOR, facilitating immune cell proliferation and 

inflammatory activity (226). 

 

6.5. Behaviour at the disposal of the immune system: serotonin-dependent 

reactivation of the immune system 

The observed changes in behaviour during inflammation suggest that the immune system 

actively affects neurophysiological function, putting behaviour at its own disposal. Pro-

inflammatory cytokines such as TNF , IL-1 beta, and  IL-6 produce adaptive behavioural 

effects when entering the brain (47).   Sickness behaviour includes social withdrawal, 

increased sleeping time, fatigue and exercise avoidance.  This reduces energy uptake by 

muscles and the brain  and this is reallocated to the immune response. 
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Several pathways explaining inflammation-induced sickness behaviour have been 

proposed and all of them probably contribute to this state (112). Sickness behaviour not 

only benefits the host’s immune system in terms of energy/resource reallocation, but also 

helps the immune system to fight pathogens and restore homeostasis when immune activity 

is no longer needed (47). Pro-inflammatory cytokines (IL1 , IL6, TNF- and IFNy) and 

stress hormones, produced  during inflammation, activate tryptophan 2,3-dioxygenase 

(TDO) and  indoleamine 2,3- dioxygenase (IDO), affecting serotonin production from its  

precursor tryptophan and favouring the production of kynurenine and quinolinic acid (227) 

The resulting serotonin depletion is considered to be one of the factors causing sickness 

behaviour (228), which, when considered from a proximate prospective, could be 

considered a maladaptive response. The latter is supported  by showing that quinolinic acid, 

produced by cells in the central nervous system, is highly neurotoxic and associated with 

the development of numerous   neurodegenerative conditions, including Parkinson’s and 

Alzheimer’s diseases (200). 

An evolutionary explanation for the underlying mechanism considers that upregulation of 

IDO and TDO during acute inflammation protects the host significantly by depleting 

tryptophan and efficiently suppressing the growth of pathogens and malignant cells (112). 

Serotonin further inhibits activation of the sympathetic nervous system (229), while SNS 

is needed for energy production and its allocation to the brain and the immune system 

during inflammation. Inhibition of serotonin production during inflammation will therefore 

favour SNS activity and energy production/allocation to the immune system. 

Serotonin is present in high concentrations at the sites of inflammation and is used by 

activated immune cells as co-stimulator through reuptake via the serotonin transporter 

protein (291). This is beneficial, considering the need to mount an optimal immune 

response during inflammation, but could be deleterious in the long run and cause several 

disorders including autoimmune diseases (291). IDO will not only deplete tryptophan but 

also serotonin and both pathways will inhibit the immune system activity when it is no 

longer needed, thereby recovering tissue homeostasis and facilitating tissue repair. A 

feeling of sickness and even pain are common consequences of this highly effective 

neuroimmunological reaction but that is the price to be paid (230). 

The total picture of inflammation-caused sickness behaviour should be considered 

beneficial to the host. Only when inflammation is supramaximal, such as in sepsis, or when 

inflammation lasts too long, sickness behaviour has more of a negative impact because of 

the possible damage caused by immune system dependent pathways. These deleterious 

effects to the brain show that, if necessary, the immune system will take over and override 

the interests of the selfish brain, supporting the ‘selfish immune system’ hypothesis. 

 

6.6. Behaviour and immune system co-evolution: dopamine-dependent reactivation of 

the immune system 

The use of dopamine as an immunological co-stimulator has been studied extensively and 

is of high clinical importance (232). Dopamine recruitment by the immune system has 

profound effects on inflammatory behaviour. Humans have engaged in exploring new 

environments and this demands several traits, including curiosity (17), a large brain and 

immune protection. 

Dopamine is considered to be the main neurotransmitter responsible for curiosity (234), 

novelty seeking (235), motivation and aggressiveness (236). A polymorphism of the 
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dopamine receptor D4 (DRD4) is associated with novelty seeking, risk-taking and 

increased exploratory behaviour (237). Novel environments produce new immunological 

challenges, including climate, food availability and pathogens (238). The long allele of the 

DRD4 receptor is related to the migratory distance from Africa. Matthews and Butler (237) 

suggested that this allele been positively selected, as opposed to genetic drift. 

Other behavioural traits, in addition to the association of 7R DRD4 polymorphism with 

environmental exploration and novelty seeking, are increased anger and a decreased feeling 

of disgust (239). Disgust is amongst the most intensively investigated emotions belonging 

to the behavioural immune system (233). Immune defence is usually a reaction following 

tissue damage or some pathogenic infection. It is highly costly and intense and long-term 

activity could result in secondary lesions and even multiple organ failure. Humans have 

explored new environments with constant new immunological challenges throughout 

evolution. The development of a pro-reactive behavioural immune system, preventing 

contact with possible pathogens could have been beneficial to save energy and guide them 

to important other physiological functions, including those of the brain and skeletal muscles 

(240, 19). Disgust as a proactive strategy to avoid disease, produces aversion to a wide 

range of factors. High levels of disgust, i.e. increased activity of the behavioural immune 

system, produce neophobia (241), rejection of other individuals, decrease in mating 

behaviour (242), food neophobia (243), prejudicial attitudes to old people (244) and even 

discrimination (245). 

The behavioural immune system (BIS) can be very sensitive and dominate free will. 

However, individuals, carrying the longer allele of the DRD4 gene exhibit a higher level 

of novelty seeking, less disgust and more spontaneous activity (236). This implies that 

people with increased exploratory behaviour through DRD4 polymorphism would be at a 

higher risk of pathogenic infection, because of less aversion and disgust. This combination 

argues against the current opinion about pathogens dominating selective pressure in human 

evolution (246). The only feasible explanation would be that the longer allele of the DRD4 

gene should have some immune function, protecting the ‘seeking’ carrier against 

pathogens. 

The evidence for an immune function of the long allele of the DRD4 comes from different 

investigations studying the influence of the expression of dopamine receptors on innate 

immune cells and lymphocytes of the adaptive immune system. The various immune cells 

express different dopamine receptors (DRD1-DRD5) (151). The net function of dopamine 

receptor activation is an increase in the pro- inflammatory activity of the immune system, 

with the exception of the wild type DRD4 (the short allele’) (247). Activation of the wild 

type DRD4 receptor leads to the production of the immune-suppressing cytokine IL10 

(232, 239). The long 7R allele, on the contrary, is associated with diminished cAMP 

production and reduced intracellular response (248). Reduced response will lead to lower 

immune quiescence (the normal function of wild type DRD4 (232, 249) and increase the 

pro- inflammatory effects of dopamine by activating other dopamine receptors (151). It is 

therefore conceivable that migration out of Africa selected the longer allele of the D4 

dopamine receptor by inducing novelty seeking, while increasing protective inflammatory 

activity. Dopamine can stimulate the production of NFkB and pro- inflammatory cytokines 

such as TNF and IL1, although the opposite, production of anti-inflammatory IL10, is 

also possible (151). This probably  depends on the individual’s genotype, implying that not 

every individual will be capable of using the dopamine mechanism as reactivation strategy. 
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It seems clear that dopamine (DA) plays an important role in the immune system. 

Dopamine is not only produced in neurons, but also in several immune cells, including T 

lymphocytes (232). Dopamine seems to be recruited by the immune system to protect the 

host against acute infiltration by pathogens. The protective effect of dopamine signalling 

in the immune system against new infections is evidenced by the fact that dopamine 

activates resting T cells, but inhibits activated T cells (151) even in the absence of other 

danger signals (247). This is in line with the effects of other neurotransmitters on the 

immune system, increasing protection against new invaders (evolutionary beneficial) but 

having a negative effect on the immunological memory (250). The immunological ‘use’ of 

the whole body to fight infection makes sense in an evolutionary framework, considering 

that humans have had to fight infections as the main cause of death for thousands of 

generations and, as stated before, almost all humans died because of infection before the 

start of the 20th century. 

 

7. Summary and conclusion 

It can be concluded that the activated immune system puts the whole body at its disposal, 

by reversing the functions of metabolic hormones, organs, and even the nervous system to 

the energetic and pro-inflammatory benefit of the immune system (Figure 3). This response 

is highly protective during acute inflammation/infection and even at the start of a chronic 

process. The longer the inflammatory response lasts, the more it contributes to (severe) loss 

of lean body mass (251, 252), organ dysfunction (4), brain damage and neurodegenerative 

diseases (69). The protective pro-inflammatory activity of the selfish immune system is no 

longer beneficial once severe secondary damage to organs has been caused by the immune 

system.
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Figure 3. The total picture of the body at the disposal of the selfish immune system. If the 

immune system succeeds in doing so, the host is protected against inflammation-induced 

immune suppression, which would lead to cancer and possibly lethal infections (bottom 

right), but at the expense of the development of modern low-grade inflammatory diseases 

(bottom left). GLUT 1, glucose transporter 1: GLUT 4, glucose transporter 4; IS, immune 

system; SAM, sympathetic adrenal medular  system;  HPA,  hypothalamus-pituitary-

adrenal  axis;  GR,  glucocorticoid  receptor;  BH4, tetrahydrobiopterin;  IDO,  indoleamine  

2,3-deoxigenase:  TDO,  tryptophan  2,3-deoxigenase;  CVD, cardiovascular diseases; 

FMS, fibromyalgia syndrome; CFS, chronic fatigue syndrome. 

 

Life would not have been possible without an immune system, and the development of 

complex organisms needed an even more complex immune system. The human immune 

system belongs to the most complex among all living organisms and serves as the blueprint 

for the development of antivirus software in computer programming (254). Newer systems 

and organs normally dominate older systems as the most basic phylogenetical law in 

evolution. However, this sequence may change in the face of severe or long-term danger, 

known as evo-devo1 mechanisms (253, 255). Evo-devo1 can reach so far back in time that 

inflamed lung and kidney tissue literally resembles a swim bladder (255). Chronic disease 

is characterised by chronic inflammation (and vice versa) and gradual loss of functions and 

even anatomy. It affects the whole body, including the brain. The evidence brought together 

in this review shows that the immune system captures a major part of energy and resources 

during acute inflammation, putting the whole body at its disposal. This state relates to 

disposal of muscles (muscle wasting), the cardiovascular system (high blood pressure, 

atherosclerosis), the gut (digestive problems and food intolerance) and even the brain (loss 

of memory and concentration in, for instance, individuals suffering from FMS). Long-term 

pro- inflammatory activation of the immune system would not be possible without putting 

the whole body at the disposal of the immune system. Because of the immune system’s 

capability of recruiting metabolic hormones and neurotransmitters and using them for its 

own benefit, it is the most selfish organ in human beings. The body at the disposal of the 

immune system protects the host during acute inflammation by mounting an optimal 

response and during chronic stress to maintain pro-inflammatory activity and to protect 

against possible infectious pathogens. This situation is initially protective, but becomes 

severely deleterious when the secondary damage to organs and tissues overrides the benefit 

of infectious protection. The environment in which current human beings live constantly 

challenges the body with multiple new metabolic signalling factors. The only organ capable 

of communicating with all organs involved in the energetic conflict because of these 

multiple metabolic signalling is the immune system. To prevent further conflict, the 

immune system takes over, using its robust power to put the whole body at its disposal and 

showing its selfish behaviour. This selfish behaviour of the immune system has saved 

hominins for millions of years. A slow- changing environment to which the immune system 

could gradually adapt, characterised these years. This selfish behaviour of the immune 

system has to be considered to be the main cause of the majority, if not all, modern diseases. 

The reason lies in the interaction between the evolutionary background of immune 

function, genetic development and notably, the current environment as the primary cause. 

Genes and functions are old; the environment is brand new and this conflict underlies 
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modern disease. It should, however, be noted that the immune system is only doing what it 

is made for: trying to protect us. 
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