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ÖZ 

Betonarme istinat duvarları, karayolu, demiryolu, bina vb. birçok inşaat mühendisliği projesinde inşa 

edilmektedir. Betonarme istinat duvarlarının tasarımında birçok farklı tasarım kısıtlaması göz önünde 

bulundurulmalıdır. Geleneksel yaklaşımda, tasarım değişkenleri optimum tasarımı sağlamak için deneme 

yanılma işlemi ile birçok kez kontrol edilir, bu nedenle proje yöneticileri zamandan tasarruf etmek için 

optimizasyon teknikleri kullanmak durumundadır. İnşaat mühendisliği projelerindeki diğer bir önemli konu, 

ihale süreci için inşaat öncesi proje maliyetinin doğru olarak tahmin edilmesidir. Çalışmanın ilk aşamasında, 

duvar yükseklikleri, sürşarj yükleri ve dolgu zemininin içsel sürtünme açılarının farklı kombinasyonlarında, 

sağlam zemin tabakasına oturan betonarme istinat duvarı için 125 optimizasyon problemi modifiye yapay arı 

koloni algoritması kullanılarak analiz edilmiş ve minimum maliyetler belirlenmiştir. Daha sonra, duvarın 

minimum maliyet tahmini için çoklu regresyon ve yapay sinir ağı modelleri sunulmuştur. Önerilen modellerden 

elde edilen maliyet tahminleri, modifiye yapay arı koloni algoritması tarafından hesaplanan değerlerle büyük 

ölçüde uyumludur. Tahmin edilen ve hesaplanan minimum maliyetler arasındaki hata değerleri neredeyse 

sıfırdır. Sonuçlar, önerilen modellerin, sağlam zemin tabakasına oturan betonarme istinat duvarlarının minimum 

maliyet tahmini için başarıyla kullanılabileceğini göstermektedir. 

Anahtar Kelimeler- Yapay Sinir Ağı, Maliyet Tahmini, Modifiye Yapay Arı Koloni Algoritması, 

Regresyon Modeli, İstinat Duvarı. 
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Cost Estimation Models for the Reinforced Concrete Retaining 

Walls 

 

ABSTRACT 

The reinforced concrete retaining walls (RCRWs) are constructed many civil engineering projects such as 

highway, railway, building etc. Many different design constraints must be considered in the design of RCRWs. 

In the traditional approach, the design variables are controlled many times by the trial-error process to provide 

the optimum design; thus, the optimization techniques must be used to save on time for project managers. The 

other important subject in civil engineering projects is to estimate correctly the cost of the project of the tender 

process before the construction. In the first stage of the study, 125 optimization problems for the RCRW, which 

are sitting on the strong soil layer, are analyzed for different combinations of wall heights, surcharge loads and 

internal friction angles of the backfill soil by use of the modified artificial bee colony (ABC) algorithm, and 

minimum costs are determined. Then, the multiple regression and artificial neural network models are presented 

for the minimum cost estimation of the wall. The cost estimations obtained from the proposed models are in 

great agreement with the calculated values by the modified ABC algorithm. The error values between predicted 

and calculated minimum costs are almost zero. The results show that the proposed models can be successfully 

used for the minimum cost estimation of the RCRWs sitting on the strong soil layer. 

Keywords- Artificial Neural Network, Cost Estimation, Modified Artificial Bee Colony Algorithm, 

Regression Model, Retaining Wall.  
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I. INTRODUCTION 

The reinforced concrete retaining wall (RCRW) is one of the commonly used retaining structures to 

support earth with the change in ground elevation. The usage areas of these structures are quite wide, such as 

highways, railways, bridges, buildings, etc. The optimum design of RCRWs can be achieved by considering 

several different design criteria at the same time. The main purpose of the problem is to determine the most 

economical wall dimensions and reinforcements that meet these design constraints. By this purpose, the cross-

sectional dimensions of the wall and reinforcement ratios in the wall sections are continuously revised by the 

trial-error method, and it is checked whether the design constraints are exceeded at every turn. These procedures 

are repeated heaps of times until the most economical wall design is achieved under the design requirements. 

Therefore, the design of RCRWs is becoming one of the important optimization problems. 

The optimization problems are generally solved by meta-heuristic optimization methods based on 

nature-inspired ideas in recent years because they have significant advantages such as ease of use, convergence 

speed, and finding the optimum value. Particle swarm optimization (PSO), genetic algorithm (GA), differential 

evolution algorithm (DE), artificial bee colony algorithm (ABC), bacterial foraging optimization (BFO), 

gravitational search algorithm (GSA), and many more are only a few of the optimization algorithm. The artificial 

bee colony (ABC) algorithm is an optimization algorithm based on the behavior of honeybee swarms developed 

by Karaboga [1]. Karaboga and Basturk [2] showed that the ABC algorithm performs better than some 

algorithms, such as differential evolution (DE), particle swarm optimization (PSO), and evolutionary algorithm 

(EA), to solve the multimodal engineering problems with high dimensionality. Bolaji et al. [3] pointed out that 

the ABC algorithm has some advantages, such as simplicity, flexibility, robustness, ease of hybridization, and a 

few control parameters. The algorithm has been modified to increase the convergence speed many times for 

constrained and real-parameter optimization problems [4-5]. In recent years, the ABC algorithm has been 

successfully implemented in civil engineering optimization problems such as optimum design of braced steel 

frame [6], pavement resurfacing problem [7], the structural damage detection problem [8], evaluation of the 

compressive strength of concrete specimens using laboratory experiments [9], optimization of the cost of project 

schedules in construction [10]. 

Many different meta-heuristic optimization techniques are applied to optimize the design of RCRWs, 

having a minimum cost or weight. Ceranic et al. [11] reported the application of simulated annealing (SA) 

algorithm to minimize the cost design of RCRWs. Yepes et al. [12] made a parametric study to examine the 

effect of the main factors affecting optimum walls using the Simulated Annealing (SA) algorithm. Ghazavi and 

Bonab [13] used Ant Colony Optimization (ACO), and Ghazavi and Salavati [14] proposed Bacterial Foraging 

Optimization (BFO) algorithm to optimize the RCRWs. Big bang-big crunch (BB-BC) optimization algorithm is 

applied to the low-cost and low-weight design of RCRW by Camp and Akin [15]. Pei and Xia [16] presented 

heuristic algorithms, including Genetic Algorithm (GA), particle swarm optimization (PSO) and Simulated 

Annealing (SA) algorithm to solve the optimization problem. Kaveh and Khayatazad [17] presented the optimal 

design of a cantilever retaining wall under different earthquake loading conditions using by Ray Optimization 

(RA). Mergos and Mantoglou [18] applied the flower pollination algorithm (FPA) to the optimum design of 

RCRWs. These studies in the literature have generally focused on the applicability and performance of different 

optimization techniques on the design of RCRWs. 

The estimation of the cost of an engineering project is one of the most important factors affecting 

whether a project becomes successful or not. The estimation cost is widely used to determine the budget and the 

threshold value of the contract. Because the accuracy of the cost estimation of the project affects many factors 

such as the project’s decision, construction scale, working plan, it has a great significance for project 

management. If the estimation cost is extremely different from actual cost, then it may cause the elimination of 

economically advantageous tenders. For this reason, it is important to determine the minimum cost of the 

retaining walls that are frequently built-in construction works. Many researchers are focused on the prediction of 

construction cost in the early phases of building design processes [19-24]. 
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The most effective parameters affecting the cost of the RCRW sitting on the strong soil layer are the 

height of the wall, the surcharge load, and the internal friction angle of the backfill soil [15, 25-28]. In this study, 

the effects of these parameters on the minimum cost of the RCRW are investigated by using the modified ABC 

algorithm developed by Karaboga and Akay [4]. Structural design is performed based on ACI 318-05 [29]. 125 

optimization problems are analyzed for different input parameter combinations. The results of the analyses are 

used to establish a second-order multiple regression model with three independent variables and the artificial 

neural network (ANN) model between the input parameters and minimum cost of the RCRW. The evaluations 

show that the minimum cost of the RCRW is successfully predicted by the proposed both regression model and 

ANN model. 

The remaining parts of the article are organized as follows: The definition of the optimization problem 

is described in Section 2. The fundamentals of the used methodology for the ABC algorithm, multiple 

regression, and artificial neural network are briefly introduced in Section 3. Section 4 provides the results of the 

optimization analyses, and proposed estimation models are developed in Section 5. Finally, the conclusion of 

this study is presented and discussed in Section 6. 

II. DEFINITION OF THE OPTIMIZATION PROBLEM 

A. Formulation of the Optimization Problem 

The reinforced concrete retaining wall (RCRW) is designed to support the lateral stresses such as soil 

and water pressure. The RCRW is formed from the stem and foundation of the wall as shown in Figure 1. The 

lateral pressures acting on the wall, which are active and passive earth pressures (Pa and Pp) and pressures 

induced by surcharge (Pq), are generally calculated based on Rankine’s or Coulomb’s earth pressure theory. 

Unlike Coulomb’s theory, Rankine’s earth pressure theory, which is often preferred in design, assumes that there 

is no wall friction. The vertical forces acting on the RCRW are the weight of wall components (Ww), the weight 

of the backfill soil (Ws), and the base force due to base stress below the foundation (Pb).  

The design of the RCRW is based on external and internal stability analyses. The safety of the wall in 

terms of external stability means that the wall will be reliable against rotation around the toe, sliding along the 

foundation, and against bearing failure of the wall foundation and tensile stresses. In the external stability 

analysis, some preventive effects such as passive earth pressure, surcharge load above the heel, and the weight of 

soil on the toe are generally neglected.  

The factor of safety against overturning of the wall can be defined as the ratio of the resisting moments 

against overturning (MR) to overturning moments (MO). The minimum factor of safety against overturning 

failure as given Eq. (1) must be at least 1.5 for granular backfills. 

 ( )

R

overturning

O

M
FS

M
=



               (1) 

The safety against sliding along the foundation of the wall can be calculated from Eq. (2). It is desired 

that the factor of safety for sliding must be at least 1.5. 

( )

R

sliding

S

F
FS

F
=



               (2) 

where, FS is the sum of the sliding horizontal forces, and FR  is the resisting forces against sliding, 

which is determined from Eq. (3).  
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Figure 1.  The design variables and forces acting on the RCRW 

( ). tan .R p a aF P V B c = + +               (3) 

V is the total vertical load, B is the width of the foundation, a and ca are the friction angle and 

adhesion between the wall and soil in the base of the wall, which can be determined from the shear strength 

parameters of the foundation soil. Pp is the passive earth force, and it will be a safe approach to neglect the effect 

of Pp due to possible excavation and erosion. 

The distance of the action point of the resultant vertical force acting on the foundation of the wall to the 

axis of symmetry can be determined from Eq. (4), which is called the eccentricity. The under the foundation is 

not uniform due to eccentricity. If the eccentricity is smaller the B/6, then the base stress distribution will be 

trapezoidal, as shown in Figure 1. The maximum (qmax) and minimum (qmin) base stresses are calculated as given 

in Eq. (5). The maximum base stresses below the foundation of the wall must be safely provided against the 

ultimate bearing capacity of the foundation soil. The factor of safety against bearing capacity failure can be 

determined as in Eq. (6), and it is desired that the factor of safety must be at least 3. If the eccentricity becomes 

greater than B/6, then the tensile stress occurs below the foundation, which means that the foundation of the wall 

will separate from the base soil. It is not an acceptable case, and it is defined as the design constraint in this 

study, as shown in Eq. (7).  

V

MMB
e OR



−
−=

2
               (4) 
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6
1

V e
q

B B

  
=  

 
               (5) 

( )
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q
FS

q
=                 (6) 
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( )

/ 6
1no tension

B
FS

e
− =                 (7) 

In the internal stability analysis, it is checked whether reinforced concrete sections are safe against 

flexure and shear failures or not. These analyses are generally performed for 1−1, 2−2, and 3−3 sections, as 

shown in Figure 1. If desired, the number of sections to be analyzed in the stem of the wall can be increased. The 

design shear force (Vd) and design moment (Md) acting on these critical sections are determined by considering 

the load factors. They must not exceed the moment capacity (Mn) and shear capacity (Vn) for the reinforced 

concrete members calculated using Eq. (8) and Eq. (9) according to ACI 318-05 [29]. 

. . .
2

n M s y

a
M A f d

 
= − 

 
               (8) 

.0.17. . .n V cV f b d=                (9) 

where the strength reduction factors are M = 0.9, and V = 0.75. fy and fc are yield strength of steel and 

compressive strength of concrete, respectively. b and d are the width and effective thickness of the section, 

respectively. a is the depth of the compressive stress block. As is the cross-section area of steel section. The 

reinforcement ratios (t, h and s) in the sections must be between the minimum (min) and maximum (max) 

values, which are defined as in Eq. (10) and Eq. (11) according to ACI 318-05 [29]. 

 
min

1.4
0.25

c

y y

f

f f
 =               (10) 

max 1

600
0.85 . .

600

c

y y

f

f f
 

 
=  

 + 

            (11) 

B. Design Variables and Constraints 

For the optimization problem discussed in this study, the cross-sectional dimensions of the wall and 

main reinforcement ratios (t, h, s) for critical sections are selected as design variables. The cross-sectional 

dimensions of the wall are the stem thicknesses at the top and bottom (x1, x3), the widths of the toe and heel of 

the foundation (x2, x4), and thickness of the foundation (x5). The reinforcement design variables are the main 

reinforcement ratio of the toe (t), heel (h), and stem (s), which are shown in Figure 1. In the optimization 

analyses, the lower and upper limit values are defined based on construction limits, reference values in the 

literature, and algorithm requirements. 

1 3

2 4 5

min max

0.3 , 4.0 m

0.2 , , 4.0 m

, ,t h s

x x

x x x

    

 

 

 

             (12) 

The backfill and foundation soil properties, the embedment depth of the foundation, the height of the 

wall, surcharge load, minimum factors of safety, concrete, and steel properties are regarded as the input data of 

the optimization problem. The heights of the wall, the surcharge loads and the internal friction angles of the 

backfill are used as independent variables in the optimization analyses in this study. The concrete strength class 

is selected C30/37, and the yield strength of steel is used fy = 420 MPa in analyses. The results obtained from 

previous parametric trials show that even if the cohesion and internal friction angle of foundation soil increase, 

the cost of the wall does not decrease further. Therefore, to reach the lowest possible cost of the wall, the 

foundation soil shear strength parameters are selected as high values.  
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In this optimization problem, the design constraints are external stability, internal stability, and problem-

specific geometric requirements. External stability constraints are overturning, sliding, bearing capacity, and no 

tension condition constraints, which are defined in Eq. (1)-(7). Internal stability constraints are bending and 

shear failure modes for the toe, heel, and stem, which are formulated in Eq. (8)-(9). The geometric requirement is 

related to the slope of the wall front face, which must not exceed 50:1 slope.  

C. Objective Function 

In this study, the objective function is to minimize the cost of the RCRW. If the costs of excavation, 

formwork, and compaction is considered to be almost identical with each other walls, which are the same wall 

height, then the objective function is given as follows:  

 ( ) netccstst VCWCxf ,.. +=              (13) 

Cst and Cc are the unit cost of steel and concrete, and they are used as $0.40/kg and as $40/m3, 

respectively [30]. Wst is the weight of steel, and Vc,net is the net volume of concrete per unit length of the wall. 

III. METHODOLOGY 

A. Artificial Bee Colony Algorithm 

The artificial bee colony algorithm is one of the meta-heuristic optimization algorithms, which models 

the foraging behavior of honeybees. According to the algorithm proposed by Karaboga [1], there are three types 

of bees in the hive: employed bees, onlooker bees, and scout bees. Half of the bees in the hive serve as employed 

bees, and the other half assume the task of onlooker bees. In this study, the modified ABC algorithm proposed 

by Karaboga and Akay [4] is used. The pseudo-code of the modified ABC algorithm is given in Figure 2.  

 

Figure 2.  The pseudo-code of the modified ABC algorithm 
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At the initialization phase, employed bees randomly distribute in the foraging area according to Eq. 

(14), and start to search for food. In Eq. (14), xij denotes the j component of the ith bee, xlj and xuj denote the 

minimum and maximum values of the j component. 

( ) ( )0,1ij lj uj ljx x rand x x= +  −             (14) 

Employed bees determine the location of the food sources (xij) in the initialization state, then they 

search for new food sources (vij) around the old source according to Eq. (15).  

( ) ,

,

ij ij ij kj j

ij

ij j

x x x R MR
v

x R MR

 + − 
= 



           (15) 

where vij denotes the j component (new food source) of the ith onlooker bee. ij has a random real value 

between [-1,1], and Rj has a random real value between [0, 1]. The MR value is one of the parameters of the 

algorithm and is a real number selected between [0, 1]. The indices k is a random integer value between [0, sn] 

and different from i. sn is the number of employed bees in the colony. xkj denotes the j component of the kth bee. 

The selection of food sources between the two sources is made according to Deb's rule. According to 

Deb’s rule for the minimization problems, smaller object function value (fi) for two feasible solutions is 

preferred. If one of the solutions is feasible and the other is infeasible, then the feasible point is considered the 

better solution. If both points are infeasible, the point, which has a lower violation value defined in Eq. (18), is 

selected as a better solution. When the new resource is not better than the old resource, the failure i value is 

incremented by one.   

After the employed bees return to the hive, the information is collected about the quality of food 

sources. Onlooker bees use the information obtained from employed bees to get a probability value for each food 

source given as Eq. (16). 

1

1

0.5 0.5 ,if solution is feasible

1 0.5 ,if solution is infeasible

sn

i j

j

i
sn

i j

j

fitness fitness

P

violation violation

=

=

  
+   

  
= 

 
−  

 





        (16) 

In Eq. (16), pi represents the probability value of the ith food source. If the solution at the point i is 

feasible, the fitness value is calculated using the Eq. (17), where fi is the objective function of the point i. If the 

employed bee indicates an infeasible point in the solution space, violationi is calculated using the Eq. (18) for the 

calculation of the probability value.  

( )1/ 1 , 0

1 , 0

i i

i

i i

f f
fitness

f f

 + 
= 

+ 
            (17) 

 
1 1

max 0, ( ) ( )
q m

i j j

j j

violation g x h x
= =

= +             (18) 

In Eq. (18), gj(x) represents the negative surplus value of the normalized inequality constraint, and hj(x) 

represents the negative surplus value of the normalized equality constraint. 

After calculating the probability value, the bees select the source from the candidate food sources using 

the roulette wheel method. The operation of the roulette wheel method is given in the pseudo-code in Figure 2. 
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Onlooker bees that determine the food source to be visited by the roulette wheel method, they search for new 

sources around this source by using Eq. (15). Just like employed bees, onlooker bees prefer the better of the two 

sources by following Deb's rule. If the new source is not better than the old one, then failurei is incremented by 

one. If the value of failurei exceeds the limit value, the bee turns into a scout bee and starts searching for food at 

a random point in the solution space using Eq. (14). This phase is called the scout bee phase. 

B. Multiple Regression 

It is observed that some dependent variables are related to the other design variables in many 

engineering problems. Regression analysis is one of the most commonly used statistical technique for 

determining the relationship between the variables. The regression analysis aims to determine whether there is a 

significant relationship between the variables and to find a regression equation. Many different models (linear 

and nonlinear) are used to determine the fittest regression equation [31].  

If the dependent variable (y) is linearly affected by more than one independent variables (x1, x2, …, xn), 

the multiple linear regression model is identified in Eq. (19).  

0 1 ,1 2 ,2 ,i i i n i n iy x x x    = + + + + +            (19) 

where yi is the value of the dependent variable in the ith observation. The parameters 0, 1, …, n are 

regression coefficients for the independent variables. n is the number of independent variables. The predicted 

value (ŷi) by the regression equation may not always be equal to actual value (yi) in observation, and a random 

error (i) may occur, which is the difference between the observed and the predicted values. 

If there is no linear relationship between the dependent and independent variables, different regression 

models, such as nonlinear models, can be used to estimate the dependent variable. The polynomial regression 

model is one of them. In this study, to estimate the minimum cost of the RCRWs, the second-order polynomial 

regression equation with three independent variables are used as defined in Eq. (20).  

2 2 2

0 1 1 2 2 3 3 11 1 22 2 33 3 12 1 2 13 1 3 23 2 3
ˆ( )E Y y b b x b x b x b x b x b x b x x b x x b x x= = + + + + + + + + +       (20) 

where b0 is the intercept of the regression model. b1, b2, and b3 are linear effect coefficients. b11, b22, and 

b33 are the quadratic effect coefficients, and b12, b13, and b23 are interaction effect coefficients between pairs of 

independent variables. For the calculation of the regression coefficients in these models, the sum of squares of 

error will be minimized by using the least-squares method. 

In this study, the coefficient of determination (R2) and the root mean square error (RMSE) are used as 

statistical measure parameters to check the validity of the proposed regression model, which are defined in Eq. (21) 

and (22), respectively. In these definitions, n is the number of analyses in the database. If the coefficient of 

determination (R2) approach to one, and the RMSE value is near to zero, then this means that the regression 

model estimates the dependent variable close to its actual values. 
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C. Artificial Neural Networks 

Artificial neural networks (ANN) are described as a sub-branch of the artificial intelligence 

phenomenon, which was introduced in the 1940s. In the 1980s, the description of artificial neural networks 

began to be made with the question of whether the human brain could be made similar, and whether computers 

would be able to think like humans. Trying to imitate the work way of the human brain has been a starting point. 

Basically, it can be described as specialized structures for predicting which outputs to take from the experiences 

of a particular event to the input parameters of the relevant event. Perceptron, which is the basic unit of ANN, is 

defined as a structure that produces a single output from the parameters given as input. A diagram of the 

perceptron is represented in Figure 3. 

The value obtained as a result of multiplying and summing the perceptron inputs by weights is passed 

through an activation function. The value to be entered into the activation function is the result of a linear 

function as shown in Eq. (23). 

n

i i

i

y w x b= +               (23) 

This linear result is converted to nonlinear form through the activation function. The activation function 

can be selected in various types. In practice, sigmoid, hyperbolic tangent, step function, ReLU, leaky ReLU, 

softmax, etc. functions are frequently used. The selection of the activation function is one of the parameters 

affecting network performance. The selection of the activation function is determined by operating the trial and 

error process, depending on the type of handled problem. The activation function must be differentiable and 

continuous.  

Combining more than one of the perceptrons, which can be defined as a single-layer neural network, 

forms the structures described as ANN. In practice, the structure of ANN is generally given as an input layer, 

hidden layer or layers, and an output layer. Besides, ANN structures can be described. 

The artificial neural network models make inferences about the desired event based on the input data. 

This event is called forward feed. The difference between the obtained inferences and the actual observation 

results describes the error. Backpropagation of the error requires updating the weights in the network. To reduce 

the error to a certain level, the above-described feed-forward and error backpropagation processes are repeatedly 

run. This process is called training of the neural network. Giving as many examples of the event as possible to 

the neural network during training provides more successful results in training of the network. 
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Figure 3.  The basic unit of ANN perceptron structure 

IV. THE RESULTS OF OPTIMIZATION ANALYSES 

In this study, to develop the cost estimation model, firstly, the effects of the wall height (H), surcharge 

load (q), and internal friction angle of the backfill soil (1) on the minimum cost of RCRWs sitting on the strong 

soil layer must be investigated. For this aim, total of 125 optimization analyses are performed for different the 

heights of wall (4, 5, 6, 7, and 8 m), surcharge loads (0, 10, 20, 30, and 40 kPa), and the internal friction angles 

of the backfill (28, 30, 32, 34, and 36) by using the modified ABC algorithm. The depth of embedment of the 

foundation are chosen as 1.0 m, and the passive forces are neglected. The unit weights of the backfill soil, 

foundation soil, and wall material are taken as 17, 18, and 23.5 kN/m3, respectively. The concrete strength class 

is selected C30/37, and the yield strength of steel is used fy = 420 MPa in analyses. The shear strength 

parameters of foundation soil are selected as c2 = 100 kPa and 2 = 30.  

In order to assure high levels of stability, performance and repeatability of the modified ABC algorithm, 

the parameters of the algorithm are tested for different combinations. The appropriate parameter values are 

determined and used in the calculations (number of colonies, CS = 100; modification rate, MR = 0.8; limit = 

400; number of maximum cycles, MCN = 1000). The analyses are repeated 30 times to check the performance 

and repeatability of the algorithm for each problem. For the 125 optimization problems, the distribution of the 

objective functions obtained from 30 independent analyses are examined, and a histogram for the distribution of 

the coefficient of variation (COV) is shown in Figure 4. The COV value in 90% of the analyses is smaller than 

0.37%, and the maximum COV is 1.19%. The repeatability of the algorithm is found sufficient for this study. 

 

Figure 4.  The distribution of the coefficients of variation for 30 independent analyses 

The relationships between the surcharge load and minimum cost of the wall for the different internal 

friction angles of the backfill and wall heights are shown for two different wall heights in Figure 5. As is seen in 
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Figure 5, the increase in the surcharge load causes an almost linear increase in the minimum cost of the wall. 

Especially, this linearity is becoming more pronounced when the height of the wall increases. If the surcharge 

load rises from 0 to 40 kPa, the minimum cost of the wall increases by 70% for the problem with 1 = 28 and H 

= 4 m, as shown in Figure 5a. While, the increment is 49% for the problem with 1 = 36 and H = 4 m. This 

change remains between 48% and 52% for all internal friction angles for the wall, which height is 8 m, as shown 

in Figure 5b. This change shows that the effect on the minimum cost of the surcharge load grows due to the 

internal friction angle in the wall with a low height. For the high walls, the trend of the minimum cost caused by 

surcharge increment is not significantly affected by the internal friction angle of the backfill. 

    

Figure 5.  The effect of the surcharge load on minimum cost 

Figure 6 indicates the variation of the minimum cost of the wall with the change in the internal friction 

angle of backfill (1) for the H = 6 m and H = 7 m in wall height and varied surcharge loads. As the internal 

friction angle of the backfill increases, since lateral earth stresses decrease and the cost of the wall reduces. The 

downtrend is exactly linear, as shown in Figure 6. The increase in the internal friction angle from 28 to 36 

causes on average 16% reduction in the cost of the wall. 

    

Figure 6.  The effect of the internal friction angle of backfill on minimum cost 
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Figure 7 shows the variation between the minimum cost of the wall and the height of the wall. When the 

height of the wall is increased from 4 m to 8 m, the minimum cost increases by 249% to 280% for 1 = 32. The 

increment of the cost of the wall is 265% on average for all internal friction angles. It is understood that the main 

factor affecting the cost of the RCRW, which is sitting on the strong soil, is the height of the wall. The minimum 

cost increases as a second-order polynomial with increasing the height of the wall. Therefore, the effect of wall 

height on the minimum cost must be defined as the second order in the model to be developed.  

 

Figure 7.  The effect of height of the wall on minimum cost 

V. THE COST ESTIMATION MODELS FOR THE RCRW 

A. Regression Model  

In this study, the regression model is firstly established for the determination of the minimum cost of 

the wall. In the model, surcharge load (q), wall height (H), and internal friction angle of backfill (1) are selected 

as independent variables. Because the surcharge load (q) and internal friction angle of backfill (1) cause a linear 

increase in the minimum cost of the RCRW as shown in Figure 5 and Figure 6, these parameters must be taken 

into account as a linear form in the regression model. The height of the wall affects the minimum cost of the 

RCRW quadratically, as shown in Figure 7. Therefore, the height of the wall is added to the model as a quadratic 

polynomial. Also, to increase the estimation capacity of the regression model, the interaction effect parameters 

between the H and q; and H and 1 are used in the model. 

The used second-order model with three independent variables for the minimum cost of the wall (Cmin) 

is given as follows: 

2

min 0 1 1 2 3 4 5 1 6C b b b q b H b H b H b qH = + + + + + +           (24) 

where; the regression coefficients (b0, …, b6) are given in Table 1. In the multiple regression equation, 

1 is defined in degrees, q is defined in kilopascal, H is defined in meters, and the wall cost is calculated in $/m. 

As seen in Table 1, the multiple correlation coefficient value for the model is equal to R = 0.9993. It is 

also clearly observed from Table 1 that the P-values in the three-parameter models are very smaller than 0.05. It 

means that the regression model is statistically significant for all independent variables. Similarly, since the F-

significant values are much less than 0.05, it is understood that the minimum cost of the wall can be significantly 

predicted by the independent variables (q, 1, and H). Therefore, the regression model, where the surcharge load, 
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the internal friction angle of the backfill, and the wall height are used as the predictor variables, can be accepted 

as strong models giving more realistic the minimum cost of the wall for the design of RCRWs. The multiple 

regression equation, which is proposed in this study for estimating the minimum cost of the wall, is summarized 

in Eq. (25). 

2

min 1 1108.7763 5.8644 1.3314 33.0606 7.2843 1.9079 0.6658C q H H H qH = − + − + + − +      (25) 

The comparison between the calculated minimum cost by the modified ABC algorithm and the 

predicted minimum cost by the regression analysis is shown in Figure 8. In this figure, it is seen that the 

predicted minimum cost values are very close to the calculated actual costs. For the regression model, the 

statistical performance evaluations based on R2 and RMSE values are given in Table 2. The coefficient of 

determination is equal to 0.9987, and the root mean square error value is 4.22 $/m for the model. The evaluations 

point out the existence of a statistically strong and significant relationship between the predicted and calculated 

minimum cost of the wall. Therefore, the proposed model can be used the estimation of the minimum cost of the 

RCRW sitting on the strong soil layers. 

Table 1. The statistical evaluation of the regression model 

Variables Coefficients t Stat P-value Multiple R Sign. F 

Intercept -108.7763 -5.35  0.001 

0.9993 3.7E-167 

1 5.8644 10.08  0.001 

q -1.3314 -11.44  0.001 

H 33.0606 8.10  0.001 

H2 7.2843 32.28  0.001 

1H -1.9079 -20.21  0.001 

qH 0.6658 35.27  0.001 

 

Figure 8.  Comparison of calculated cost by ABC and predicted cost by the regression model 

B. Artificial Neural Network Model 

In this study, the artificial neural network model as a second model is performed to predict the 

minimum cost of the RCRW. Just as in the regression model, the surcharge load (q), the height of the wall (H), 

and the internal friction angle of the backfill (1) are selected as input parameters in the model, and the minimum 
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cost of the wall is estimated as the output value. The network structure of the developed model in the present 

study is shown in Figure 9. The hidden layer in the network structure is created from one layer and ten neurons 

to provide the best performance.  

The database has been randomly divided into three sets that are the training, validation, and test sets. 

70% of the data are used for the training process. The remaining data are divided two-part to validate and test the 

model. The feed-forward backpropagation neural network model, which is the most used model, is implemented 

in the developed structure. The Levenberg-Marquardt algorithm, which is quite popular and considered as the 

best training algorithm, is preferred for training and adaption learning function in the update process of weight 

and bias values. The number of iterations is determined to decrease the mean square error by the trial-error 

method. 

 

Figure 9.  The structure of the developed ANN model 

Table 2. Statistical evaluation of the regression analysis and the ANN model 

Model R2 RMSE 

Multiple regression model 0.9987 4.22 $/m 

ANN model 1.0000 0.30 $/m 

The predicted minimum cost obtained from the developed ANN model is compared with the calculated 

minimum cost value by the modified ABC algorithm as shown in Figure 10. The statistical performance 

evaluation criteria of the ANN model for 125 analyses are shown in Table 2. The coefficient of determination, 

R2 = 1.0000, and the error values are approximately zero. These values indicate that to be quite successful in 

estimating the minimum wall cost of the ANN model. It is thought that the difference between the RMSE values 

of the regression model and the ANN model proposed in this study is caused by the techniques of the models. In 

the ANN model, since the iterations are repeated many times to establish the most suitable model to minimize 

the errors in the learning process, the ANN model developed for the cost estimation of the RCRWs can provide 

more successful solutions than the regression model. 



  

BŞEÜ Fen Bilimleri Dergisi  
7. Cilt - Milli Mücadele ve TBMM'nin 

Açılışının 100. Yılı Anısına-100. Yıl Özel 

Sayısı  

9-26, 2020 

BSEU Journal of Science  

DOI: 10.35193/bseufbd. 646668 
 

 

 

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd) 

 

 24 

 

 

Figure 10.  Comparison of calculated cost by ABC and predicted cost by ANN model 

VI. CONCLUSIONS 

 In this study, the cost estimation problem, which is one of the most influential factors of the project 

successful, is examined for reinforced concrete retaining walls. For this purpose, firstly, the tendency on 

optimum design of the RCRW of the design parameters such as surcharge load, the height of the wall, and the 

internal friction angle of the backfill is presented by using the modified ABC algorithm. At the end of the 

optimization analyses, it is observed that the increase in the surcharge load rises the cost of the wall between 

48% and 70% depending on the height of the wall. This change is nearly linear for the walls higher than 4 m in 

height, essentially. The cost of the wall is inversely proportional to the increase in the internal friction angle of 

the backfill soil. This reduction is linear too. Besides, the effect of the height of the wall on the minimum cost is 

around 265%. This effect is defined as the second-order in the regression model to be developed. In order to 

estimate the minimum cost of the RCRWs sitting on the strong soil layer, a multiple regression model and 

artificial neural network model are proposed based on the results obtained from the optimization analysis. The 

regression model is developed by using the second-order polynomial regression form with three independent 

variables. The coefficient of determination (R2) and root mean square error (RMSE) for the regression model are 

found as 0.9987 and 4.22$/m, respectively. In the ANN model, the minimum cost of the wall is predicted by the 

three-input layer, one hidden layer with 10 nodes, and one output layer with a network structure model. The 

results obtained from the ANN model are very close to the calculated values by the modified ABC algorithm. 

The coefficient of determination is determined as 1.0000, and the error value is nearly zero. When the analysis 

results are evaluated, it is seen that both the ANN model and the regression model have very high prediction 

ability. Due to the success of the proposed models, both models can be used in the early cost estimation of the 

projects of the RCRWs sitting on the strong soil layer.  
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