Hacettepe Journal of Hacet. J. Math. Stat.
Volume 49 (6) (2020), 21342153
Mathematics & Statistics DOI : 10.15672/hujms.677920

RESEARCH ARTICLE

A novel probabilistic distance measure for picture
fuzzy sets with its application in classification
problems

Abhishek Guleria®, Rakesh Kumar Bajaj*

Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Solan,
Himachal Pradesh, India

Abstract

In the present communication, we propose the probabilistic distance measure for picture
fuzzy sets where the probability of occurrence/non-occurrence of the picture fuzzy event
have been incorporated. This framework has been clearly addressed through outline of
a formulated problem and its probable solution structure along with its proof of validity.
Further, the proposed probabilistic distance measure has been utilized to present an algo-
rithm for solving some classification decision making problems in a more generalized way.
Some important illustrative examples related to the problem of classification - building
material classification, mineral classification and a decision making problem of financial
investment risk have been worked out to exhibit the implementation of the proposed
methodology. The obtained results have also been compared with the existing approaches
of solving the classification problems. The uncertainty feature of the problem has been
handled in a more broader sense reflecting the advantage of the introduced approach.
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1. Introduction

The concept of distance measure plays a significant role in establishing a useful link
from the expression of uncertain and imprecise information to various real world applica-
tion fields such as decision making, clustering, financial risk analysis, and so on. In order
to improve the basic and existing approaches of defining the distance measures, various
researchers have duly paid attention by incorporating other determining factors. Initially,
Zadeh [41,42] introduced the concept of a fuzzy event and its probability as a natural
extension of the classical probability of an event. Next, Atanassov [1] included the hesi-
tancy part in a fuzzy event and extended the concept to intuitionistic fuzzy set so that the
uncertainty inherent in many practical circumstances may be taken care with a broader
range, particularly in the study of patterns and information systems. Essentially, such
generalizations provide a formal way of dealing with real life problems in which the source
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of impreciseness is the lack of sharply defined criteria of class membership instead of hav-
ing the random variables. Szmidt and Kacprzyk [29] laid down the idea of connecting the
concept of intuitionistic fuzzy event and its probability which is a consistent generalization
of Zadeh’s fuzzy event/probability measure.

Further, Yager [38] revealed that the existing structures of fuzzy set and intuitionistic
fuzzy set is not capable enough to depict the human opinion in more practical/broader
sense and introduced the notion of Pythagorean fuzzy set (PyFS) which effectively enlarged
the span of information by introducing the new conditional constraint. PyFS is basically
characterized by a membership value and a non-membership value such that the squared
sum of these values is less than or equal to 1. However, PyFS is more generalized than
intuitionistic fuzzy set but there is another notion of uncertainty term called ‘degree of
refusal’ which has not given due attention in a decision making process. This can be
understood with the help of an example of ‘voting system’, where voters can be categorized
into four different classes — one who votes for (yes), one who votes against (no), one who
neither vote for nor against (abstain), one who refused for voting (refusal). It may be
noted that the concept of ‘refusal’ is not being taken into account by any of the sets stated
above. In order to deal with such circumstances and to develop a concept which would
be sufficiently close to human’s nature of flexibility, Cuong [5] introduced the concept of
picture fuzzy set (PFS) in which all the four parameters, i.e., degree of membership, degree
of indeterminacy (neutral), degree of nonmembership and the degree of refusal have been
taken into account. Therefore, the generalization of fuzzy sets to picture fuzzy sets may
be well understood by the geometric presentation in Figure 1 showing the better coverage
of the imprecise information.

PYFS s

_IFS

PFS
SFS

Constraint Conditions
IFS: 0<pu +v,<1
PyFS: 0 < p% +vi <1
NS: O0<puy+vy+my<3
PFS: 0<ps,+mp+vy<1
SFS: o<pi+ni+vi<i

' (0,0,1)

Figure 1. Extension of Fuzzy Set to Picture Fuzzy Set

Burillo and Bustince [4] studied the distance measures between intuitionistic fuzzy sets
which express the information in terms of two parameters i.e., membership and non-
membership function. Further, Szmidt and Kacprzyk [30] studied some limitations of not
taking into account the third parameter of uncertainty (hesitancy function) and developed
some new distance measures between intuitionistic fuzzy sets. Based on the Hausdorff dis-
tance and L, metric, Hung and Yang [18, 19] studied some similarity measures/distance
measures of intuitionistic fuzzy sets. Next, based on matrix norm and fuzzy implication,
Hatzimichailidis et al. [17] proposed a new method for calculating the distance between
intuitionistic fuzzy sets. Papakostas et al. [26] compared the distance and similarity mea-
sures between intuitionistic fuzzy sets and applied them in a pattern recognition problem.
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Recently, Luo and Zhao [24] developed a new distance measure between intuitionistic fuzzy
sets based on a matrix norm and a strictly increasing (or decreasing) binary function. Also,
Garg and Kaur [13] introduced some new distance measures for cubic intuitionistic fuzzy
sets which characterize the membership and non-membership in the form of interval-valued
IFS.

Zhang and Xu [44] studied a distance measure of Pythagorean fuzzy numbers and used
it in multi-criteria decision making by extending the TOPSIS method. Next, Li and
Zeng [23] proposed a new distance measure for PFSs and Pythagorean fuzzy numbers
considering four parameters i.e., membership degree, nonmembership degree, strength of
commitment about membership and direction of commitment.

Cuong [6] stuied the some properties of picture fuzzy sets and discussed few distance
measures between them. Son [27] developed a generalized picture distance measure and
integrate it to a novel hierarchical picture fuzzy clustering method called hierarchical
picture clustering. Thong et al. [31,32] applied a novel picture fuzzy clustering techniques
for complex data and particle swarm optimization. Wei [34] studied a technique in light
of the picture fuzzy weighted cross-entropy and applied it in the multi attribute decision
making problem to rank the alternatives under consideration. Also, Son [28] studied
the picture association measures and applied in group decision making. Further, Dutta
[8] modified the Son’s distance measure and then find the solution of medical diagnosis
problem by utilizing the proposed distance measure. Dinh et al. [7] proposed the distance
measure and dissimilarity measure to measure the difference between two picture fuzzy
sets. Wei and Hao [37] introduced the generalized dice similarity measure for picture
fuzzy set and studied and applications. Next, Wei [36] discussed some similarity measures
to quantify the similarity between picture fuzzy sets. Some new aggregation operators
for picture fuzzy sets have been studied for solving different variety of problems, viz.
Hamachar aggregation approach for assessing the performance of the best enterprise [20],
Muirhead mean aggregation approach in evaluating the risk in the financial investment [33],
Dombi aggregation operator in an multi-attribute decision making process [21]. Recently,
Khalil et al. [22] developed some fundamental operations for interval-valued picture fuzzy
set/picture fuzzy soft set with various properties and applied them to solve the decision-
making problems. Zeng et al. [43] studied a novel picture fuzzy discriminant measure based
on Jensen’s inequality /exponential entropy in a probabilistic framework with important
properties and illustrative examples.

Feng et al. [10] presented different lexicographic orders for intuitionistic fuzzy setup
and also studied relationship between them. Feng et al. [9] provided a new perspective
of intuitionistic fuzzy soft sets (IFSSs) along with its various standard binary operations.
An algorithm to solve the decision-making problem has been provided and implemented
by considering a case study related to a faculty appointment problem. Further, a mod-
ified preference ranking organization method for enrichment evaluation (PROMETHEE)
based on IFSSs by considering some new notions of matrices such as deviation matrices,
membership (or non-membership) preference matrices and aggregated intuitionistic fuzzy
preference matrices to solve a multiple attribute decision-making problem have been duly
discussed by Feng et al. [11]. Also, the Minkowski score functions for intuitionistic fuzzy
values and also studied its different properties and presented an algorithm to solve decision-
making problem based on IFSSs by utilizing the proposed score function have been studied
by Feng et al. [12]. Yager [39] introduced the a class of nonstandard Pythagorean fuzzy
subsets along with its various aggregation operators. Further, Yager [40] introduced a
general class of fuzzy sets and called its as ¢-rung orthopair fuzzy sets in which the sum of
the ¢** power of the membership grade and the ¢ power of the non-membership grades
is less than equal to 1. Guleria and Bajaj [14] proposed a new notion of matrix called
as Pythagorean fuzzy soft matrix (PFSM) along with their standard binary operations.
Based on these PFSM, Bajaj and Guleria [3] provided a new dimensionality reduction
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technique and algorithm has also been devised to solve the decision making problem. In
order to deal with the uncertainty, the concept of Pythagorean fuzzy set has been utilized
in various other capacities also [15, 16].

The application of the distance measure is for depicting the divergence between the
elements while the similarity measure provides the degree of coincidence. In literature,
the concept of similarity measures is almost synchronous with the concept of the distance
measures. Most of the proposed definitions of measures contain the three parameters
(membership, nonmembership, and hesitancy) of uncertainty, which are somewhat promis-
ing to deal with the loss of information. Still we need to cater the necessity to promote
the accuracy /rationality in the decision-making by incorporating the four parameters of
uncertainty in a probabilistic framework.

The motivation behind proposing the novel concept in this paper is to consider the prob-
abilistic occurrence of the membership & non-occurrence of the non-membership value of
the imprecise information along with two more parameters of indeterminacy and refusal.
Hence, the proposed distance measure for the picture fuzzy sets incorporates the concept
of probability along with the existing four parameters, i.e., the degree of membership,
neutral membership, degree of non-membership and degree of refusal. This , which cer-
tainly widens the scope of coverage of the incomplete information and the uncertainty
space. Since the proposed distance measure is of probabilistic nature in a composite form,
therefore, it has different kinds of prospects in different practical applications where the
uncertainty is in a probabilistic and fuzzified way. Additionally, we are proposing an al-
gorithm for solving the pattern recognition problems/classification problems based on the
proposed probabilistic distance measure which enhance the literature in an advantageous
way.

The rest of the paper is organized as follows. The basic and fundamental definitions are
being discussed in Section 2 for a ready reference to preliminaries. The proposed composite
probabilistic distance measure for the picture fuzzy sets with its normalized form has
been developed in Section 3. Based on the proposed distance measure, the algorithm for
solving classification problems and decision making problems has been presented along
with appropriate illustrative examples in Section 4. The comparative analysis of the
obtained results over the existing methods for the illustrative examples and the advantages
of composing the probabilistic randomness and refusal uncertainty in the proposed method
have been studied in Section 5. Finally, the paper has been concluded in Section 6 stating
the outlines of the scope for future work.

2. Preliminaries

In this section, we recall and present some fundamental concepts related to the picture
fuzzy sets and their existing distance measures which are well known in literature. The
generalization process from intuitionistic fuzzy sets to picture fuzzy sets may be well
understood through the following definitions:

Let U be the universe of discourse with py : U — [0,1] and vas : U — [0, 1] being
the degree of membership and degree of non-membership respectively. The set M =
{< o, up(a),vpy(a) >| a € U} is called

o Intuitionistic fuzzy set [1] in U if it satisfies the condition 0 < pps(@)+var(a) <
1 with the degree of indeterminacy given by
ma(a) =1 — ppr(a) —vpr(a).

e Pythagorean fuzzy set [38] or Intuitionistic fuzzy set of second type [2]
in U if it satisfies the condition 0 < /ﬁw( ) + v3;(a) < 1 with the degree of

indeterminacy given by s (« \/ 1— 3, (a) — v3,(a).
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The first ever probabilistic approach for intuitionistic fuzzy event was developed by
Szmidt and Kacprzyk [29], which was an extension of Zadeh’s fuzzy event/probability
measure [42], given by

Definition 2.1. [29] Suppose the probability of occurrence of a intuitionistic fuzzy event
M c U = {aq,9,...,a,} be p(ay),p(az),...,p(a,) respectively. Then the minimal
probability pmin(M) and maximal probability pmax(M) of an intuitionistic fuzzy event M
is given as:

pmin(M) = ZP(%‘)MM(%’)
=1

and
n

pmax(M) = pmin(M) + Zp(ai)ﬂ-M(ai)'
i=1
Hence the probability of event M is a number from the interval [pmin (M), Pmax(M)].

In order to have further generalization, we consider the universe of discourse U with
prr U — [0,1], may : U — [0,1] and vy : U — [0, 1] being the degree of membership,
degree of neutral membership (abstain) and degree of non-membership respectively. The
set M = {< o, up(a),nu(a), var(a) >| a € U} is called as Picture fuzzy set [5] in U if
it satisfies the condition pas(a) + nar(e) + var(a) < 1 with the degree of refusal given by

ru(e) =1 — [pv(a) + nar(e) + va(a)).
We are presenting definitions of some important existing distance measures for picture
fuzzy sets which are well known in literature.

Definition 2.2. [5] Suppose M and N are two picture fuzzy sets over U. Then the
Hamming Distance between M and N is given by

dp(M,N) = (luar(a:) — v (@)| + (i) — v (q)] + [var(as) — vn(as)])
i=1
Subsequently, the Normalized Hamming Distance between M and N is given by

n

dp(M, N) = % > (uar(as) = pnv(aa)| + Inar(eq) = v (aa)| + lvar () — viv(aa)) -
i=1

Definition 2.3. [5] Suppose M and N are two picture fuzzy sets over U. Then the
Euclidean Distance between M and N is given by

\l 3 Z pnr (i) — pn (@i))? + (qa (a) — v (@))? + (var(es) — vn (@a))?. (2.1)

Subsequently, the Normallzed Euclidean Distance between the picture fuzzy sets M
and N is given by

2n

i=1

(M, N) = J -~ D (par(en) = pv (@) + (s (o) = nv(@2)? + (var (@) = viv(as))2. (2.2)

Recently, some generalized picture distance measures have been proposed [7,27] with
possible applications.

Definition 2.4. [27] Suppose M and N are two picture fuzzy sets over U. Then the
generalized picture distance measure between M and N is given by

1
" 1
ApP +AnP +ALP P
(% g (71 3* i ) +max{Auf,Anf,Ayf}>
da(M,N) = =1

3 =

1
n P 1
(% > (m) + max{Ap?, An?, Auf}) ! (max{@M Ny + L Z n|®M — (I)N\P>

=1

+1
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where Ay = [pa(es) — pn(es)l, Ani = |nv(aq) — v (aa)|, Avi = [var(es) — v (es)l,
M = |unr(ew) + mr(aw) + var(ai)| and ®F = [un(aw) + nv(aw) + v (ai)]-

Definition 2.5. [7] Suppose M and N are two picture fuzzy sets over U. Then the some
of distance measures between M and N are given by

n

Dyu(M,N) = % Z (I () — pv (a)| + I (@) — v (@) | + |var(eu) — v (Qa)l)

i=1

(S

Dg(M,N) = (Z(MM(%') — pnv(0a)? + (mar (o) — mv (@) + (v (i) — VN(ai))2> ;

=1
D} (M, N) Zmax lnr (i) — pv (i), [ () — v (), [vm (Qa) — v (@a)))

1
2

D% (M, N) <Z max ((par (o) — pn (0i))?, (nar (i) — nn ()%, (v (o) —VN(OM))Z)>

3. Probabilistic distance measure for picture fuzzy sets

In this section, we develop a novel concept to address the probabilistic randomness with
picture fuzzy uncertainty in a composite way and propose a probabilistic distance measure
for the picture fuzzy sets. For this purpose, we first present a new definition for probability
of occurrence and non-occurrence of a picture fuzzy event.

Definition 3.1. Let U be the universe of discourse/sample space with M = {1, g, ..., an}
as a set of picture fuzzy events. Consider the probability of occurrence of the picture fuzzy
events as p(aq),p(az), ..., p(a,) respectively. Then, the minimal probability of occurrence
Pmin(M) and maximal probability of occurrence pmax (M) of the set of picture fuzzy events
M is given by:

pmin(M) = Zp(ai)MM(ai)
=1

and
n

Pmax(M) = pmin(M) + ZP(%)TIM(%)
i=1
Hence, the probability of occurrence of the picture fuzzy event M, denoted by p(M), is a
number lying in the interval [pmin(M), Pmax(M)], that is,

p(M) € [pmin(M)vpmax(M)]'

Consequently, suppose that the probability of non-occurrence of the picture fuzzy events
as q(a1),q(a2),...,q(ay) respectively. Then, the minimal probability of non-occurrence
Gmin(M) and maximal probability of non-occurrence gmax(M) of the set of picture fuzzy

events M is given by:
n

min(M) = q(ei)var (o)
i=1

and
n

Qmax(M) = len(M) + Z Q(az)TM(OéZ)
i=1
Hence, the probability of non-occurrence of the picture fuzzy event M, denoted by g(M)
is a number lying in the interval [gmin (M), gmax(M)], i.e.,

q(M) S [qmin(M), QmaX<M)}'
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Example 3.1: Consider U as the universe of discourse/sample space and

M = {(a1,0.46,0.36,0.1), (cv2,0.73,0.04,0.11), (v3,0.48,0.26,0.16)} as a set of picture
fuzzy events. Suppose the probability of occurrence of the picture fuzzy events is given by
p(a1) = 0.02717, p(az) = 0.6956, p(ay,) = 0.2173 and the probability of non-occurrence of
the picture fuzzy events is given by

q(a1) = 0.5714, q(ag) = 0.0714, g(a,) = 0.2857.
Then, in view of Definition 3.1, we have
Pmin(M) = 0.02717 x 0.46 + 0.6956 x 0.36 + 0.2173 x 0.1 = 0.62459;
and
Pmax (M) = 0.62459 + (0.02717 x 0.36 + 0.6956 x 0.04 4+ 0.2173 x 0.26) = 0.71869.

Hence, p(M) € [0.62459,0.71869]. On similar lines, we obtain gmi,(M) = 0.11071 and
Gmax(M) = 0.19356. Thus, g(M) € [0.11071,0.19356].

Remark: It may be noted that the values of p(M) and ¢(M) are equally likely in their
respective intervals. Without loss of generality, it will be always wise to choose the mean
of the intervals in order to avoid any kind of left/right deviations in the selection.

The origin of the proposed novel distance measure between picture fuzzy sets is because
of inter-connecting and incorporating the concept of probabilistic randomness with the ex-
isting four fuzziness parameters, that is, the degree of membership, neutral membership,
degree of non-membership and degree of refusal, which may be well understood with the
help of the following structure of the problem of categorization:

Problem outline and proposed solution structure:

Suppose a person wants to classify an unknown pattern among the different known m
classes provided by the different k experts, (say e)s) by utilizing a distance measure.
We evaluate the distance of the unknown pattern with the each known class and make
a decision in favor of that class which has the minimum value of the computed distance
measure with the unknown pattern.

Let U = {a1,a2,...,a,} be the universe of discourse and consider the opinion of the
expert regarding each «;, given in the form of picture fuzzy set as:

M = {(ov, par(es), e (os), var(es)) e € X}

Consider p; as the probability of the useful information in the opinion of expert with
respect to the degree of membership. If there is no loss of the information in membership
value then the value of the degree of membership is absolutely correct. Also, consider g;
as the probability of the useful information in the opinion of expert with respect to the
degree of non-membership. If there is no loss of the information in non-membership value
then the value of the degree of non-membership is absolutely correct. Analogously, s; be
the probability of the useful information in the opinion of expert with respect to abstain/
neutral membership. If there is no loss of the information in neutral membership value
then the value of the degree of neutral membership is absolutely correct. Now, we have
to find the value of p;, ¢; and s; corresponding to the given data.

Since, the degree of refusal rps(a;) = 1 — (par(as) + nar(ou) + var(ag)), therefore ()
is correct if all other parameters are simultaneously correct. Also, we have made as-
sumption that the degree of membership, degree of neutral membership and degree of
non-membership are correct with chances p;, ¢; and s;, respectively and are independent.
Thus, the probability of the event that all the three parameters - degree of membership,
degree of neutral membership and degree of non-membership, are simultaneously correct
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is p;q;s;. Hence, the absolute refusal part 7";\/[ (i) = pigisirar(a;). So, the absolutely cor-
rect membership 11, (), neutral membership 7),(c;) and non-membership vy, (a;) are as
follows:

Now, in each part, i.e., ,L/M, 77;\4 and 1/;\4, there is some loss form the original values pps, nas,
vys. Therefore, we add total loss in the refusal part and define a new picture fuzzy set as

M= {(O‘inu,]\/[(ai)a 77;\/[(041')’ V;w(ai)”ai € X}, where
(i) = pigisirar(os) + loss,
and
loss = 1 — (pipnr (i) + qgimnr (i) + sivar(ai) + pigisirar(ai)).
If the uncertainty involved in the fuzzy variable is absolutely correct then there is no loss

of the above stated parameters, otherwise some loss is always there. From the definition
of picture fuzzy set, we have

g () + mpp () + vpg(es) + 7y (o) = 1
which implies
pipinr (i) + g (0g) + sivar (o) + pigisirp(og) < 1. (3.1)
Now,

pittar () + qimar (i) + sivar (i) + pigisiryr(es) < pi + ¢ + i + pidisi. (3:2)
For the different possible combinations of (p;, ¢;, s;) and (par(ai), nar(ew), var(ai), rar (i),
the L.H.S of equation (3.2) may approach to its maximum value, i.e., close to 1, which
implies that
pi + @i + si +pigisi > 1. (3.3)
Suppose for each «;, if an expert assigns absolutely correct values to all the three param-
eters, then we have p; + ¢; + s; + pi¢;s; = 4, otherwise

Di + @i + Si + pigis; < 4. (3.4)
Therefore, from equation (3.3) and (3.4), we have
1<pi+q+si+pigisi <4
Case 1 : If there is no loss in the information, i.e., p; = 1, ¢; = 1 and s; = 1, then
pi + ¢ + si + pigisi = 4.

Case 2 : p; #1,q; # 1 and s; # 1. As p; + ¢; + s; + piq;s; decreases then at least one of
the p; or ¢; or s; decreases, which means loss of information takes place.

Let p;, q;, s; be such that p; + ¢; + s; + pigis; = B < 4, which implies

_B-pi—a (3.5)
1 — pigs

In order to establish the feasibility of the solution of the problem, we would select 0 <

p; <1 and 0 < ¢; <1 from the data so that 0 < s; < 1. Thus, after selecting such p;, g;,

it may be noted that s; decreases as 3 decreases and s; takes the least value when 5 =1,

ie.,

54

_l—pi—aq
S = ———.
1 —pigi
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Now, in view of the maximum possible loss in the information and taking all the four fuzzy
parameters into account, we define a composite probabilistic distance measure for picture
fuzzy sets M and N, denoted by dp(M, N), given by

Ap(M, N) = (53 pilpas(a) = )P + 2B g a) = v (a)?
i=1 van

2 1—pi—aq o) 2
+ gi(var (i) — vn (i)™ + (piqz‘)(l_ip,q,)(w(ai) —ry(a)”) . (3.6)
Subsequently, the normalized form of the above defined distance measure can be written
as follows:

AR N) = (5 3 pilnr(as) = )P + 12 B g a) = v (a)?
=1 14

Failar(an) = v (00))? + () (T2 rag(e) — @) ?) . (3D)

Remark: It may be noted that the proposed distance measures satisfy the following
conditions of a pseudo-metric on the universe of discourse:

e C1: 0<dp(M,N) <1,

e Cy: dp(M,N)=0< M =N,

e C3: dp(M,N)=dp(N,M).

Theorem 3.2. The distance measure dp(M,N) between two arbitrary picture fuzzy sets
M and N over the universe of discourse U satisfy the conditions of a pseudo-metric.

Proof: Let M and N be two arbitrary picture fuzzy sets over the universe of discourse U.
In order to show that the distance measure dp(M, N) given by equation (3.6) satisfies the
conditions of a pseudo-metric, we need to validate the conditions C7, Cy and Cj stated in
the above remark.

e Condition C;: By equation 3.6, we certainly have dp(M, N) > 0 as it is the sum
of only non-negative terms. Hence, it remains to show that dp(M,N) < 1.
For the picture fuzzy sets M and N in probabilistic framework, we have

0 < pm(ag), un(og), nar(eu), v (es), v (os), vn (ow), mar(es), v (06), pis g < 1.

Hence, this implies that
0 < (uar(ai) = pn(i))? < 1,0 < (nar(ai) — v (eq)® < 1,
0 < (var(ai) —vn()® < 1,0 < (rar(as) — (i) < 1,

1—pi—q

0<
1 —pigi

1—n —a:
<1and 0 < pig; (pq) <1
1 —pigi

Therefore,

0< <; ;pi(#M(ai) — pn()® + m(nM(ai) — v (i)

+aiar(e) = (@) + (i) (T I rar () — rv(en)?) < 1

which implies that dp(M,N) < 1.
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e Condition Cy: For any two picture fuzzy sets M and N, dp(M, N) = 0 implies

that
(55 Somitmarte) = (@) + 2 ) — )
i=1 141

+ai(ar(os) = v (00)? + () (72T ras(0) = rv(@))?) =0, ¥ i
= (par(ei) — v (q))® = 0, (na(s) = n(eq))? = 0, (var (i) — v (ai))* = 0,

(
(

(TM Oéi) — TN(OQ'))Q = 0, V i;
= pnr (i) — py(ai) = 0,mar () — v (i) = 0,var (i) — vy () =0,
TM(OQ') — T’N(Oéi) = 0, V i;

= pn (i) = py (i), nu (i) = (i), var (i) = vy (i), ru(aq) = rv(aq), Vi
= M = N.

The other way implication may similarly be understood. Therefore,
dp(M,N)=0< M = N.

e Condition C5: In view of the equation (3.6) using the interchanging process, it
is quite obvious that dp(M,N) = dp(N, M).

Hence, the distance measure dp(M, N) satisfies all the conditions of a pseudo-metric.

4. Algorithm and application based on proposed probabilistic measure

In this section, we propose an algorithm for solving a general classification problem

based on the proposed composite probabilistic distance measure for picture fuzzy sets.
The classification problem consists of some number of standard known categorical classes
with several types of features space associated with each class [36]. For the sake of wider
applicability, we have also considered a decision making problem of financial investment
risk under the enterprize environment.

For accomplishing the task of classification of an unknown data, we propose an algorithm

with the help of the flow chart given in Figure 2.

The procedural steps of the proposed algorithm has been explicitly outlined as follows:

- Step 1 Determine the minimum membership value and non-membership value from the

set of membership values & non-membership values assigned by the experts A; (j =
1,2,...,n) to the objects x; (i = 1,2,...,m), that is,

mjin pa,(zi) = (¢ (z;) and mjin va, (z:) = V' ().

Step 2 Collect all the minimum membership values and non-membership values for
each z; for i = 1,2,...,m to form the set E = {u(z1), p(x2),. .., u(xm)} and E =
{v(z1), p(x2), .. u(zm)}-

Step 3 We compute the sum S = g:l,u, (z;) and S' = g:lu/(xi) and determine the

1=
I

probability of occurrence p(z;) = £ Eqri) and the probability of non-occurrence ¢q(x;) =
v ()

s’ .
Step 4 Compute the minimum probability of occurrence puin(Aj) = > p()pa, (z;)

m
and the minimum probability of non-occurrence qmin(A4;) = > q(z;)va, (z:).

@
Il
—



2144 A. Guleria, R.K. Bajaj

Start

values assigned in 4; w.r.t. feature x;,
Le., min(ua(x) = ' (x),
j= 1,2 mi=1,2,.

4

Collect all the minimum
membership values for each x; to

Select the minimum membership
value from the set of membership
form a set E = {1/ (x1), ' (x3), ..., ' (xp)} }

4

Summing all the values of E, i.e.,
S = Y- 1 1 (x;) and define probability

P(xl)—u,glvenS;tOz—lZ

'

Compute the minimum probability of
occurrence corresponding to each 4, i.e.,

pmm(Al) Z lp(xl)llA (xl)

4

Compute the maximum probability of
occurrence corresponding to each 4, i.e.,

pmax(Aj) = pmin(A]') + Z?:l p(xi)nAj(xi)

Estimating the value of probability of
occurrence by taking the arithmetic mean,

ie., p(4;) = M

Select the minimum non-membership
value from the set of non-membership
values assigned in 4; w.r.t. feature x;, i.e.,
n'l].in(VA,-(xi) =v'(x;)

j=12,.mi=12.,n

Collect all the minimum non-
membership values for each x; to
form a set E' = {v/(x1),v'(x3), ...,v'(x,)}

\ 4

Summing all the values of E', i.e.,
=Y,V (x;) and define probability

‘I(xl) —),glvenS'#:Ol—lZ

Vs

Compute the minimum probability of non-
occurrence corresponding to each 4, i.e.,

qmin(Aj) = 2?:1 q(xi)vA,'(xi)

N

A

Compute the maximum probability of non-
occurrence corresponding to each 4, i.e.,

a(4)) = dmin(4)) + iy q(xi)rA]-(xi)

\ 4

Estimating the value of probability of non-

occurrence by taking the arithmetic mean,

ie., Q(Al) = M

In view of the Definition (3.6) and utilizing
the values of p(A}-) & q(A}-), we compute the

distance measure between known class and
unknown data B i.e., dp(4j, B)

\ 4

Finish

Figure 2. Flow Chart of the Proposed Algorithm
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- Step 5 Next, we compute the maximum probability of occurrence pmax(A4;) = Pmin(A4;)+

m
> p(zi)na, (z;) and the maximum probability of non-occurrence gmax(A;j) = Gmin(4;) +
i=1

m
Z Q(mi)rAj (.CC,)
pmax(Aj)+pmin(Aj)

- Step 6 Find the value of probability of occurrence p(A;) = 5 and prob-
dex(A )"I‘Qmm(A )

ability of non-occurrence q(A;) =

- Step 7 Finally, by using the equation (3. 6), we compute the determining probabilistic
picture distance measures of all the known classes with respect to the unknown class
and on the basis of the above obtained values of the distances, we conclude our desired
result.

4.1. Building material classification problem

Here, we consider a particular example to demonstrate the building material recognition
problem. This classification problem related to the building materials is based on the
observations and expert opinions. We have considered 4 classes of the building material
each represented by the picture fuzzy sets Ai, Ao, A3, A4. Also, we have taken 7 space
features of material samples X = {z1, z2, z3, x4, x5, 6, 7} and an unknown material B,
which is to be classified in one of the 4 known classes. The proposed algorithm has been
implemented over a recent standard data problem (refer Wei [36]).

In such kind of classification problem, the aim is to identify the class of unknown
building material using the degree of distance measure of unknown material with that of
known building materials along with the incorporation of probability of occurence/non-
occurrence of fuzzy event. The briefed steps of algorithm for finding the class of unknown
building material are described as:

e Obtain the information about the known building materials in the form of picture
fuzzy sets.

e Applying the procedural steps of the proposed algorithm.

e Rank the distance measures to find out the class of unknown material.

Now, applying the procedural steps of the proposed algorithm over the above stated prob-
lem as follows:

- Step 1 We first determine the minimum membership value and non-membership value
from the set of membership values & non-membership values assigned by the experts
Aj(j=1,2,...,4) to the objects z; (1 = 1,2,...,7), that is,

/ !

min pia; (i) = p (i) and minvy, (z;) = v ().
J J

4
For example, here for i = 1, we have mirll pa;(w1) = 0.17 and millq va,(z1) = 0.0.
i= i=
- Step 2 Next, we collect all the minimum membership values and non-membership values
for each z; for i = 1,2,...,7 to form the set E = {u(x1), u(xs), ..., u(z7)} and E' =
{v(x1), p(z2),. .., u(x7)} as follows:

E = {0.17,0.1,0.53,0.07,0.02,0.08,0.15};

and
E = {0.0,0.0,0.0,0.03,0.05,0.02,0.05}.

7 / ! 7 /7
- Step 3 We compute the sum S = Y p (z;) =1.12and S = > v (z;) = 0.15 and deter-
i=1 i=1

mine the probability of occurrence p(x;) = £ gi) and the probability of non-occurrence
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q(z;) = % as follows:
p(z1) = 0.1518; p(x2) = 0.0893; p(x3) = 0.4732; p(x4) = 0.0625;
p(xs) = 0.0179; p(xe) = 0.0714; p(x7) = 0.1339;
and
q(x1) = 0.0; g(z2) = 0.0; g(x3) = 0.0; g(z4) = 0.2;
q(z5) = 0.333; q(x6) = 0.133; g(z7) = 0.333.
- Step 4 Next, we compute the minimum probability of occurrence
7
Pmin(4;) = Z:lp(ﬂfi)MAj (i) ie.,
Pmin(A1) = 0.3986; pmin(A2) = 0.7364; pmin(A3) = 0.605; pmin(A4) = 0.7171;
7
and the minimum probability of non-occurrence qmin(A4;) = 3 q(zi)va,(z;) i-e.,
i=1
qmin (A1) = 0.1087; gmin(A2) = 0.1493; gmin(As) = 0.0747; qmin(A4) = 0.0613.
- Step 5 Next, we compute the maximum probability of occurrence
7
pmax(Aj) = pmin(Aj) + Z:lp(ﬂfz)TIA] (‘TZ) as:
Pmax (A1) = 0.8506; pmax(A2) = 0.804; pmax(Asz) = 0.8428; pmax(A4) = 0.9406;

and the maximum probability of non-occurrence as follows:

qmaX(Al) = 0.14; Qmax(A2) = 0.1687; qmaX(Ag,) = 0.3473; qmaX(A4) = 0.104.
— pmax(Aj)';pmin(Aj)

- Step 6 Further, we find the value of probability of occurrence p(A;)
as follows:
p(A1) = 0.6246; p(Az) = 0.8213; p(A3) = 0.7239; p(A4) = 0.8288;

max (A min (A
gmax J);—q (4;) as follows:

and probability of non-occurrence g(4;) =
(A1) = 0.1243; g(As) = 0.159; (As3) = 0.211; q(Ay) = 0.0827.

- Step 7 Finally, by using the equation (3.6), we compute the determining probabilistic
picture distance measures of all the known classes of the building materials Ay, As, Ag
and A4 from the unknown class of building material B as:

dp(Ay, B) = 0.7652, d,(As, B) = 0.6496, d,(As, B) = 0.6419, d,(Ay, B) = 0.1728.

On the basis of the above obtained values of the distances, we conclude that the unknown
material B belongs to the known class Ay.

4.2. Mineral classification problem

In an another similar case of classification problem where we have 4 different minerals
fields which are represented by the picture fuzzy sets Ay, As, As, A4 and each of these
fields is featured by the content of 6 minerals in the form of feature sample space X =
{1, 22, 23,24, 75,26}. We consider an unknown mineral field B which is to be classified
among the known 4 classes. The data for this problem have also been from the similar
application problem (refer Table 3 in [36]). In this type of problems, the aim is to identify
the class of unknown mineral using the degree of distance measure of unknown material
with that of known mineral along with the incorporation of probability of occurence/non-
occurrence of fuzzy event.

Applying the procedural steps (Step 1 to Step 7) of the proposed algorithm over the
above stated problem, we compute and tabulate the probabilities of occurrence p; (i =
1,2,...,6) and probabilities of non-occurrence ¢; (i = 1,2,...,6) as follows:
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T; i=1 =2 =3 =4 =15 1 =06 Sum
Probability of occurrence(p(z;)) 0.51961 | 0.06863 | 0.01961 | 0.07843 | 0.14706 | 0.16667 1
Probability of non-occurrence(q(x;)) 0.0 0.2 0.3333 | 0.1333 | 0.3333 0.0 1

Next, by using the equation (3.6), we compute the determining probabilistic picture dis-
tance measures of all the known classes of the mineral fields Ay, Ay, A3 and A4 from the
unknown class of mineral field B as:

dy(Ay, B) = 0.61435, dy(As, B) = 0.64141, d,(As3, B) = 0.63187, d,(A4, B) = 0.09446.

On the basis of the above obtained values of the distances, we conclude that the unknown
mineral field B belongs to the known class Ay.

4.3. Financial investment risk analysis

In this application problem, the main objective is to determine the best financial in-
vestment alternative from various available alternatives under the enterprise financial risk
environment. In order to choose the most desirable alternative, the desirability levels of
the five possible financial investment alternatives A; (j = 1,2, 3,4,5) are being evaluated.
The team of decision makers/experts must make a decision according to the following four
criteria: (1 - the market risk; G5 - the enterprise’s operation and management risk; Gs
- the enterprise’s assets structure risk; and G4 - the environmental risk. The experts, on
the basis of the above criteria, evaluate the five possible financial investment alternatives
A; (7 =1,2,3,4,5) by constructing the decision matrix using the picture fuzzy numbers
represented in the following Table 1.

Table 1. Decision matrix

G1 GQ G5 G4
A (046 0.36 0.1)  (0.79 0.02 0.01) (0.43 0.45 0.08) (0.18 0.39 0.04)
A (0.430.320.18) (0.730.04 0.11) (0.03 0.62 0.33) (0.53 0.25 0.18)
Az (0.710.230.01) (0.87 0.02 0.03)  (0.04 0.55 0.3)  (0.48 0.26 0.16)
( ) ( )
( ) ( )

Ay (0.25 0.4 0.15) 0.64 0.12 0.13) (0.01 0.69 0.25) (0.02 0.54 0.26
As (0.5 0.45 0.03) 0.78 0.03 0.11 (0.03 0.5 0.26) 0.13 0.65 0.19

Now, applying the procedural steps of the proposed algorithm over the above stated
problem, we obtain:

- Step 1 We first determine the minimum membership value and non-membership value
from the set of membership values & non-membership values assigned by the experts,
Aj(j=1,2,...,5) to the objects G; (i = 1,2,...,4), that is,

min ua,(Gi) = 1 (Gi) and minvy, (Gi) = v/ (Gi).
5 5
For example, here for i = 1, we have mi{l pa,;(G1) = 0.25 and mi{l va,;(G1) = 0.01.
= J=

- Step 2 Next, we collect all the minimum membership values and non-membership values
for each Gy for i = 1,2,...,4 to form the set F = {u(G1), u(G2), ..., n(G4)} and E' =
{v(G1), u(G2), ..., 11(Gq)} as follows:

E = {0.25,0.64,0.01,0.02};

and
E' ={0.01,0.01,0.08,0.04}.
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4 / / 4 !
- Step 3 In this step, we evaluate the sum S = Y u (G;) =092 and S = > v (G;) =
i=1 i=1
0.14 and determine the probability of occurrence p(G;) = @ and the probability of
V' (Gy)
S/
p(G1) = 0.271739; p(G2) = 0.695652; p(G3) = 0.01087; p(G4) = 0.21739;

non-occurrence ¢(G;) = as follows:

and
q(G1) = 0.071429; q(G2) = 0.071429; ¢(G3) = 0.571429; q(G4) = 0.285714.
- Step 4 Then, we compute the minimum probability of occurrence as:
Pmin(A1) = 0.683152; prin(A2) = 0.636522; pin(As3) = 0.809022;
Pmin (A1) = 0.513696; pmin(As) = 0.68163;
and the minimum probability of non-occurrence as:
unin (A1) = 0.065; gumin(A2) = 0.260714; guuin(A3) = 0.22;
Gmin(A4) = 0.237143; gmin(As) = 0.212857.
- Step 5 In this step, we compute the maximum probability of occurrence as:
Pmax(A1) = 0.808261; ppax(A2) = 0.763478; pmax(As) = 0.897065;
Pmax (A1) = 0.725109; prax(As) = 0.844348,;
and the minimum probability of non-occurrence as:
Gmax (A1) = 0.217857; gmax(A2) = 0.297143; gmax(As) = 0.320714;
Gmax (A1) = 0.339286; gmax(As) = 0.348571.
- Step 6 Next, we find the value of probability of occurrence as:
p(A1) = 0.745707; p(Az) = 0.70; p(A3) = 0.853043; p(A4) = 0.619402; p(As5) = 0.762989;
and probability of non-occurrence as:
q(A1) = 0.141429; q(A2) = 0.278929; q(As) = 0.270357; q(A4) = 0.288214; q(As) = 0.280714.

- Step 7 In view of the equation 3.6, we compute the determining probabilistic picture
distance measure between the alternatives A; j = 1,2,...5 and the ideal solution A"
which given by AT = {(1,0,0), (1,0,0), (1,0,0), (1,0,0)} as:

dp(A1, AT) = 0.7281, dp(A2, AT) = 0.7609, d,(As, AT) = 0.7298,
dp(Ag, AT) = 0.9453, d,(A5, A1) = 0.8679.
Hence, the ranking order achieved is as follows:
Ap > A3 > Ay > As > Ay

On the basis of the above obtained values of the distances, we conclude that the alter-
native A; is the best among all.

5. Results and discussions

In order to ensure the viability of the proposed methodology, we study the obtained
results of the illustrative examples in this section. The proposed idea of composing the
probabilistic behavior of randomness and four different parameters of picture fuzzy uncer-
tainty to define the novel distance measure for picture fuzzy sets is certainly an advanced
extension in the direction of research. This gives an added advantage to deal with a wider
sense of applicability in uncertain situations. We present some important comparative
remarks and advantages of utilizing the proposed methodology below:
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5.1. Comparative analysis with existing approaches

In view of the building material classification problem discussed in the subsection 4.1,
the following Table 2 shows the comparison between the closeness index values obtained by
the proposed method and Wei’s method [36]: Next, in view of the mineral classification

Table 2. Comparison table with respect to Wei’s method (Example 1) [36]

Measures (A1,B) | (A2,B) | (A3,B) | (A4, B)
T
Wirs 4 3 2 1
W s 4 3 2 1
W3 g 4 3 2 1
Proposed Method 4 2 3 1

problem discussed in the subsection 4.2, the following Table 3 shows the comparison

between the closeness index values obtained by the proposed method and Wei’s method
[36]:

Table 3. Comparison table with respect to Wei’s method (Example 2) [36]

Measures (A1,B) | (A2,B) | (As,B) | (A4, B)
T
Wips 2 4 3 1
Wies 2 4 3 1
W3eg 1 3 2 1
Proposed Method 2 4 3 1

Thus, in contrast with the Wei’s method [36], the comparison tables (Table 2 and Table
3) and the analysis clearly highlight the competency and applicability of the proposed
methodology with an acceptability to the probabilistic framework in the picture fuzzy
distance measure. Therefore, the additional feature of the proposed probabilistic distance
measure is also capable, reliable, more authentic and consistent enough.

Further, in view of the financial investment risk problem discussed in the subsection 4.3,
the following Table 4 shows the comparison between the ranking obtained by the proposed
method, Wang et al. method [33] and Wei’s method [35]:

Table 4. Comparison of ranking order with respect to different approaches

Approaches Ay | As | Az | Ay | As
Wang et al. method [33] | 1 4 2 5 3
Wei’s method [35] 1 3 2 5 4
Proposed Method 1 3 2 5 4

On the basis of the values obtained for the measures, it may be observed that the ranking
order as per Wang et al. method [33] and Wei’s method [35] is equally consistent with
the results of the proposed measure. Therefore, the additional feature of the proposed

probabilistic distance measure is also capable, reliable, more authentic and consistent
enough.

Remarks:

e The applicability of the proposed methodology appears to be more prominent
in the probabilistic framework and the analysis carried above clearly depicts the
consistency and authenticity.

e The additional feature of the proposed probabilistic distance measure is well con-
sistent and has the advantage of spanning the uncertain information in a more
precise way.

e The application areas which have been discussed are the recent developments and

the proposed methodology can further be implemented in other areas of contem-
porary research and evaluation.
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5.2. Advantages of the proposed measure

e In case of practical circumstances, the uncertainty space can be categorized into

two subspaces, i.e., vagueness and non-vagueness space (Refer Figure 3). The
information that is not present precisely is represented in the vagueness subspace
and the information which is acknowledged by the people/experts is contained in
non-vagueness subspace. It may be noted that the uncertainty in the non-vagueness
subspace is an undetermined property. By considering the refusal and hesitancy
there are two opposite viewpoints about the belongingness of the element to the
set. Thus, it is appropriate to explore and deal the uncertainty from vagueness
and non-vagueness.

Probability is the character of this space

Membership Degree

Non-membership Degree

Neutral Membership Degree

Vagueness

Figure 3. Uncertainty space: Vagueness subspace and non-vagueness subspace

It may be noted that the picture fuzzy set can handle the uncertainty in a bet-
ter way than the intuitionistic fuzzy set/Pythagorean fuzzy set. The proposed
composite probabilistic distance measure can be considered as the generalized dis-
tance measure because it incorporates all the four components of fuzziness (i.e.,
membership, non-membership, neutral membership and refusal).

The drawback in the existing literature of the intuitionistic fuzzy sets and Pythagorean

fuzzy sets is that their conditions do not allow the experts/decision makers to al-
locate the membership values of their own choice (Refer Table 5). Somehow, this
makes the decision makers bounded for providing their input in a particular do-
main. However, the proposed distance measure for picture fuzzy sets provide a
generalization feature which may give a strong impact in an application/decision
making process.

Table 5. Need to address the problem arises in [FSs and PyFSs

Cy Ca C3 Ca

Cy
Co
Cs

(1.0+0.04+00=1)
(0.30 + 0.20 + 0.44 < 1)
(0.56 +0.20 + 0.16 < 1)
(0.49 +0.17 + 0.24 < 1)

(040 + 0.20 + 0.40 = 1)
(1.0 4+0.0+0.0 =1)
(0444 0.24 +0.22 < 1)
(0.59 4 0.09 +0.20 < 1)

(030 +0.15 + 0.45 < 1)
(0.40 4+ 0.14 + 0.46 < 1)
(1.0 4+0.040.0 = 1)
(0.55+0.17 +0.10 < 1)

(056 +0.10 + 0.27 < 1)

(0.51 4 0.29 + 0.61 < 1)

(0.48 4+ 0.14 +0.22 < 1)
(1.0+0.04 0.0 =1)

6. Conclusions and scope for future work

The idea of composite probabilistic picture fuzzy distance measure has been success-
fully introduced with a justified framework for incorporating the probabilistic randomness
and the four fuzziness parameters (membership, neutral membership, non-membership
and refusal). The proposed algorithm based on the picture distance measure has been
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well implemented for solving the classification problems - building material and mineral
classification problem under consideration and a decision making problem of financial in-
vestment risk. The comparative analysis under the each application problem and the
advantages discussed in the results section clearly indicate that the feature of the pro-
posed probabilistic distance measure is additionally helpful, reliable, more authentic and
consistent enough.

The proposed notion and the algorithm using the aggregation operators may further be
utilized and extended in future with the following possibilities:

e The employee selection process used by human resource management in an orga-
nization may be categorized into 4 types of category - true positive, true negative,
false negative and false positive which may be understood to be equivalent to
positive, neutral, negative and refusal degrees of picture fuzzy set.

e The proposed measures can be applied to various other classification problems
where the uncertainty is prominent such as medical diagnosis, terrain classification,
statistical data analysis, clustering, weather forecasting, etc.

e The proposed measure advances a small inclination toward the development of
similarity measures in advanced fuzzy sets i.e., picture fuzzy sets.

e The concept of ‘useful’ picture fuzzy information in reference with utility distri-
bution can further be integrated in terms of cross entropy/divergence to deal with
the picture fuzzy uncertainty and probabilistic useful randomness.

e Mahmood et al. [25] introduced the notion of spherical fuzzy set which gives an
additional strength to the idea of the picture fuzzy set by broadening/enlarging
the space for the grades of all the four parameters. Utilizing this notion, the
proposed probabilistic distance measure can further be extended to handle the
limitation of the picture fuzzy set which arises in terms of the constraint related
to the uncertainty parameters.
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