Hacet. J. Math. Stat. Volume 50 (6) (2021), 1745 – 1755 DOI: 10.15672/hujms.678660

RESEARCH ARTICLE

On generalized weakly symmetric α -cosymplectic manifolds

Selahattin Beyendi¹, Mustafa Yıldırım*²

Department of Mathematics, Faculty of Education, İnönü University, 44000, Malatya, Turkey
 Department of Mathematics, Faculty of Art and Science, Aksaray University, 68100, Aksaray, Turkey

Abstract

This study is concerned with some results on generalized weakly symmetric and generalized weakly Ricci-symmetric α -cosymplectic manifolds. We prove the necessary and sufficient conditions for an α -cosymplectic manifold to be generalized weakly symmetric and generalized weakly Ricci-symmetric. On the basis of these results, we give one proper example of generalized weakly symmetric α -cosymplectic manifolds.

Mathematics Subject Classification (2020). Primary 53C15, 53C25; Secondary 53D10, 53D15

Keywords. weakly symmetric manifold, weakly Ricci-symmetric manifold, generalized weakly symmetric manifold, generalized weakly Ricci-symmetric manifold, α -cosymplectic manifold

1. Introduction

In 1989, L. Tamassy and T. Q. Binh introduced the notions of weakly symmetric and weakly Ricci-symmetric manifolds [18]. Later on, many researchers have studied this topic. For details, we refer the reader to [3,5,8,11,12,14,16,17,21] and the references there in. In the view of [18], a (2n+1)-dimensional α - cosymplectic manifold is said to be weakly symmetric manifold, if its curvature tensor \tilde{R} of type (0,4) is not identically zero and admits the following identity:

$$(\nabla_{W}\tilde{R})(X_{1}, X_{2}, X_{3}, X_{4}) = \mathcal{A}_{1}(W)\tilde{R}(X_{1}, X_{2}, X_{3}, X_{4}) + \mathcal{B}_{1}(X_{1})\tilde{R}(W, X_{2}, X_{3}, X_{4}) + \mathcal{B}_{1}(X_{2})\tilde{R}(X_{1}, W, X_{3}, X_{4}) + \mathcal{D}_{1}(X_{3})\tilde{R}(X_{1}, X_{2}, W, X_{4})$$
(1.1)
$$+\mathcal{D}_{1}(X_{4})\tilde{R}(X_{1}, X_{2}, X_{3}, W),$$

where ∇ denotes the Levi-Civita connection with respect to metric g on M, also $\mathcal{A}_1, \mathcal{B}_1, \mathcal{D}_1$ are non-zero 1-forms defined by $\mathcal{A}_1(W) = g(W, \sigma_1)$, $\mathcal{B}_1(W) = g(W, \varrho_1)$ and $\mathfrak{D}_1(W) = g(W, \pi_1)$, for all W and $\tilde{R}(X_1, X_2, X_3, X_4) = g(R(X_1, X_2)X_3, X_4)$. A (2n+1)-dimensional α -cosymplectic manifold of this kind is denoted by a $(WS)_{2n+1}$ -manifold. Dubey [9] presented generalized recurrent manifold. In keeping with this work, we shall describe

Received: 22.01.2020; Accepted: 27.07.2021

^{*}Corresponding Author.

Email addresses: selahattin.beyendi@inonu.edu.tr (S. Beyendi), mustafayldrm24@gmail.com (M. Yıldırım)

a (2n + 1)-dimensional α -cosymplectic manifold generalized weakly symmetric (briefly $(GWS)_{2n+1}$ -manifold) if it admits the following equation:

$$(\nabla_{W}\tilde{R})(X_{1}, X_{2}, X_{3}, X_{4}) = \mathcal{A}_{1}(W)\tilde{R}(X_{1}, X_{2}, X_{3}, X_{4}) + \mathcal{B}_{1}(X_{1})\tilde{R}(W, X_{2}, X_{3}, X_{4}) + \mathcal{B}_{1}(X_{2})\tilde{R}(X_{1}, W, X_{3}, X_{4}) + \mathcal{D}_{1}(X_{3})\tilde{R}(X_{1}, X_{2}, W, X_{4}) + \mathcal{D}_{1}(X_{4})\tilde{R}(X_{1}, X_{2}, X_{3}, W) + \mathcal{A}_{2}(W)\tilde{G}(X_{1}, X_{2}, X_{3}, X_{4}) + \mathcal{B}_{2}(X_{1})\tilde{G}(W, X_{2}, X_{3}, X_{4}) + \mathcal{B}_{2}(X_{2})\tilde{G}(X_{1}, W, X_{3}, X_{4}) + \mathcal{D}_{2}(X_{3})\tilde{G}(X_{1}, X_{2}, W, X_{4}) + \mathcal{D}_{2}(X_{4})\tilde{G}(X_{1}, X_{2}, X_{3}, W),$$

$$(1.2)$$

where

$$\tilde{G}(X_1, X_2, X_3, X_4) = [g(X_2, X_3)g(X_1, X_4) - g(X_1, X_3)g(X_2, X_4)] \tag{1.3}$$

and $\mathcal{A}_i, \mathcal{B}_i, \mathcal{D}_i$ are non-zero 1-forms defined by $\mathcal{A}_i(W) = g(W, \sigma_i), \mathcal{B}_i(W) = g(W, \varrho_i)$ and $\mathcal{D}_i(W) = g(W, \pi_i)$, for i = 1, 2. There are interesting results of such $(GWS)_{2n+1}$ -manifolds in that it exhibits

- (i) (for $A_i = B_i = D_i = 0$), locally symmetric space [6],
- (ii) (for $A_1 \neq 0, A_2 = B_i = D_i = 0$), recurrent space [20],
- (iii) (for $A_i \neq 0, B_i = D_i = 0$), generalized recurrent space [9],
- (iv) (for $\frac{A_1}{2} = \mathcal{B}_1 = \mathcal{D}_1 = H_1 \neq 0, A_2 = \mathcal{B}_2 = \mathcal{D}_2 = 0$), pseudo symmetric space [7],
- (v) (for $\frac{A_i}{2} = \mathcal{B}_i = \mathcal{D}_i = H_i \neq 0$), generalized pseudo symmetric space [3],
- (vi)) (for $A_i = B_2 = D_2 = 0, B_1 = D_1 \neq 0$), semi-pseudo symmetric space [19],
- (vii) (for $A_i = 0, B_i = D_i \neq 0$), generalized semi-pseudo symmetric space [3],
- (viii) (for $A_1 = H_1 + K_1$, $B_1 = D_1 = H_1 \neq 0$ and $A_2 = B_2 = D_2 = 0$), almost pseudo symmetric space [7],
 - (ix) (for $A_i = H_i + K_i$, $B_i = D_i = H_i \neq 0$), almost generalized pseudo symmetric space [3],
 - (x) (for $\mathcal{A}_1, \mathcal{B}_1, \mathcal{D}_i \neq 0, \mathcal{A}_2 = \mathcal{B}_2 = \mathcal{D}_2 = 0$), weakly symmetric space [18].

In the present paper, we have investigated some properties of the generalized weakly symmetric α -cosymplectic manifolds. In Section 2, we review basic formulas and definitions for α -cosymplectic manifolds. In Section 3, we have examined a generalized weakly symmetric α -cosymplectic manifold and it is observed that such a space is an η -Einstein manifold provided $\mathcal{D}_1(\xi) \neq -\alpha$. We also present tables of different types of curvature restrictions for which α -cosymplectics manifolds are sometimes Einstein and some other times remain η -Einstein. In Section 4, we have given an example of the existence of such manifolds. Finally, we have investigated a generalized weakly Ricci-symmetric α -cosymplectic manifold which is also found to be η -Einstein space.

2. Preliminaries

Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be a (2n+1)-dimensional almost contact metric manifold, where φ is a (1,1)-tensor field, ξ is the structure vector field, η is a 1-form and g is the Riemannian metric. It is well known that the (φ, ξ, η, g) structure satisfies the following conditions [5]:

$$\varphi(\xi) = 0, \quad \eta(\varphi) = 0, \quad \eta(\xi) = 1, \tag{2.1}$$

$$\varphi^2 W = -W + \eta(W)\xi, \quad g(W,\xi) = \eta(W),$$
 (2.2)

$$g(\varphi W, \varphi X_1) = g(W, X_1) - \eta(W)\eta(X_1), \tag{2.3}$$

for any vector fields W and X_1 on M^{2n+1} . If in addition,

$$\nabla_W \xi = -\alpha \varphi^2 W,\tag{2.4}$$

$$(\nabla_W \eta) X_1 = \alpha [g(W, X_1) - \eta(W) \eta(X_1)], \tag{2.5}$$

where ∇ denotes the Riemannian connection holds and α is a real number, then $(M^{2n+1}, \varphi, \xi, \eta, g)$ is called an α -cosymplectic manifold ([1,2,10,13,15]). In this case, it is well known that [4]

$$R(W, X_1)\xi = \alpha^2 [\eta(W)X_1 - \eta(X_1)W], \tag{2.6}$$

$$S(W,\xi) = -2n\alpha^2 \eta(W), \tag{2.7}$$

$$S(\xi, \xi) = -2n\alpha^2, \tag{2.8}$$

where S denotes the Ricci tensor. From (2.6), it easily follows that

$$R(W,\xi)X_1 = \alpha^2 [g(W,X_1)\xi - \eta(X_1)W], \tag{2.9}$$

$$R(W,\xi)\xi = \alpha^2[\eta(W)\xi - W], \tag{2.10}$$

for any vector fields W, X_1 where R denotes the Riemannian curvature tensor of M. An α -cosymplectic manifold is said to be an η -Einstein manifold if the Ricci tensor S satisfies condition

$$S(W, X_1) = \lambda_1 g(W, X_1) + \lambda_2 \eta(W) \eta(X_1), \tag{2.11}$$

where λ_1, λ_2 are certain scalars.

3. Generalized weakly symmetric α -cosymplectic manifold

In this section, let us consider a generalized weakly symmetric α -cosymplectic manifold (M^{2n+1}, g) $(n \ge 1)$. Now, contracting X_1 over X_4 in both sides of (1.2), we get

$$(\nabla_{W}S)(X_{2}, X_{3}) = \mathcal{A}_{1}(W)S(X_{2}, X_{3}) + \mathcal{B}_{1}(R(W, X_{2})X_{3}) + \mathcal{B}_{1}(X_{2})S(W, X_{3}) + \mathcal{D}_{1}(X_{3})S(X_{2}, W) + \mathcal{D}_{1}(R(W, X_{3})X_{2}) + 2n\mathcal{A}_{2}(W)g(X_{2}, X_{3}) + 2n\mathcal{B}_{2}(X_{2})g(W, X_{3}) + 2n\mathcal{D}_{2}(X_{3})g(W, X_{2}) + \mathcal{B}_{2}(W)g(X_{2}, X_{3}) - \mathcal{B}_{2}(X_{2})g(W, X_{3}) + \mathcal{D}_{2}(W)g(X_{2}, X_{3}) - \mathcal{D}_{2}(X_{3})g(X_{2}, W).$$
(3.1)

Putting $X_3 = \xi$ in (3.1), we obtain

$$\begin{array}{lcl} (\nabla_{W}S)(X_{2},\xi) & = & \mathcal{A}_{1}(W)S(X_{2},\xi) + \mathcal{B}_{1}(R(W,X_{2})\xi) + \mathcal{B}_{1}(X_{2})S(W,\xi) \\ & & + \mathcal{D}_{1}(\xi)S(X_{2},W) + \mathcal{D}_{1}(R(W,\xi)X_{2}) + 2n\mathcal{A}_{2}(W)\eta(X_{2}) \\ & & + 2n\mathcal{B}_{2}(X_{2})\eta(W) + 2n\mathcal{D}_{2}(\xi)g(X_{2},W) + \mathcal{B}_{2}(W)\eta(X_{2}) \\ & & -\mathcal{B}_{2}(X_{2})\eta(W) + \mathcal{D}_{2}(W)\eta(X_{2}) - \mathcal{D}_{2}(\xi)g(X_{2},W). \end{array} \tag{3.2}$$

Using (2.6), (2.7) and (2.9) in (3.2), we get

$$(\nabla_{W}S)(X_{2},\xi) = -2n\alpha^{2}\mathcal{A}_{1}(W)\eta(X_{2}) + \alpha^{2}\mathcal{B}_{1}(X_{2})\eta(W) - \alpha^{2}\mathcal{B}_{1}(W)\eta(X_{2}) -2n\alpha^{2}\mathcal{B}_{1}(X_{2})\eta(W) + \mathcal{D}_{1}(\xi)S(X_{2},W) + \alpha^{2}\mathcal{D}_{1}(\xi)g(X_{2},W) -\alpha^{2}\mathcal{D}_{1}(W)\eta(X_{2}) + 2n\mathcal{A}_{2}(W)\eta(X_{2}) + 2n\mathcal{B}_{2}(X_{2})\eta(W) +2n\mathcal{D}_{2}(\xi)g(X_{2},W) + \mathcal{B}_{2}(W)\eta(X_{2}) - \mathcal{B}_{2}(X_{2})\eta(W) +\mathcal{D}_{2}(W)\eta(X_{2}) - \mathcal{D}_{2}(\xi)g(X_{2},W).$$
(3.3)

We know that

$$(\nabla_W S)(X_2, X_3) = \nabla_W S(X_2, X_3) - S(\nabla_W X_2, X_3) - S(X_2, \nabla_W X_3). \tag{3.4}$$

Next we take $X_3 = \xi$ in (3.4) and then using (2.2), (2.4) and (2.7), we obtain

$$(\nabla_W S)(X_2, \xi) = -2n\alpha^3 g(X_2, W) - \alpha S(X_2, W). \tag{3.5}$$

Now, using (3.5) in (3.3), we have

$$-2n\alpha^{3}g(X_{2}, W) - \alpha S(X_{2}, W)$$

$$= -2n\alpha^{2}\mathcal{A}_{1}(W)\eta(X_{2}) - (2n-1)\alpha^{2}\mathcal{B}_{1}(X_{2})\eta(W) + \mathcal{D}_{1}(\xi)S(X_{2}, W)$$

$$-\alpha^{2}\mathcal{B}_{1}(W)\eta(X_{2}) - \alpha^{2}\mathcal{D}_{1}(W)\eta(X_{2}) + \alpha^{2}\mathcal{D}_{1}(\xi)g(X_{2}, W)$$

$$+2n[\mathcal{A}_{2}(W)\eta(X_{2}) + \mathcal{B}_{2}(X_{2})\eta(W) + \mathcal{D}_{2}(\xi)g(X_{2}, W)]$$

$$+\mathcal{B}_{2}(W)\eta(X_{2}) - \mathcal{B}_{2}(X_{2})\eta(W) + \mathcal{D}_{2}(W)\eta(X_{2}) - \mathcal{D}_{2}(\xi)g(X_{2}, W),$$
(3.6)

which results in

$$\alpha^{2}[\mathcal{A}_{1}(\xi) + \mathcal{B}_{1}(\xi) + \mathcal{D}_{1}(\xi)] = [\mathcal{A}_{2}(\xi) + \mathcal{B}_{2}(\xi) + \mathcal{D}_{2}(\xi)]$$
(3.7)

for $W=X_2=\xi$. In particular, if $\mathcal{A}_2(\xi)=\mathcal{B}_2(\xi)=\mathcal{D}_2(\xi)=0$, equation (3.7) turns into

$$\alpha^{2}[\mathcal{A}_{1}(\xi) + \mathcal{B}_{1}(\xi) + \mathcal{D}_{1}(\xi)] = 0. \tag{3.8}$$

Theorem 3.1. In a generalized weakly symmetric α -cosymplectic manifold (M^{2n+1}, g) , the relation (3.7) is hold.

Putting $X_2 = \xi$ in (3.1) and using (3.4), we obtain

$$-2n\alpha^{3}g(W, X_{3}) - \alpha S(W, X_{3})$$

$$= -2n\alpha^{2}\mathcal{A}_{1}(W)\eta(X_{3}) + \alpha^{2}g(W, X_{3})\mathcal{B}_{1}(\xi) - \alpha^{2}\mathcal{B}_{1}(W)\eta(X_{3})$$

$$+\mathcal{B}_{1}(\xi)S(W, X_{3}) - (2n-1)\alpha^{2}\mathcal{D}_{1}(X_{3})\eta(W) - \alpha^{2}\mathcal{D}_{1}(W)\eta(X_{3})$$

$$+2n[\mathcal{A}_{2}(W)\eta(X_{3}) + \mathcal{B}_{2}(\xi)g(W, X_{3}) + \mathcal{D}_{2}(X_{3})\eta(W)]$$

$$+\mathcal{B}_{2}(W)\eta(X_{3}) - \mathcal{B}_{2}(\xi)g(W, X_{3}) + \mathcal{D}_{2}(W)\eta(X_{3}) - \mathcal{D}_{2}(X_{3})\eta(W).$$
(3.9)

Taking $X_3 = \xi$ in (3.9) and also using (2.2) and (2.7), we get

$$\alpha^{2}[2n\mathcal{A}_{1}(W) + \mathcal{B}_{1}(W) + \mathcal{D}_{1}(W) + (2n-1)\eta(W)(\mathcal{B}_{1}(\xi) + \mathcal{D}_{1}(\xi))]$$

$$= 2n\mathcal{A}_{2}(W) + (2n-1)\eta(W)[\mathcal{B}_{2}(\xi) + \mathcal{D}_{2}(\xi)] + \mathcal{B}_{2}(W) + \mathcal{D}_{2}(W).$$
(3.10)

Now putting $W = \xi$ in (3.9) and using (2.1), (2.2) and (2.7), we obtain

$$\alpha^{2}[2n(\mathcal{A}_{1}(\xi) + \mathcal{B}_{1}(\xi))\eta(X_{3}) + (2n-1)\mathcal{D}_{1}(X_{3}) + \mathcal{D}_{1}(\xi)\eta(X_{3})]$$

$$= 2n[(\mathcal{A}_{2}(\xi) + \mathcal{B}_{2}(\xi))\eta(X_{3}) + \mathcal{D}_{2}(X_{3})] + \mathcal{D}_{2}(\xi)\eta(X_{3}) - \mathcal{D}_{2}(X_{3}).$$
(3.11)

Replacing X_3 by W in (3.11) and using (3.7), we have

$$\alpha^2 \mathcal{D}_1(W) - \alpha^2 \mathcal{D}_1(\xi) \eta(W) = \mathcal{D}_2(W) - \mathcal{D}_2(\xi) \eta(W). \tag{3.12}$$

Putting $W = \xi$ in (3.6), we get

$$-2n\alpha^{3}\eta(X_{2}) + 2n\alpha^{3}\eta(X_{2})$$

$$= -2n\alpha^{2}\mathcal{A}_{1}(\xi)\eta(X_{2}) - (2n-1)\alpha^{2}\mathcal{B}_{1}(X_{2}) - 2n\alpha^{2}\mathcal{D}_{1}(\xi)\eta(X_{2})$$

$$-\alpha^{2}\mathcal{B}_{1}(\xi)\eta(X_{2}) - \alpha^{2}\mathcal{D}_{1}(\xi)\eta(X_{2}) + \alpha^{2}\mathcal{D}_{1}(\xi)\eta(X_{2})$$

$$+2n[\mathcal{A}_{2}(\xi)\eta(X_{2}) + \mathcal{B}_{2}(X_{2}) + \mathcal{D}_{2}(\xi)\eta(X_{2})]$$

$$+\mathcal{B}_{2}(\xi)\eta(X_{2}) - \mathcal{B}_{2}(X_{2}) + \mathcal{D}_{2}(\xi)\eta(X_{2}) - \mathcal{D}_{2}(\xi)\eta(X_{2}).$$
(3.13)

Replacing X_2 by W in (3.13) and then using (3.7), (3.12), we obtain

$$\alpha^{2} \mathcal{B}_{1}(W) - \alpha^{2} \mathcal{B}_{1}(\xi) \eta(W) = \mathcal{B}_{2}(W) - \mathcal{B}_{2}(\xi) \eta(W). \tag{3.14}$$

Using (3.10), (3.12) and (3.14), we get

$$\alpha^{2}[\mathcal{A}_{1}(W) + (\mathcal{B}_{1}(\xi) + \mathcal{D}_{1}(\xi))\eta(W)] = \mathcal{A}_{2}(W) + (\mathcal{B}_{2}(\xi) + \mathcal{D}_{2}(\xi))\eta(W). \tag{3.15}$$

In view of (3.12), (3.14) and (3.15), we obtain

$$\alpha^{2}[\mathcal{A}_{1}(W) + \mathcal{B}_{1}(W) + \mathcal{D}_{1}(W)] = [\mathcal{A}_{2}(W) + \mathcal{B}_{2}(W) + \mathcal{D}_{2}(W)]. \tag{3.16}$$

Next, for the choice of $A_2 = B_2 = D_2 = 0$, the relation in equation (3.16) yields the following:

$$\alpha^{2}[\mathcal{A}_{1}(W) + \mathcal{B}_{1}(W) + \mathcal{D}_{1}(W)] = 0. \tag{3.17}$$

This motivates us to state the following theorems.

Theorem 3.2. Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be a $(GWS)_{2n+1}$ α -cosymplectic manifold, the sum of the associated is given by (3.16).

Theorem 3.3. There does not exist an α -cosymplectic manifold which is

- (i) recurrent,
- (ii) generalized recurrent provided the 1-forms associated to the vector fields are colliner,
- (iii) pseudo symmetric,
- (iv) generalized semi-pseudo symmetric provided the 1-forms associated to the vector fields are collinear.

Again from (3.6), putting $W = \xi$, we have

$$2n[\alpha^{2}\mathcal{A}_{1}(\xi) - \mathcal{A}_{2}(\xi) + \alpha^{2}\mathcal{D}_{1}(\xi) - \mathcal{D}_{2}(\xi)]\eta(X_{2})$$

$$= [-\alpha^{2}\mathcal{B}_{1}(\xi) + \mathcal{B}_{2}(\xi)]\eta(X_{2}) + (2n-1)[-\alpha^{2}\mathcal{B}_{1}(X_{2}) + \mathcal{B}_{2}(X_{2})].$$
(3.18)

Using (3.7), the above equation becomes

$$[\alpha^2 \mathcal{B}_1(\xi) - \mathcal{B}_2(\xi)] \eta(X_2) = \alpha^2 \mathcal{B}_1(X_2) - \mathcal{B}_2(X_2). \tag{3.19}$$

Taking $X_2 = \xi$ in (3.6) and using (3.7), we obtain

$$2n[\alpha^{2}\mathcal{A}_{1}(W) - \mathcal{A}_{2}(W)] + [\alpha^{2}\mathcal{B}_{1}(W) - \mathcal{B}_{2}(W)] + [\alpha^{2}\mathcal{D}_{1}(W) - \mathcal{D}_{2}(W)]$$

$$= (2n-1)[\alpha^{2}\mathcal{A}_{1}(\xi) - \mathcal{A}_{2}(\xi)]\eta(W).$$
(3.20)

Putting (3.16) in (3.20), we have

$$[\alpha^{2} \mathcal{A}_{1}(\xi) - \mathcal{A}_{2}(\xi)] \eta(W) = \alpha^{2} \mathcal{A}_{1}(W) - \mathcal{A}_{2}(W). \tag{3.21}$$

Again from (3.6), we get

$$S(X_{2}, W) = \frac{\left[-2n\alpha^{2}\mathcal{A}_{1}(W) - \alpha^{2}\mathcal{B}_{1}(W) - \alpha^{2}\mathcal{D}_{1}(W) + 2n\mathcal{A}_{2}(W) + \mathcal{B}_{2}(W) + \mathcal{D}_{2}(W)\right]}{\alpha + \mathcal{D}_{1}(\xi)} \eta(X_{2})$$

$$-\frac{\left[2n\alpha^{3} + \alpha^{2}\mathcal{D}_{1}(\xi) + 2n\mathcal{D}_{2}(\xi) - \mathcal{D}_{2}(\xi)\right]}{\alpha + \mathcal{D}_{1}(\xi)} g(X_{2}, W)$$

$$+\frac{\left[(2n-1)\alpha^{2}\mathcal{B}_{1}(X_{2}) - 2n\mathcal{B}_{2}(X_{2}) + \mathcal{B}_{2}(X_{2})\right]}{\alpha + \mathcal{D}_{1}(\xi)} \eta(W).$$
(3.22)

In view of (3.16), (3.19) and (3.21), we obtain

$$S(X_{2}, W) = -\frac{\left[2n(\alpha^{3} + \mathcal{D}_{2}(\xi)) + \alpha^{2}\mathcal{D}_{1}(\xi) - \mathcal{D}_{2}(\xi)\right]}{\alpha + \mathcal{D}_{1}(\xi)}g(X_{2}, W) + \frac{(2n - 1)\left[\alpha^{2}\mathcal{A}_{1}(\xi) - \mathcal{A}_{2}(\xi) + \alpha^{2}\mathcal{B}_{1}(\xi) - \mathcal{B}_{2}(\xi)\right]}{\alpha + \mathcal{D}_{1}(\xi)}\eta(X_{2})\eta(W).$$
(3.23)

Theorem 3.4. A generalized weakly symmetric α -cosymplectic manifold is an η -Einstein space provided $\mathcal{D}_1(\xi) \neq -\alpha$.

Theorem 3.5. In an α -cosymplectic manifold the following table is hold.

Type of curvature restriction	Nature of the space corresponding to curvature restriction
locally symmetric space	Einstein space
locally recurrent space	η- Einstein space
generalized recurrent space	η- Einstein space
pseudo symmetric space	η- Einstein space
generalized pseudo symmetric space	η- Einstein space
semi-pseudo symmetric space	η- Einstein space
generalized semi-pseudo symmetric space	η- Einstein space
almost pseudo symmetric space	η- Einstein space
almost generalized pseudo symmetric space	η- Einstein space
weakly symmetric space	η - Einstein space

4. Existence of Generalized weakly symmetric α -cosymplectic manifold

Let $M^3 = \{(x, y, z) \in \mathbb{R}^3\}$ be a 3-dimensional manifold, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . The vector fields are

$$e_1 = e^{-2z} \frac{\partial}{\partial x},$$

$$e_2 = e^{-2z} \frac{\partial}{\partial y},$$

$$e_3 = \frac{\partial}{\partial z}.$$

It is obvious that $\{e_1, e_2, e_3\}$ are linearly independent at each point of M^3 . Let g be the Riemannian metric defined by

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1,$$
 $g(e_1, e_2) = g(e_1, e_3) = g(e_2, e_3) = 0,$

and given by the tensor product

$$g = \frac{1}{e^{-4z}}(dx \otimes dx + dy \otimes dy) + dz \otimes dz).$$

Let η be the 1-form defined by $\eta(W) = g(W, e_3)$ for any vector field W on M^3 and $\varphi(e_1) = e_2$, $\varphi(e_2) = -e_1$, $\varphi(e_3) = 0$. Then using the linearity of g and φ , we have

$$\varphi^2 W = -W + \eta(W)e_3, \quad \eta(e_3) = 1, \quad g(\varphi W, \varphi X_1) = g(W, X_1) - \eta(W)\eta(X_1),$$

for any vector fields on M^3 . It remains to prove that $d\Phi = 2\alpha\eta \wedge \Phi$ and the Nijenhuis torsion tensor of φ is zero. It follows that $\Phi(e_1, e_2) = -1$ and otherwise $\Phi(e_i, e_j) = 0$ for $i \leq j$. Therefore, the essential non-zero component of Φ is as follows:

$$\Phi(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}) = -\frac{1}{e^{-4z}}$$

and hence

$$\Phi = -\frac{1}{e^{-4z}}dx \wedge dy. \tag{4.1}$$

Consequently, the exterior derivative $d\Phi$ is given by

$$d\Phi = -\frac{4}{e^{-4z}}dx \wedge dy \wedge dz. \tag{4.2}$$

Since $\eta = dz$, by (4.1) and (4.2), we find

$$d\Phi = 4\eta \wedge \Phi$$
.

Then,

$$[e_1, e_2] = 0, \quad [e_1, e_3] = 2e_1, \quad [e_2, e_3] = 2e_2.$$

In conclusion, it can be noted that Nijenhuis torsion of φ is zero. Thus, the manifold is a 2-cosymplectic manifold. Using Koszul's formula, we can get the ∇ operator as follows:

$$\nabla_{e_1} e_3 = 2e_1, \qquad \nabla_{e_1} e_2 = 0, \qquad \nabla_{e_1} e_1 = -2e_3, \qquad (4.3)$$

$$\nabla_{e_2} e_3 = 2e_2, \qquad \nabla_{e_2} e_2 = -2e_3, \qquad \nabla_{e_2} e_1 = 0,$$

$$\nabla_{e_3} e_3 = 0, \qquad \nabla_{e_3} e_2 = 0, \qquad \nabla_{e_3} e_1 = 0.$$

Then using equation (4.3), the non-vanishing components of \tilde{R} (skew-symmetry and up to symmetry) can clearly be seen:

$$\tilde{R}(e_1, e_3, e_1, e_3) = \tilde{R}(e_2, e_3, e_2, e_3) = 4 = \tilde{R}(e_1, e_2, e_1, e_2).$$

Since $\{e_1, e_2, e_3\}$ forms a basis, any vector field $W, X_1, X_2, X_3 \in \chi(M)$ can be written as

$$W = \sum_{i=1}^{3} a_i e_i, \quad X_1 = \sum_{i=1}^{3} b_i e_i, \quad X_2 = \sum_{i=1}^{3} c_i e_i, \quad X_3 = \sum_{i=1}^{3} d_i e_i$$

and the components can be obtained from the following relations by the symmetry properties,

$$\begin{split} \tilde{R}(W,X_1,X_2,X_3) &= T_1 = \frac{1}{4}[(a_1b_2 - a_2b_1)(c_1d_2 - c_2d_1)] \\ &+ (a_1b_3 - a_3b_1)(c_1d_3 - c_3d_1) + (a_2b_3 - a_3b_2)(c_2d_3 - c_3d_2) \\ \tilde{R}(e_1,X_1,X_2,X_3) &= \lambda_1 = \frac{1}{4}[b_3(c_1d_3 - c_3d_1) + b_2(c_1d_2 - c_2d_1)] \\ \tilde{R}(e_2,X_1,X_2,X_3) &= \lambda_2 = \frac{1}{4}[b_3(c_2d_3 - c_3d_2) - b_1(c_1d_2 - c_2d_1)] \\ \tilde{R}(e_3,X_1,X_2,X_3) &= \lambda_3 = \frac{1}{4}[b_1(c_3d_1 - c_1d_3) + b_2(c_3d_2 - c_2d_3)] \\ \tilde{R}(W,e_1,X_2,X_3) &= \lambda_4 = \frac{1}{4}[a_3(c_1d_3 - c_3d_1) + a_2(c_1d_2 - c_2d_1)] \\ \tilde{R}(W,e_2,X_2,X_3) &= \lambda_5 = \frac{1}{4}[a_3(c_2d_3 - c_3d_2) + a_1(c_2d_1 - c_1d_2)] \\ \tilde{R}(W,e_3,X_2,X_3) &= \lambda_6 = \frac{1}{4}[a_1(c_3d_1 - c_1d_3) + a_2(c_3d_2 - c_2d_3)] \\ \tilde{R}(W,X_1,e_1,X_3) &= \lambda_7 = \frac{1}{4}[d_3(a_1b_3 - a_3b_1) + d_2(a_1b_2 - a_2b_1)] \\ \tilde{R}(W,X_1,e_2,X_3) &= \lambda_8 = \frac{1}{4}[d_3(a_2b_3 - a_3b_2) + d_1(a_2b_1 - a_1b_2)] \\ \tilde{R}(W,X_1,e_3,X_3) &= \lambda_9 = \frac{1}{4}[d_1(a_3b_1 - a_1b_3) + d_2(a_3b_2 - a_2b_3)] \\ \tilde{R}(W,X_1,X_2,e_1) &= \lambda_{10} = \frac{1}{4}[c_3(a_1b_3 - a_3b_1) + c_2(a_1b_2 - a_2b_1)] \\ \tilde{R}(W,X_1,X_2,e_2) &= \lambda_{11} = \frac{1}{4}[c_3(a_2b_3 - a_3b_2) + c_1(a_2b_1 - a_1b_2)] \\ \tilde{R}(W,X_1,X_2,e_3) &= \lambda_{12} = \frac{1}{4}[c_1(a_3b_1 - a_1b_3) + c_2(a_3b_2 - a_2b_3)] \\ \tilde{G}(W,X_1,X_2,X_3) &= T_2 = (b_1c_1 + b_2c_2 - b_3c_3)(a_1d_1 + a_2d_2 - a_3d_3) - (a_1c_1 + a_2c_2 - a_3c_3)(b_1d_1 + b_2d_2 - b_3d_3). \\ \end{split}$$

Now, we calculate the components of \tilde{R} which are the non-vanishing covariant derivatives:

$$\nabla_{e_1} \tilde{R}(W, X_1, X_2, X_3) = +2a_1\lambda_3 - 2a_3\lambda_1 + 2b_1\lambda_6 - 2b_3\lambda_4 + 2c_1\lambda_9 - 2c_3\lambda_7 + 2d_1\lambda_{12} - 2d_1\lambda_{10}$$

$$\nabla_{e_2} \tilde{R}(W, X_1, X_2, X_3) = +2a_2\lambda_3 - 2a_3\lambda_2 + 2b_2\lambda_6 - 2b_3\lambda_5 + 2c_2\lambda_9 - 2c_3\lambda_8 + 2d_2\lambda_{12} - 2d_3\lambda_{11}$$

$$\nabla_{e_3} \tilde{R}(W, X_1, X_2, X_3) = 0.$$

Depending on the following choice of the 1-forms

$$\mathcal{A}_{1}(e_{1}) = \frac{2a_{1}\lambda_{3} - 2a_{3}\lambda_{1} + 2b_{1}\lambda_{6} - 2b_{3}\lambda_{4}}{T_{1}}$$

$$\mathcal{A}_{2}(e_{1}) = \frac{2c_{1}\lambda_{9} - 2c_{3}\lambda_{7} + 2d_{1}\lambda_{12} - 2d_{1}\lambda_{10}}{T_{2}}$$

$$\mathcal{A}_{1}(e_{2}) = \frac{2a_{2}\lambda_{3} - 2a_{3}\lambda_{2} + 2b_{2}\lambda_{6} - 2b_{3}\lambda_{5}}{T_{1}}$$

$$\mathcal{A}_{2}(e_{2}) = \frac{2c_{2}\lambda_{9} - 2c_{3}\lambda_{8} + 2d_{2}\lambda_{12} - 2d_{3}\lambda_{11}}{T_{2}}$$

one can easily verify the following relations that follow

$$\begin{split} \nabla_{e_i} \tilde{R}(W, X_1, X_2, X_3) = & \mathcal{A}_1(e_i) \tilde{R}(W, X_1, X_2, X_3) + \mathcal{B}_1(W) \tilde{R}(e_i, X_1, X_2, X_3) \\ & + \mathcal{B}_1(X_1) \tilde{R}(W, e_i, X_2, X_3) + \mathcal{D}_1(X_2) \tilde{R}(W, X_1, e_i, X_3) \\ & + \mathcal{D}_1(X_3) \tilde{R}(W, X_1, X_2, e_i) + \mathcal{A}_2(e_i) \tilde{G}(W, X_1, X_2, X_3) \\ & + \mathcal{B}_2(W) \tilde{G}(e_i, X_1, X_2, X_3) + \mathcal{B}_2(X_1) \tilde{G}(W, e_i, X_2, X_3) \\ & + \mathcal{D}_2(X_2) \tilde{G}(W, X_1, e_i, X_3) + \mathcal{D}_2(X_3) \tilde{G}(W, X_1, X_2, e_i) \end{split}$$

for i = 1, 2, 3. From the above, we can state the following the theorem.

Theorem 4.1. There exists an α -cosymplectic manifold (M^3, g) which is a generalized weakly symmetric α -cosymplectic manifold.

5. Generalized weakly Ricci-symmetric α -cosymplectic manifold

Let $(M^{2n+1}, \varphi, \xi, \eta, g)$ be an α -cosymplectic manifold. If the manifold is generalized weakly Ricci symmetric manifold then there exists 1-forms $\tilde{\mathcal{A}}_i$, $\tilde{\mathcal{B}}_i$ and $\tilde{\mathcal{D}}_i$ that satisfy the condition

$$(\nabla_W S)(X_2, X_3) = \tilde{\mathcal{A}}_1(W)S(X_2, X_3) + \tilde{\mathcal{B}}_1(X_2)S(W, X_3) + \tilde{\mathcal{D}}_1(X_3)S(X_2, W)$$

$$+ \tilde{\mathcal{A}}_2(W)g(X_2, X_3) + \tilde{\mathcal{B}}_2(X_2)g(W, X_3) + \tilde{\mathcal{D}}_2(X_3)g(X_2, W).$$
(5.1)

Putting $X_3 = \xi$ in (5.1), we obtain

$$(\nabla_W S)(X_2, \xi) = -2n\alpha^2 [\tilde{\mathcal{A}}_1(W)\eta(X_2) + \tilde{\mathcal{B}}_1(X_2)\eta(W)] + \tilde{\mathcal{D}}_1(\xi)S(X_2, W)$$

$$+ \tilde{\mathcal{A}}_2(W)\eta(X_2) + \tilde{\mathcal{B}}_2(X_2)\eta(W) + \tilde{\mathcal{D}}_2(\xi)g(X_2, W).$$
(5.2)

In view of (3.5) the relation (5.2) becomes

$$-2n\alpha^{3}g(X_{2},W) - \alpha S(X_{2},W) = -2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(W)\eta(X_{2}) + \tilde{\mathcal{B}}_{1}(X_{2})\eta(W)] + \tilde{\mathcal{D}}_{1}(\xi)S(X_{2},W) + \tilde{\mathcal{A}}_{2}(W)\eta(X_{2}) + \tilde{\mathcal{B}}_{2}(X_{2})\eta(W) + \tilde{\mathcal{D}}_{2}(\xi)g(X_{2},W).$$
 (5.3)

Setting $W = X_2 = \xi$ in (5.3) and using (2.1), (2.2) and (2.7), we get

$$2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(\xi) + \tilde{\mathcal{B}}_{1}(\xi) + \tilde{\mathcal{D}}_{1}(\xi)] = \tilde{\mathcal{A}}_{2}(\xi) + \tilde{\mathcal{B}}_{2}(\xi) + \tilde{\mathcal{D}}_{2}(\xi). \tag{5.4}$$

Again, putting $W = \xi$ in (5.3), we get

$$2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(\xi)\eta(X_{2}) + \tilde{\mathcal{B}}_{1}(X_{2}) + \tilde{\mathcal{D}}_{1}(\xi)\eta(X_{2})] = \tilde{\mathcal{A}}_{2}(\xi)\eta(X_{2}) + \tilde{\mathcal{B}}_{2}(X_{2}) + \tilde{\mathcal{D}}_{2}(\xi)\eta(X_{2}).$$
(5.5)

Setting $X_2 = \xi$ in (5.3) and then using (2.1), (2.2) and (2.7), we obtain

$$2n\alpha^2[\tilde{\mathcal{A}}_1(W) + \tilde{\mathcal{B}}_1(\xi)\eta(W) + \tilde{\mathcal{D}}_1(\xi)\eta(W)] = \tilde{\mathcal{A}}_2(W) + \tilde{\mathcal{B}}_2(\xi)\eta(W) + \tilde{\mathcal{D}}_2(\xi)\eta(W). \quad (5.6)$$

Replacing X_2 by W in (5.5) and then adding the resultant with (5.6), we obtain

$$2n[\alpha^{2}\tilde{\mathcal{A}}_{1}(W) + \alpha^{2}\tilde{\mathcal{B}}_{1}(W)] - [\tilde{\mathcal{A}}_{2}(W) + \tilde{\mathcal{B}}_{2}(W)]$$

$$= -2n[\alpha^{2}\tilde{\mathcal{A}}_{1}(\xi) + \alpha^{2}\tilde{\mathcal{B}}_{1}(\xi) + \alpha^{2}\tilde{\mathcal{D}}_{1}(\xi)]\eta(W)$$

$$+ [\tilde{\mathcal{A}}_{2}(\xi) + \tilde{\mathcal{B}}_{2}(\xi) + \tilde{\mathcal{D}}_{2}(\xi)]\eta(W) - 2n\alpha^{2}\tilde{\mathcal{D}}_{1}(\xi)\eta(W) + \tilde{\mathcal{D}}_{2}(\xi)\eta(W).$$
(5.7)

Due to (5.4), equation (5.7) turns into

$$2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(W) + \tilde{\mathcal{B}}_{1}(W)] + 2n\alpha^{2}\tilde{\mathcal{D}}_{1}(\xi)\eta(W)$$

$$= [\tilde{\mathcal{A}}_{2}(W) + \tilde{\mathcal{B}}_{2}(W)] + \tilde{\mathcal{D}}_{2}(\xi)\eta(W).$$
(5.8)

Then taking, $X_2 = W = \xi$ in (5.1), we obtain

$$2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(\xi) + \tilde{\mathcal{B}}_{1}(\xi)]\eta(X_{3}) + 2n\alpha^{2}\tilde{\mathcal{D}}_{1}(X_{3})$$

$$= [\tilde{\mathcal{A}}_{2}(\xi) + \tilde{\mathcal{B}}_{2}(\xi)]\eta(X_{3}) + \tilde{\mathcal{D}}_{2}(X_{3}).$$
(5.9)

Replacing X_3 by W in (5.9) and adding with (5.8), we find out

$$2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(W) + \tilde{\mathcal{B}}_{1}(W) + \tilde{\mathcal{D}}_{1}(W)] + 2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(\xi) + \tilde{\mathcal{B}}_{1}(\xi) + \tilde{\mathcal{D}}_{1}(\xi)]\eta(W)$$

$$= [\tilde{\mathcal{A}}_{2}(W) + \tilde{\mathcal{B}}_{2}(W) + \tilde{\mathcal{D}}_{2}(W)] + [\tilde{\mathcal{A}}_{2}(\xi) + \tilde{\mathcal{B}}_{2}(\xi) + \tilde{\mathcal{D}}_{2}(\xi)]\eta(W).$$
(5.10)

Using equation (5.4), we get from the (5.10) equation

$$2n\alpha^{2}[\tilde{\mathcal{A}}_{1}(W) + \tilde{\mathcal{B}}_{1}(W) + \tilde{\mathcal{D}}_{1}(W)] = [\tilde{\mathcal{A}}_{2}(W) + \tilde{\mathcal{B}}_{2}(W) + \tilde{\mathcal{D}}_{2}(W)]. \tag{5.11}$$

This leads to the following theorem.

Theorem 5.1. In a generalized weakly Ricci symmetric α -cosymplectic manifold (M^{2n+1}, g) $(n \ge 1)$, the sum of the associated 1-forms is related by (5.11).

Again from (5.3), we have

$$S(X_{2}, W) = -\frac{[2n\alpha^{3} + \tilde{\mathcal{D}}_{2}(\xi)]}{\alpha + \tilde{\mathcal{D}}_{1}(\xi)}g(X_{2}, W) + \frac{[2n\alpha^{2}\tilde{\mathcal{A}}_{1}(W) - \tilde{\mathcal{A}}_{2}(W)]}{\alpha + \tilde{\mathcal{D}}_{1}(\xi)}\eta(X_{2}) + \frac{[2n\alpha^{2}\tilde{\mathcal{B}}_{1}(X_{2}) - \tilde{\mathcal{B}}_{2}(X_{2})]}{\alpha + \tilde{\mathcal{D}}_{1}(\xi)}\eta(W).$$
(5.12)

From (5.6), we get

$$2n\alpha^2 \tilde{\mathcal{A}}_1(W) - \tilde{\mathcal{A}}_2(W) = \left[-2n\alpha^2 (\tilde{\mathcal{B}}_1(\xi) + \tilde{\mathcal{D}}_1(\xi)) + (\tilde{\mathcal{B}}_2(\xi) + \tilde{\mathcal{D}}_2(\xi))\right] \eta(W). \tag{5.13}$$

Using (5.4) in (5.5), we obtain

$$[2n\alpha^{2}\tilde{\mathcal{B}}_{1}(\xi) - \tilde{\mathcal{B}}_{2}(\xi)]\eta(X_{2}) = 2n\alpha^{2}\tilde{\mathcal{B}}_{1}(X_{2}) - \tilde{\mathcal{B}}_{2}(X_{2}).$$
 (5.14)

In view of (5.12), (5.13) and (5.14), we have

$$S(X_2,W) = -\frac{[2n\alpha^3 + \tilde{\mathcal{D}}_2(\xi)]}{\alpha + \tilde{\mathcal{D}}_1(\xi)}g(X_2,W) + \frac{[-2n\alpha^2\tilde{\mathcal{D}}_1(\xi) + \tilde{\mathcal{D}}_2(\xi)]}{\alpha + \tilde{\mathcal{D}}_1(\xi)}\eta(X_2)\eta(W).$$

This leads to the following theorems.

Theorem 5.2. A generalized weakly Ricci symmetric α -cosymplectic manifold is an η -Einstein space provided $\tilde{\mathcal{D}}_1(\xi) \neq -\alpha$

η- Einstein space

 η - Einstein space

 η - Einstein space

η- Einstein space

 η - Einstein space

η- Einstein space

Type of curvature restriction	Nature of the space corresponding to
	$curvature\ restriction$
locally symmetric space	Einstein space
locally recurrent space	η- Einstein space
generalized recurrent space	η- Einstein space
pseudo symmetric space	η- Einstein space

Theorem 5.3. In an α -cosymplectic manifold the following table is hold.

generalized pseudo symmetric space

generalized semi-pseudo symmetric space

almost generalized pseudo symmetric space

semi-pseudo symmetric space

almost pseudo symmetric space

weakly symmetric space

References

- [1] N. Aktan, M. Yıldırım and C. Murathan, *Almost f-cosymplectic manifolds*, Mediterr. J. Math., **11** (2), 775-787, 2014.
- [2] M.A. Akyol, Conformal anti-invariant submersions from cosymplectic manifolds, Hacet. J. Math. Stat., 46 (2), 176-192, 2017.
- [3] K.K. Baishya and P.R. Chowdhury, On Generalized weakly symmetric Kenmotsu manifolds, Bol. Soc. Paran. Mat., 39 (6), 211-222, 2021.
- [4] S. Beyendi, G. Ayar and N. Aktan, On a type of α -cosymplectic manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. **68** (1), 852-861, 2019.
- [5] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes Math. 509, Springer-Verlag, Berlin, 1976.
- [6] E. Cartan, Sur une classes remarquable d'espaces de Riemannian, Bull. Soc. Math. France, 54, 214-264, 1926.
- [7] M.C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Physics, 15 (6), 526-531, 1988.
- [8] U.C. De and S. Bandyopadhyay, On weakly symmetric spaces, Acta Math. Hung., 87(3), 205-212, 2000.
- [9] R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math., 10 (12), 1508-1513, 1979.
- [10] Y. Gündüzalp and M.A. Akyol, Conformal slant submersions from cosymplectic manifolds, Turk. J. Math., 42 (5), 2672-2689, 2018.
- [11] S.K. Hui, A.A. Shaikh and I. Roy, On totaly umbilical hypersurfaces of weakly conharmonically symmetric spaces, Global journal of Pure and Applied Mathematics, 10 (4), 28-31, 2010.
- [12] S.K. Jana and A.A. Shaikh, On quasi-conformally flat weakly Ricci symmetric manifolds, Acta Math. Hung., 115 (3), 197-214, 2007.
- [13] T.W. Kim and H.K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math, Sinica, Eng. Ser. Aug., 21 (4), 841-846, 2005.
- [14] F. Özen and S. Altay, On weakly and pseudo symmetric Riemannian spaces, Indian J. Pure Appl. Math., 33 (10), 1477-1488, 2001.
- [15] H. Öztürk, C. Murathan, N. Aktan and A.T. Vanli, Almost α-cosymplectic f-manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(NS), **60** (1), 211-226, 2014.
- [16] M. Prvanovic, On weakly symmetric Riemannian manifolds, Pub. Math. Debrecen, 46, 19-25, 1995.
- [17] A.A. Shaikh and K.K.Baishya, On weakly quasi-conformally symmetric manifolds, Soochow Journal of Mathematics **31** (4), 581-595, 2005.

- [18] L. Tamassy and T.Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc., J. Bolyai, 56, 663-670, 1989.
- [19] M. Tarafdar and M.A.A. Jawarneh, Semi-Pseudo Ricci Symmetric manifold, J. Indian Inst. Sci., 73, 591-596, 1993.
- [20] A.G. Walker, On Ruses space of recurrent curvature, Proc. London Math. Soc., 52, 36-54, 1950.
- [21] M. Yıldırım and S. Beyendi, On almost generalized weakly symmetric α -cosymplectic manifolds, Univers. J. Math. Appl., **3** (4), 156-159, 2020.