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Abstract

This study is concerned with some results on generalized weakly symmetric and gener-
alized weakly Ricci-symmetric a-cosymplectic manifolds. We prove the necessary and
sufficient conditions for an a-cosymplectic manifold to be generalized weakly symmetric
and generalized weakly Ricci-symmetric. On the basis of these results, we give one proper
example of generalized weakly symmetric a-cosymplectic manifolds.
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1. Introduction

In 1989, L. Tamassy and T. Q. Binh introduced the notions of weakly symmetric and
weakly Ricci-symmetric manifolds [18]. Later on, many researchers have studied this topic.
For details, we refer the reader to [3,5,8,11,12,14,16,17,21] and the references there in.
In the view of [18], a (2n + 1)-dimensional a- cosymplectic manifold is said to be weakly
symmetric manifold, if its curvature tensor R of type (0,4) is not identically zero and
admits the following identity:

(VwR)(X1, X, X3, Xy) = Al(W)R(:Xl,Xg,Xg,X@+'Bl(X1)R(~I/V,Xg,X3,X4)

-I-Bl(Xg)}?(Xl, W, X3, X4) + @1(X3)R(X1, Xo, W, X4) (1.1)
+01(Xq) R(X1, X2, X3, W),

where V denotes the Levi-Civita connection with respect to metric g on M, also Ay, B1, Dy

are non-zero l-forms defined by A;(W) = g(W,01), B1(W) = g(W,01) and D1(W) =

g(W,my), for all W and R(X1, X2, X3, X4) = g(R(X1, X2) X3, X4). A (2n+1)-dimensional

a-cosymplectic manifold of this kind is denoted by a (WS)2,+1-manifold. Dubey [9]

presented generalized recurrent manifold. In keeping with this work, we shall describe
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a (2n + 1)-dimensional a-cosymplectic manifold generalized weakly symmetric (briefly
(GW S)ap+1-manifold) if it admits the following equation:

(VWR)(Xl,XQ,Xg,X4) = ( ) (Xl,XQ,Xg,X4)—|—Bl( ) (WXQ,Xg,X4)
B1(Xo) R(X1, W, X3, X4) + D1 (X3)R(X1, X2, W, Xy)
Dy (X4)R(X1, Xo, X3, W) + As(W)G(X1, X, X3, X1)
—{-BQ(Xl)CS(W, Xo, X3,X4) + BQ(Xz)G
(X3)G(

~(X17VVaX37X4)
+Da(X3)G (X1, Xo, W, Xy) + Do (X4)G (X1, Xo, X3, W),
(1.2)
where
G(X1, X2, X3, X4) = [9(X2, X3)9(X1, X4) — 9(X1, X3)9(X2, X4)] (1.3)

and A;, B;, D; are non-zero 1-forms defined by A;(W) = g(W,0;), B;(W) = g(W, ;) and
D;(W) = g(W,m;), for i = 1,2. There are interesting results of such (GWS)a;,+1-manifolds
in that it exhibits

(i) (for A; = B; = D; = 0), locally symmetric space [6],

(ii) (for Ay # 0,A9 = B; = D; = 0), recurrent space [20],
(iii) (for A; # 0,B; = D; = 0), generalized recurrent space [9],
(iv) (for
(v) (for

(vi)) (for A; = By = Dy = 0,B; = D; # 0), semi-pseudo symmetric space [19],

vo|

L =B) =D; = Hy #0,A3 = By = Dy =0), pseudo symmetric space [7],

v

=B, = D; = H; #0), generalized pseudo symmetric space [3],

(vii) (for A; =0,B; = D; # 0), generalized semi-pseudo symmetric space [3],

(viii) (for A; = Hi + K1,B1 =Dy = H; #0 and Az = By = Dy = 0), almost pseudo
symmetric space [7],

(ix) (for A; = H;+ K;,B; = D; = H; # 0), almost generalized pseudo symmetric space
[3],

(x) (for A1, B1,D; # 0,As = By = Dy = 0), weakly symmetric space [18] .

In the present paper, we have investigated some properties of the generalized weakly sym-
metric a-cosymplectic manifolds. In Section 2, we review basic formulas and definitions for
a-cosymplectic manifolds. In Section 3, we have examined a generalized weakly symmetric
a-cosymplectic manifold and it is observed that such a space is an n-Einstein manifold
provided D (§) # —a. We also present tables of different types of curvature restrictions
for which a-cosymplectics manifolds are sometimes Einstein and some other times remain
n-Einstein. In Section 4, we have given an example of the existence of such manifolds. Fi-
nally, we have investigated a generalized weakly Ricci-symmetric a-cosymplectic manifold
which is also found to be n-Einstein space.

2. Preliminaries

Let (M2 . €, 1, g) be a (2n + 1)-dimensional almost contact metric manifold, where
pisa (1,1)-tensor field, £ is the structure vector field, n is a 1-form and g is the Riemannian
metric. It is well known that the (¢, &, 7, g) structure satisfies the following conditions [5]:

©(§) =0, n(p)=0, n() =1, (2.1)
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PW = W +n(W)E, g(W, &) =n(W), (2:2)
9(eW,pX1) = g(W, X1) — n(W)n(X1),
for any vector fields W and X; on M?"*1. If in addition,
Vwé = —a(’02VV’ (24)
(Vwn) X1 = alg(W, X1) — n(W)n(X1)], (2.5)

where V denotes the Riemannian connection holds and « is a real number, then
(M?FL p & 0, g) is called an a-cosymplectic manifold ([1,2,10,13,15]). In this case, it is
well known that [4]

R(W, X1)¢ = o®[n(W) X1 — n(X1)W], (2.6)
S(W,€) = —2nan(W),
S(&? 6) = —277,052,
where S denotes the Ricci tensor. From (2.6), it easily follows that
R(W, €)X = o?[g(W, X1)§ —n(X1)W], (2.9)
R(W,€)¢ = a’[n(W)§ = W, (2.10)

for any vector fields W, X; where R denotes the Riemannian curvature tensor of M. An
a-cosymplectic manifold is said to be an n-Einstein manifold if the Ricci tensor S satisfies
condition

S(W, X1) = Mg(W, X1) + dan(W)n(X1), (2.11)

where A1, Ao are certain scalars.

3. Generalized weakly symmetric a-cosymplectic manifold

In this section, let us consider a generalized weakly symmetric a-cosymplectic manifold
(M?"*1 g) (n > 1). Now, contracting X over X, in both sides of (1.2), we get

(VwS) (X2, X3) = A1(W)S(X2, X3) + B1(R(W, X2)X3) + B1(X2)S(W, X3)
—i—‘Dl(Xg)S(XQ, W) -+ ‘D1<R(VV, X3)X2) + QH.AQ(W)Q(XQ, Xg)
+2nBQ(X2)g(VV, X3) +2n@2(X3)g(W, XQ) (31)
+B2(W)g(X2, X3) — Ba(X2)g(W, X3) + Do (W)g(Xz, X3)
—pg(Xg)g(Xg, W)

Putting X3 = ¢ in (3.1), we obtain

(VwS)(X2,8) = A1(W)S(X2,&) + B1(R(W, X2)¢) + B1(X2)S(W, )
+D1(§)S (X2, W) + D1 (R(W, §) X2) + 2nAas(W)n(Xa) (3.2)
+2nBa(X2)n(W) + 2nD2(§)g( X2, W) + B2 (W)n(X2) '
—Ba(X2)n(W) + D2 (W)n(Xz) — D2(§)g(X2, W).
Using (2.6), (2.7) and (2.9) in (3.2), we get
(VwS)(X2,€) = —2na’A(W)n(Xa) + B (Xo)n(W) — ?B1(W)n(Xa)
—2na2fBl(X2)n(W) + @1(§)S(XQ, W) + a2D1( )g(X 2, W)
—a?D1(W)n(Xs) + 2nAs(W)n(Xsa) + 2nBo(Xa)n(W (3.3)

+2nDo(§)g(Xo, W) + Bo(W)n(Xa) — Ba(Xo2)n(W)
+Dao(W)n(X2) — Da(£)g(Xa, W).

We know that
(Vi S) (X2, X3) = Vg S(X2, X3) — S(Vw X2, X3) — S(X2, Vir X3). (3.4)
Next we take X3 = ¢ in (3.4) and then using (2.2), (2.4) and (2.7), we obtain
(ViwS)(X2,€) = —2na3g(Xo, W) — aS(Xy, W). (3.5)
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Now, using (3.5) in (3.3), we have

—27’L043g(X2, W) - aS(X27 W)

= —2na® A (W)n(Xa) — (2n — 1) By (X2)n(W) + D1(€)S(X2, W)

—?By (W)n(X2) — o*D1(W)n(Xa) + a?D1(£)g(Xa, W) (3.6)
+2n[Aa(W)n(X2) + Bo(X2)n(W) 4+ D2 (&) g( X2, W)]

+B2(W)n(Xz2) — Ba(Xo)n(W) + Da(W)n(Xa) — Da(§)g(X2, W),

which results in

a?[A1(€) + B1(€) + D1(€)] = [A2(€) + B2(€) + Da(€)] (3.7)
for W = Xy = €. In particular, if A3(§) = B2(§) = D2(§) = 0, equation (3.7) turns into
a?[A1 () + B1(€) + D1(€)] = 0. (3.8)

Theorem 3.1. In a generalized weakly symmetric a-cosymplectic manifold (M*"F1 g),
the relation (3.7) is hold.
Putting X9 = ¢ in (3.1) and using (3.4), we obtain
—2na’g(W, X3) — aS(W, X3)
= —2na AL (W)n(Xs) + a?g(W, X3)B1(§) — o*B1(W)n(X3)
+B1()S(W, X3) — (2n — 1)a*D1(X3)n(W) — D1 (W)n(Xs) (3.9)
+2n[Az(W)n(Xs) + B2(£)g(W, X3) + Da(X3)n(W)]
+B2(W)n(Xs) — Ba(§)g(W, X3) + Dao(W)n(Xs) — Da(Xz)n(W).
Taking X3 = £ in (3.9) and also using (2.2) and (2.7), we get
022041 (W) + By (W) + Di(W) + (20 — Dn(IW)(B1(€) + D1 ()] (3.10)
— 20A(W) + (20 — Dn(IW)[B(€) + D (E)] + Ba(W) + Da(W).
Now putting W = £ in (3.9) and using (2.1), (2.2) and (2.7), we obtain
a?[2n(A1(€) + B1(€)n(Xs) + (2n — 1)D1(X3) + D1 (§)n(Xs)] (3.11)
= 2n[(A2(§) + B2(£))n(X3) + D2(X3)] + D2(&)n(X3) — Do(X3).
Replacing X3 by W in (3.11) and using (3.7), we have
D1 (W) = a*Dy(E)n(W) = Do(W) — Da()n(W). (3.12)
Putting W = £ in (3.6), we get
—2na n(XQ) + 2na’n(Xz)
= —2na’A1(6)n(Xa) — (2n — 1)a®B1(Xa) — 2na®Dy (§)1(Xz)
—a?B1(§)n(X2) — a*D1(§)n(X2) + a*D1(§)n(X2) (3.13)
+2n[A2(&)n(X2) + Ba(Xa2) + Da()n(X2)]
+B2(En(Xz) — Bo(X2) + D2(&)n(X2) — D2(§)n(X2).

Replacing Xo by W in (3.13) and then using (3.7), (3.12), we obtain

a?By(W) — a?By()n(W) = Ba(W) — Ba(&)n(W). (3.14)
Using (3.10), (3.12) and (3.14), we get
@?[A1(W) + (B1(€) + D1()n(W)] = A2(W) + (Ba(€) + D2(&))n(W). (3.15)
In view of (3.12), (3.14) and (3.15), we obtain
Q?[A1(W) + By(W) + Dy(W)] = [A2(W) + Ba(W) + Da(W)]. (3.16)

Next, for the choice of Ay = By = Dy = 0, the relation in equation (3.16) yields the
following:
PIAL (W) + BL(W) + Dy (W)] = 0. (3.17)

This motivates us to state the following theorems.
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Theorem 3.2. Let (M?"* . € n,9) be a (GWS)an i1 a-cosymplectic manifold, the sum
of the associated is given by (3.16).

Theorem 3.3. There does not exist an a-cosymplectic manifold which is

(i) recurrent,
(ii) generalized recurrent provided the 1-forms associated to the vector fields are colliner,
(iii) pseudo symmetric,

(iv) generalized semi-pseudo symmetric provided the 1-forms associated to the vector
fields are collinear.

Again from (3.6), putting W = &, we have

2n[a?A1(€) — Az(€) + @?D1(€) — D2(&)]n(X2) (3.18)
= [-a®B1(€) + B2(&)In(X2) + (2n — 1)[-a?B1(X2) + Ba(X2)].

Using (3.7), the above equation becomes
[@?B1(€) — Ba(§)n(X2) = a®B1(Xa) — Ba(Xa). (3.19)
Taking X» = € in (3.6) and using (3.7), we obtain
202 AL (W) — Ag(W)] + [0 B (W) — Bo(W)] + [02Dy (W) — Do(W)] (3.20)
= (2n — D)[a® A1 (&) — A2(E)In(W).
Putting (3.16) in (3.20), we have
[0?A1(§) — A2(E)In(W) = @A (W) — Ax(W). (3.21)

Again from (3.6), we get

S(XQ) W) =
[—2na2A1(W) — 04231(W) — a2D1(W) + QRAQ(W) + 'BQ(W) + QQ(W)] X
- a1 D@ n(X2)
na3 O{2 n —
[(271 — 1)0[2'31()(2) — 272'BQ(X2) + BQ(XQ)]
- a+ D1(§) 7w

In view of (3.16), (3.19) and (3.21), we obtain

S(XQ, W) — [Qn(a?’ + 92(2)14_@014?31(5) — 32(5)]9()(2’ W)
L (2n = DIePA(E) = As(§) + a?Ba(§) = Ba(&)]

a+ Di(§)

Theorem 3.4. A generalized weakly symmetric a-cosymplectic manifold is an n-Einstein
space provided D1(§) # —a.

n(X2)n(W). (3.23)

Theorem 3.5. In an a-cosymplectic manifold the following table is hold.
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Type of curvature restriction Nature of the space corresponding to
curvature restriction

locally symmetric space FEinstein space
locally recurrent space n- Einstein space
generalized recurrent space n- Finstein space
pseudo symmetric space n- Einstein space
generalized pseudo symmetric space n- Einstein space
semi-pseudo symmetric space n- Einstein space
generalized semi-pseudo symmetric space n- Finstein space
almost pseudo symmetric space n- Einstein space
almost generalized pseudo symmetric space n- Einstein space
weakly symmetric space n- Einstein space

4. Existence of Generalized weakly symmetric a-cosymplectic manifold

Let M3 = {(z,y,2) € R3} be a 3-dimensional manifold, where (x,y, z) are the standard
coordinates in R3. The vector fields are

e1 = 62238567
ey = eQzaay’
9

€3 82.

It is obvious that {ey,es,e3} are linearly independent at each point of M?3. Let g be the
Riemannian metric defined by
gler,e1) = glea,e2) = gles,e3) =1,  gler,e2) = g(e1,e3) = g(ez, e3) =0,

and given by the tensor product
1
g= ejz(dm@)da:—l—dy@dy) +dz ® dz).

Let n be the 1-form defined by n(W) = g(W,e3) for any vector field W on M3 and
ple1) = ea, @(ea) = —e1, @(eg) =0. Then using the linearity of g and ¢, we have

QW = —W +n(W)es, nles) =1, g(eW,pX1) = g(W, X1) — n(W)n(X1),

for any vector fields on M?3. It remains to prove that d® = 2an A ® and the Nijenhuis
torsion tensor of ¢ is zero. It follows that ®(e,e2) = —1 and otherwise ®(e;, e;) = 0 for
1 < j. Therefore, the essential non-zero component of ® is as follows:

0o 0 1

oL Iy _
(81*’8;:) e—4z

and hence )

Consequently, the exterior derivative d® is given by
4
dd = —e_Tde Ndy A dz. (4.2)
Since n = dz, by (4.1) and (4.2), we find
dd = 4n A O.

Then,
le1,e2] =0,  [e1,e3] =2e1, [ea, e3] = 2ea.
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In conclusion, it can be noted that Nijenhuis torsion of ¢ is zero. Thus, the manifold is a
2-cosymplectic manifold. Using Koszul’s formula, we can get the V operator as follows:

V61€3 =5 261, veleg = 0, Vel €1 — —263, (4.3)
V6263 = 262, VEQBQ = —263, V6261 = 0,
V63€3 = 0, v63€2 = 0, V63€1 =0.

Then using equation (4.3), the non-vanishing components of R (skew-symmetry and up
to symmetry) can clearly be seen:

R(eb €3,°€1, 63) = R(€27 €3,€2, 63) =4 = R(ela €2,¢€1, 62)-

Since {e1, e2, e3} forms a basis, any vector field W, X1, X9, X3 € x(M) can be written as

3 3 3 3
W =Y aie;, Xi=) bie;, Xo=)» cie;, Xz=)» die
i=1 i=1 i=1 =1

and the components can be obtained from the following relations by the symmetry prop-
erties,

1
RW, X1,X2,X3) =T = Z[(@1b2 — agby)(c1da — cady)]
+ (a1bs — asby)(c1ds — c3dy) + (agbs — asbe)(cads — c3ds)

1
R(e1, X1, X2, X3) =\ = 1[53(01613 —c3dy) + ba(crdy — cady)]

1
R(e2, X1, X2, X3) = X = 1[53(02613 — cgda) — bi(c1dy — cady)]

1
R(es, X1, X2, X3) = A3 = Z[b1(63d1 — c1d3) + ba(czdy — cads)]

1
R(W,e1,X2,X3) =\ = z[a3(01d3 — cady) + az(c1da — cady)]

_ 1
R(W, ez, X2, X3) = A5 = Z[az(@ds — c3dz) + ai(cady — c1d2)]

- 1
R(W, ez, Xo, X3) = Xg = Z[a1(03d1 — c1d3) + az(c3da — cads)]

1
= Z[d3(a1b3 — agbl) + d2(albg — agbl)]

1
(W, X1,e2,X3) = Ag = 1[d3(a253 — agba) + di(az2by — a1be)]

=

(W, X1,e1,X3) = A7

o]

ROV, X1, €5, X5) = o = { da(ashy — aabs) + dalazhs — aaby)]
ROV, X1, Xo, 1) = Ao = les(abs — ashr) + eaanbs — aob)]
R(W, X1, Xa,e2) = M1 = %[03(0253 — asbz) + ci(azby — a1by)]
R(W, X1, Xa,e3) = A\j2 = 3[01(%51 — a1b3) + ca(asba — agbs)]

G(W, X1, X2, X3) = Ty = (bre1 + baca — bacs)(ardy + agdy — azds)
— (a1c1 + agea — ases)(bidy + bada — bads).
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Now, we calculate the components of R which are the non-vanishing covariant derivatives:
Ve, ROW, X1, Xa, X3) = +2a1A3 — 2a3\1 + 2b1\g — 2b3)\y
+ 201)\9 — 203)\7 + 2d1)\12 — 2d1/\10
VeQR(W X1,X2,X3) = +2a2)\3 — 2(13)\2 + 2b2)\6 — 21)3)\5
+ 2c9Mg — 2¢3Ag + 2da 12 — 2d3 A1
Ve, R(W, X1, X5, X3) = 0.
Depending on the following choice of the 1-forms
2a13 — 2a3\1 + 2b1 g — 2b3 A4
Ty
2c1Ag — 2c3 A7 + 2d1 A2 — 2d1 Mg
T
2a9\3 — 2a3\o + 2ba Mg — 2b3 A5
Ty
2¢9 Mg — 2¢3Ag + 2da A 12 — 2d3 A1
T3
one can easily verify the following relations that follow
Ve, R(W, X1, Xa, X3) =Ai(ei) R(W, X1, Xa, X3) + B1(W)R(e;, X1, X2, X3)
+ By (X1)R(W, €3, X2, X3) + D1(X2) R(W, X1, €5, X3)
+ D1 (X3)R(W, X1, Xa, €;) + Az(e5) G(W, X1, X3, X3)
+ Bo(W)G (e, X1, X2, X3) + Ba(X1)G(W, €5, Xo, X3)
+ DQ(XQ)G(W, Xl, €, Xg) + 'DQ(X;;)G(W Xl, XQ, 61)

Al(el) =

Ag(el)

.Al (62) =

Aa(e2) =

for ¢ = 1,2,3. From the above, we can state the following the theorem.

Theorem 4.1. There exists an a-cosymplectic manifold (M3, g) which is a generalized
weakly symmetric a-cosymplectic manifold.

5. Generalized weakly Ricci-symmetric a-cosymplectic manifold

Let (M2t ©,£,m,9) be an a-cosymplectic manifold. If the manifold is generalized
weakly Ricci symmetric manifold then there exists 1-forms A;, B; and D; that satisfy the
condition

(VwS)(X2, X3) = A1 (W)S (X2, X3) + B1(X2)S(W, X3) + D1 (X3)S(X2, W) (5.1)
+ Ag(W)g(Xa, X3) + Ba(X2)g(W, X3) + Da(X3)g(Xa, W).
Putting X3 = ¢ in (5.1), we obtain
(Vi S)(X2,8) = —2na’[A1(W)n(Xz) + Br(X2)n(W)] + D1()S(X2, W) (5.2)
+ Ao (W)n(Xz) + Ba(Xa)n(W) + Da(£)g(X2, W).
In view of (3.5) the relation (5.2) becomes

—2n03g(Xo, W) — aS(Xo, W) = —2na?[A1(W)n(X2) + By (Xa2)n(W)]
+D1(§)5 (X2, W) + A2(W)n(X2) (5.3)
+Ba(X2)n(W) + D2(§)g(X2, W).

Setting W = X3 = £ in (5.3) and using (2.1), (2.2) and (2.7), we get
2n0’[A1(€) + B1(€) + D1(§)] = Az(§) + Ba(€) + Da(€). (54)
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Again, putting W = ¢ in (5.3), we get
2na’[A1(§)n(X2) + B1(Xa) + Di(§)n(Xa)] = Aa(§)n(X2) + Ba(Xa) + Da(&)n(Xa). (5.5)
Setting Xo = £ in (5.3) and then using (2.1), (2.2) and (2.7), we obtain
2na?[A1(W) + B1(E)n(W) + Di(E)n(W)] = Ax(W) + Ba()n(W) + D2 (&)n(W).  (5.6)
Replacing X5 by W in (5.5) and then adding the resultant with (5.6), we obtain

2n[a2le(W) + a2@1(~W)} — [fl2(~W) + By(W)]
== —Qn[aQ.ﬁll(f) + 042'31(5) + 042®1(f)]’l7(W) (57)

+[A2() + B2 () + Da()In(W) — 200D (E)n(W) + Da(&)n(W).
Due to (5.4), equation (5.7) turns into
2na2[A1 (W) + By (W)] + 2na?D1 (€)n(W) (5.8)
= [A2(W) + Bo(W)] + Da()n(W).
Then taking, Xo =W = ¢ in (5.1), we obtain
2na®[A1 () + B1(E)]n(Xz) + 2na?Di(X3) (5.9)
= [A2(&) + Ba(&)In(X3) + Da(X3).
Replacing X3 by W in (5.9) and adding with (5.8), we find out
20 (A (W) + By (W) + Dy (W)] + 2na?[A1 (&) + B1(€) + D1 (&)]n(W) (5.10)
= [A(W) 4+ Bo(W) 4+ Da(W)] + [A2(€) + Ba(&) + Da(&)]n(W).
Using equation (5.4), we get from the (5.10) equation
2002 [A1 (W) + By(W) + Di(W)] = [Ax(W) + Bo(W) + Do(W)]. (5.11)
This leads to the following theorem.

Theorem 5.1. In a generalized weakly Ricci symmetric a-cosymplectic manifold
(M?FL g) (n > 1), the sum of the associated 1-forms is related by (5.11).

Again from (5.3), we have
2n0% + Da(¢)]
a+Di(§)
[2710(2@1()(2) — 'BQ(XQ)]
a+ D1(£)

[2na2fl1(W) - f[g(W)]
a+ Dy (¢)

S(Xo, W) =— 9(X2, W) + n(X2) (5.12)

n(w).

From (5.6), we get
2na’ Ay (W) — Aa(W) = [=2na®(B1(€) + D1(€)) + (Ba(€) + Da()n(W).  (5.13)
Using (5.4) in (5.5), we obtain
2na®B1(€) — B2()n(X2) = 2na®B1(X2) — Ba(Xa). (5.14)
In view of (5.12), (5.13) and (5.14), we have

nOé3 )
S(Xo, W) = — m

This leads to the following theorems.

Theorem 5.2. A generalized weakly Ricci symmetric a-cosymplectic manifold is an n-
FEinstein space provided D1(§) # —«
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Theorem 5.3. In an a-cosymplectic manifold the following table is hold.

1]
2]

Type of curvature restriction Nature of the space corresponding to
curvature restriction
locally symmetric space FEinstein space
locally recurrent space n- Einstein space
generalized recurrent space n- Finstein space
pseudo symmetric space n- Einstein space
generalized pseudo symmetric space n- Einstein space
semi-pseudo symmetric space n- Finstein space
generalized semi-pseudo symmetric space n- Einstein space
almost pseudo symmetric space n- Finstein space
almost generalized pseudo symmetric space n- Einstein space
weakly symmetric space n- Einstein space
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