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Abstract 

In this paper, the investigation focuses on solitary wave solutions of the combined KdV-mKdV equation by using 

reduced differential transform method (RDTM). To prove validity of the proposed method, the approximate analytic 

solutions and exact solutions of the equation are compared via absolute errors. The obtained results are represented by 

graphics. The effects of the time and dispersion parameter (μ) on analytic solutions are investigated. As a result, it can 

be said that the applied method is quite precise and successful for similar type equations. 
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Öz 

Bu çalışmada, araştırma indirgenmiş diferansiyel dönüşüm metodunu (İDDM) kullanarak birleştirilmiş KdV-mKdV 

denkleminin solitary dalga çözümleri üzerine odaklanmaktadır. Önerilen metodun geçerliliğini kanıtlamak için, mutlak 

hata vasıtasıyla yaklaşık analitik çözümler ve tam çözümler karşılaştırılmıştır. Elde edilen sonuçlar grafiklerle temsil 

edilmiştir. Zaman ve dispersiyon parametresinin (μ) analitik çözümler üzerindeki etkileri araştırılmıştır. Sonuç olarak, 

uygulanan yöntemin benzer tipteki denklemler için oldukça hassas ve başarılı olduğu söylenebilir. 

 

Anahtar kelimeler: Birleştirilmiş KdV-mKdV Denklemi, Gardner Denklemi, İDDM, İndirgenmiş Diferansiyel Dönüşüm 

Metodu, Solitary Dalga 
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1. Introduction 

 

In science, many significant events in varied fields 

are generally modelled by the nonlinear partial 

differential equations. One of these equations is 

the combined KdV-mKdV equation (Hirota, 1980; 

Hoover and Grant, 1983; Mohamad, 1992; Lou 

and Chen, 1994; Zhang et al., 2000). The equation 

defines various interesting physical phenomena, 

such as the weakly nonlinear long waves in 

various physical applications (Nakoulima et al., 

2004). Many analytic and numerical methods 

have been proposed and implemented for solution 

of the equation (Zhang, 1998; Kaya and Inan, 

2005; Wazwaz, 2007; Biswas and Zerrad, 2008; 

Lu and Shi, 2010; Triki et al., 2010; Ak et al., 

2018; Ak, 2019). 

 

On the other part, the reduced differential 

transform method for approximate analytic 

solution of partial differential equations was 

proposed in 2009 (Keskin and Oturanc, 2009). 

After then, RLW equation (Keskin, 2010), the 

generalized Korteweg-de Vries equation (Keskin 

and Oturanc, 2010a) and KdV equation (Keskin 

and Oturanc, 2010b) were solved by using the 

method. To solve Fornberg-Whitham type 

equations, the RDTM was applied by Hesam et al. 

(2012). Abazari and Soltanalizadeh implemented 

the method to Kawahara and modified Kawahara 

equations (Abazari and Soltanalizadeh, 2013). 

Burgers equation, Burgers-Huxley equation, 

Huxley equation and Burgers-Fisher equation are 

solved via reduced differential transform method 

(Abazari and Abazari, 2013). Saravanan and 

Magesh solved the Newell-Whitehead-Segel 

equation by the method (Saravanan and Magesh, 

2013). Al-Amr obtained solution of the 

generalized Drinfeld-Sokolov equation and the 

Kaup-Kupershmidt equation by using the method 

(Al-Amr, 2014).  

 

In this paper, we aimed to define a new 

approximate method to the equation. This paper is 

organized as follows: In Section 2, firstly we 

reminded reduced differential transform method. 

In Section 3, the proposed method is implemented 

to the equation and efficiency of the method is 

investigated. Finally, we closed this work with 

Section 4 including conclusion remarks. 

 

2. Mathematical Modelling 

 

If the Korteweg-de Vries (KdV) equation 

  

𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0,                                                                (1) 

 

and the modified KdV equation (mKdV)  

 

𝑢𝑡 + 𝑏𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0,                                                                                      (2) 

 

are combined, the resulting equation 

 

𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑏𝑢2𝑢𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 0,                                                        (3) 

  

is called the combined KdV-mKdV equation. Also, it is known as the Gardner equation. Here, 𝑎, 𝑏 and 𝜇 are 

nonzero, arbitrary and real parameters. 𝑢(𝑥, 𝑡) represents solitary wave profile, while 𝑥 and 𝑡 are  

independent variables. In addition, 𝑢𝑥𝑥𝑥 is dispersion term, 𝑢𝑢𝑥 and 𝑢2𝑢𝑥 are nonlinear terms. 

 

3. Analysis of the Method 

 

In this section, we introduce basic knowledges related to reduced differential transformation method. 

 

3.1. Reduced differential transform method 

 

Let us consider 𝑤(𝑥, 𝑡) function which can be written as 𝑤(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡). From the one dimensional 

differential transform method (Keskin and Oturanc, 2009), 𝑤(𝑥, 𝑡) can be expressed as  

 

𝑤(𝑥, 𝑡) = ∑∞
𝑖=0 𝐹(𝑖)𝑥𝑖 ∑∞

𝑗=0 𝐺(𝑗)𝑡𝑗  

= ∑∞
𝑖=0 ∑∞

𝑗=0 𝑊(𝑖, 𝑗)𝑥𝑖𝑡𝑗   (4) 
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where 𝑊(𝑖, 𝑗) = 𝐹(𝑖)𝐺(𝑗) is called the spectrum of 𝑤(𝑥, 𝑡).  

 
If 𝑤(𝑥, 𝑡) is an analytic function, then the spectrum function is reduced to 

  

𝑊𝑘(𝑥) =
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑤(𝑥, 𝑡)]𝑡=𝑡0
.                                                     (5) 

 

Besides, the inverse differential transform of 𝑊𝑘(𝑥) is described as 

 

(𝑥, 𝑡) = ∑∞
𝑘=0 𝑊𝑘(𝑥)(𝑡 − 𝑡0)𝑘.                                              (6) 

 

From (5) and (6), we get  

 

𝑤(𝑥, 𝑡) = ∑∞
𝑘=0

1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑤(𝑥, 𝑡)]𝑡=𝑡0
(𝑡 − 𝑡0)𝑘.                          (7) 

 

Table 1. Basic operations in RDTM (Keskin and Oturanc, 2009). 

Original Function   Transformed Function  

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) ± 𝑣(𝑥, 𝑡)   𝑊𝑘(𝑥) = 𝑈𝑘(𝑥) ± 𝑉𝑘(𝑥)  

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡)   𝑊𝑘(𝑥) =

𝑑

𝑑𝑥
𝑈𝑘(𝑥)  

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡)   𝑊𝑘(𝑥) = (𝑘 + 1)𝑈𝑘+1(𝑥)  

𝑤(𝑥, 𝑡) =
𝜕𝑟+𝑠

𝜕𝑥𝑟𝜕𝑡𝑠 𝑢(𝑥, 𝑡)   𝑊𝑘(𝑥) =
(𝑘+𝑠)!

𝑘!

𝑑𝑟

𝑑𝑥𝑟 𝑈𝑘+𝑠(𝑥)  

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)   𝑊𝑘(𝑥) = ∑𝑘
𝑟=0 𝑈𝑟(𝑥)𝑉𝑘−𝑟(𝑥)  

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)𝑧(𝑥, 𝑡)   𝑊𝑘(𝑥) = ∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑠=0 𝑈𝑟(𝑥)𝑉𝑠(𝑥)𝑍𝑘−𝑟−𝑠(𝑥)  

𝑤(𝑥, 𝑡) = 𝑥𝑚𝑡𝑛   𝑊𝑘(𝑥) = 𝑥𝑚𝛿(𝑘 − 𝑛) = {
𝑥𝑚

0
𝑘 = 𝑛
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

4. Numerical Applications 

 

In this section, we consider approximate solitary wave solution of the combined KdV-mKdV equation in 

order to show performance of the method (Keskin and Oturanc, 2009). The accuracy of the method is 

measured by using the absolute error norms.  

 

The solitary wave solution of (3) is given by Hamdi et al. (2011) 

 

𝑢(𝑥, 𝑡) = 𝐴 𝑠𝑒𝑐ℎ [𝐵(𝑥 − 𝑐𝑡)]                                                                                                                          (8) 

 

where 𝐴 is amplitude (Hamdi et al., 2011), 𝐵 is inverse width (Hamdi et al., 2011), 𝑐 is velocity (Hamdi et 

al., 2011) and

 

 

 

𝐴 =
6𝑐

𝑎(1+√1+
6𝑏𝑐

𝑎2 )

     ,     𝐵 = √
𝑐

𝜇
.                                                 (9) 

 

We consider (3) subject to initial condition  

  

𝑢(𝑥, 0) = 𝐴 𝑠𝑒𝑐ℎ (𝐵𝑥).                                                        (10) 
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If the reduced differential transform method is applied on the combined KdV-mKdV equation, the recursive 

equation is obtained as  

 

(𝑘 + 1)𝑈𝑘+1(𝑥) + 𝑎 ∑𝑘
𝑟=0 𝑈𝑟(𝑥)

𝑑

𝑑𝑥
𝑈𝑘−𝑟(𝑥)  

+𝑏 ∑𝑘
𝑟=0 ∑𝑘−𝑟

𝑠=0 𝑈𝑟(𝑥)𝑈𝑠(𝑥)
𝑑

𝑑𝑥
𝑈𝑘−𝑟−𝑠(𝑥)  

+𝜇
𝑑2

𝑑𝑥3 𝑈𝑘(𝑥) = 0   ,   𝑘 = 0, 1, 2 …                                                                                   (11) 

 

For 𝑘 = 0, 1, the first two terms of 𝑈𝑘+1(𝑥) are calculated by utilizing the initial condition in recursive 

equation (11) as follows  

 

𝑈0(𝑥) = 𝐴𝑠𝑒𝑐ℎ(𝐵𝑥),                                                                                                                                     (12) 

 

𝑈1(𝑥) =
1

2
𝐴𝐵(2𝐴2𝑏 − 11𝐵2𝜇 + 2𝑎𝐴 cosh[𝐵𝑥] + 𝐵2𝜇 𝑐𝑜𝑠ℎ [2𝐵𝑥]) 𝑠𝑒𝑐ℎ 3[𝐵𝑥] 𝑡𝑎𝑛ℎ [𝐵𝑥],                    (13) 

 

𝑈2(𝑥) =
1

2
𝐴𝐵2 𝑠𝑒𝑐ℎ[𝐵𝑥] (𝐵4𝜇2 + 𝑠𝑒𝑐ℎ[𝐵𝑥] (10𝑎𝐴𝐵2𝜇 

+ 𝑠𝑒𝑐ℎ[𝐵𝑥] (3𝑎2𝐴2 + 2𝐵2𝜇(15𝐴2𝑏 − 91𝐵2𝜇) + 𝑠𝑒𝑐ℎ[𝐵𝑥] (𝑎𝐴(8𝐴2𝑏 − 87𝐵2𝜇)                      (14) 

 + 𝑠𝑒𝑐ℎ[𝐵𝑥](−4𝑎2𝐴2 + 5(𝐴2𝑏 − 28𝐵2𝜇)(𝐴2𝑏 − 6𝐵2𝜇) 

−10𝑎𝐴(𝐴2𝑏 − 9𝐵2𝜇) 𝑠𝑒𝑐ℎ[𝐵𝑥] − 6(𝐴2𝑏 − 20𝐵2𝜇)(𝐴2𝑏 − 6𝐵2𝜇) 𝑠𝑒𝑐ℎ2[𝐵𝑥]))))). 

 

Substituting (12), (13) and (14) into inverse differential transform, the approximate analytic solution of the 

combined KdV-mKdV equation in the Poisson series form are:  

 

𝑈2(𝑥, 𝑡) = 𝑈0(𝑥) + 𝑈1(𝑥)𝑡 + 𝑈2(𝑥)𝑡2, (15) 

 

𝑈2(𝑥, 𝑡) =
1

2
𝐴 𝑠𝑒𝑐ℎ[𝐵𝑥]( 2 + 𝐵2𝑡2(𝐵4𝜇2 𝑠𝑒𝑐ℎ[𝐵𝑥](10𝑎𝐴𝐵2 𝜇 

+ 𝑠𝑒𝑐ℎ[𝐵𝑥]( 3𝑎2𝐴2 + 2𝐵2𝜇(15𝐴2𝑏 − 91𝐵2𝜇) + 𝑠𝑒𝑐ℎ[𝐵𝑥]( 𝑎𝐴(8𝐴2𝑏 − 87𝐵2𝜇) 

+ 𝑠𝑒𝑐ℎ[𝐵𝑥] (−4𝑎2𝐴2 + 5(𝐴2𝑏 − 28𝐵2𝜇)(𝐴2𝑏 − 6𝐵2𝜇)                                                             (16) 

−10𝑎𝐴(𝐴2𝑏 − 9𝐵2𝜇) 𝑠𝑒𝑐ℎ[𝐵𝑥] − 6(𝐴2𝑏 − 20𝐵2𝜇)(𝐴2𝑏 − 6𝐵2𝜇)𝑠𝑒𝑐ℎ2[𝐵𝑥]))))) 

+𝐵𝑡(2𝐴2𝑏 − 11𝐵2𝜇 + 2𝑎𝐴 𝑐𝑜𝑠ℎ[𝐵𝑥] + 𝐵2 𝜇 𝑐𝑜𝑠ℎ[2𝐵𝑥])𝑠𝑒𝑐ℎ2[𝐵𝑥] 𝑡𝑎𝑛ℎ[𝐵𝑥]) 

 

which is the first three terms of the Poisson series of the exact solution (8).  

 

In this section, we have done some computations 

to examine the accuracy and reliability of the 

method for the combined KdV-mKdV equation. 

We set 𝑎 = 𝑏 = 1 and 𝑐 = 0.1 and make 

computation for 𝜇 = 5 and 𝜇 = 1, respectively. 

After 2 −approximate solutions obtained from 

RDTM, exact solutions and absolute errors are 

given with respect to different values of 𝑡 at 𝑥 = 0 

in Table 2. It is observed from the table that the 

absolute errors increase as time increases. Also, it 

can be seen from the table that the absolute errors 

for 𝜇 = 5 slightly smaller than for 𝜇 = 1. Table 3 

shows exact solutions, 2 − approximate solutions 

and absolute errors obtained by RDTM at 𝑡 = 3 in 

some points of the intervals −40 ≤ 𝑥 ≤ 40. It can 

be noticed from Table 3 that the absolute errors 

decrease while away from 𝑥 = 0 both 𝜇 = 5 and 

𝜇 = 1. Besides, approximate solutions are better 

for 𝜇 = 1. 
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Table 2. Solutions for different values of 𝜇 at 𝑥 = 0. 

𝜇   

  

  

  

  

  

  

  

  

  

𝑡    

  

  

  

  

  

  

  

  

  

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙.   

  

  

  

  

  

  

  

  

  

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑆𝑜𝑙.    

  

  

  

  

  

  

  

  

  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟  

 

 

 

 

5  

1.0  0.2648846 0.2642074  6.771563 × 10−4  

1.5  0.2648515 0.2633279  1.523608 × 10−3  

2.0  0.2648051 0.2620965  2.708652 × 10−3  

2.5  0.2647456 0.2605133  4.232299 × 10−3  

3.0  0.2646728 0.2585783  6.094565 × 10−3  

3.5  0.2645869 0.2562914  8.295468 × 10−3  

4.0  0.2644878 0.2536527  1.083503 × 10−2  

4.5  0.2643755 0.2506622  1.371327 × 10−2  

5.0  0.2642502 0.2473199  1.693023 × 10−2  

  

 

 

 

 

1  

  

  

  

  

  

  

  

  

  

1.0    

  

  

  

  

  

  

  

  

0.2647787   

  

  

  

  

  

  

  

  

0.2613928    

  

  

  

  

  

  

  

  

3.385825 × 10−3  

1.5  0.2646133 0.2569951  7.618262 × 10−3  

2.0  0.2643821 0.2508382  1.354396 × 10−2  

2.5  0.2640854 0.2429222  2.116321 × 10−2  

3.0  0.2637234 0.2332470  3.047639 × 10−2  

3.5  0.2632967 0.2218128  4.148393 × 10−2  

4.0  0.2628058 0.2086195  5.418636 × 10−2  

4.5  0.2622513 0.1936670  6.858429 × 10−2  

5.0  0.2616338 0.1769554  8.467840 × 10−2  
 

 

Table 3. Solutions for different values of 𝜇 at 𝑡 = 3. 

𝜇  

 

 

 

 

 

 

 

 

 

𝑥   

  

  

  

  

  

  

  

  

  

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙.  

 

 

 

 

 

 

 

 

 

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑆𝑜𝑙.  

 

 

 

 

 

 

 

 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 

 

 

 

 

5  

−40 0.0017740 0.0017729 1.112823 × 10−6 

−30 0.0072957 0.0072770 1.866102 × 10−5 

−20 0.0299187 0.0296333 2.854101 × 10−4 

−10 0.1170998 0.1157518 1.348054 × 10−3 

0 0.2646728 0.2585783 6.094565 × 10−3 

10 0.1262671 0.1258319 4.352047 × 10−4 

20 0.0325490 0.0328900 3.411201 × 10−4 

30 0.0079415 0.0079690 2.746466 × 10−5 

40 0.0019311 0.0019328 1.706311 × 10−6 

   

 

 

 

 

1 

  

  

  

  

  

  

  

  

  

−40   

  

  

  

  

  

  

  

  

0.0000015   

  

  

  

  

  

  

  

  

0.0000015   

  

  

  

  

  

  

  

  

2.349729 × 10−10 

−30 0.0000365 0.0000366 4.779814 × 10−9 

−20 0.0008634 0.0008631 3.189492 × 10−7 

−10 0.0203670 0.0200931 2.738487 × 10−4 

0 0.2637234 0.2332470 3.047639 × 10−2 

10 0.0246055 0.0251129 5.074350 × 10−4 

20 0.0010438 0.0010449 1.108403 × 10−6 

30 0.0000442 0.0000442 3.599020 × 10−9 

40 0.0000019 0.0000019 2.438539 × 10−10 

 
The details of approximate solutions and absolute 

errors are shown in Figure 1 for 𝜇 = 5 and 𝜇 = 1 

at time 𝑡 = 3, respectively. The wave takes shape 

of a bell when 𝜇 increases as observed from 

Figure 1a and Figure 1b. Besides, it can be seen 

from Figure 1c and Figure 1d that absolute errors 

decline when 𝜇 is increased. In addition, their 

three dimensional states are indicated by Figure 2. 

2 −approximate solutions of the problem are 

depicted for 𝜇 = 5 and 𝜇 = 1 at different values 

of 𝑡 in Figure 3. It is observed from Figure 3 that 

shape of the wave have deformation as time 

increases. Also, the wave takes shape of a bell 

when 𝜇 increases as in Figure 1. 
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Figure 1. 2 −approximate solutions and absolute errors for different values of 𝜇 at 𝑡 = 3 

 

 

 

Figure 2. 2 −approximate solutions and absolute errors for different values of 𝜇 at 0 ≤ 𝑡 ≤ 5 
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Figure 3. Exact and 2 −approximate solutions for different values of 𝜇 and 𝑡 

 

 

5. Conclusion 

 

In this paper, we investigate reduced differential 

transform method for the solitary wave solution of 

the combined KdV-mKdV equation. The effects of 

the time and dispersion parameter (𝜇) on 

behaviors of solitary wave solutions are discussed. 

From the obtained results which are showed in the 

tables conclude that the absolute errors are 

satisfactorily small. So, the proposed method has 

reliability and offer high accuracy for the 

approximate analytic solution of the equation. 

Also, the method have some advantages such as 

fast and computational cost is quite small. 

Consequently, the method can be recommended as 

an alternative method for numerical solutions of 

these type non-linear equations. 
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