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T0 CONVERGENCE APPROACH SPACES

MUHAMMAD QASIM AND MEHMET BARAN

Abstract. In previous papers, several T0-objects in set-based topological cat-
egory have been introduced and compared. In this paper, we give the char-
acterization of general T0 (resp. T0, and T ′0) convergence approach spaces as
well as show how these notions are linked to each other.

1. Introduction

In 1989, Colebunders and Lowen [16] introduced convergence approach space to
satisfy the categorical properties such as Cartesian closedness which are failed in
approach space [17].
Classical T0 separation of topology plays a vital role not only in mathematics such

as to get an alternative characterization of locally semi-simple coverings in terms of
light morphisms in algebraic topology [13] but also in computer science where this
concept correspond to access the values through observations [26]. In addition to
that, T0 axiom has been used to build topological models in denotational semantics
of programming language and lambda calculus where Hausdorff topologies fail to
build such models [24, 25]. Furthermore, it has been used to characterize digital
line in digital topology and to construct cellular complex in image processing and
computer graphs [10, 14, 15].
Due to huge importance of T0 separation, this concept has been extended to

topological categories by several mathematicians such as Brümmer [8] in 1971,
Marny [21] in 1973, Hoffmann [11] in 1974, Harvey [9] in 1977 and Baran [2] in
1991. Moreover, in 1991, Weck-Schwarz [27] and in 1995, Baran [3] analyzed the
relationship among these various generalization of T0 objects. One of the main
reason to extend T0 separation was to define T2 objects in arbitrary topological
categories [5].
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The main object of this paper is to characterize each of T0, T0 and T ′0 convergence
approach spaces and show how these are related to each other.

2. Preliminaries

Let E and B be two categories. The functor U : E → B is called topological
functor if (i) U is concrete (i.e., faithful and amnestic) (ii) U consists of small fibers
and (iii) every U-source has a unique initial lift [1, 22, 23].
Note that topological functor U : E → B is called normalized if subterminals

have a unique structure.
Let X be a set, A ⊆ X, F (X) be the set of all filters and A be collection of

subsets of X. The stack of A and the indicator map θA : X → [0,∞] are defined
by [A] = {B ⊆ X|∃A ∈ A : A ⊆ B} and

θA(x) =

{
0, x ∈ A
∞, x /∈ A

respectively.

Definition 1. (cf. [16, 18, 20]) A map λ : F (X) −→ [0,∞]X is called a convergence
approach structure on X if it satisfies the followings:

(i) ∀x ∈ X : λ[x](x) = 0,
(ii) ∀α, β ∈ F (X) : α ⊂ β ⇒ λβ ≤ λα,
(iii) ∀α, β ∈ F (X) : λ(α ∩ β) = sup{λ(α), λ(β)}.
The pair (X,λ) is called a convergence approach space.

Definition 2. (cf. [16, 18, 20]) Let (X,λ) and (X ′, λ′) be convergence approach
spaces. The map f : (X,λ) −→ (X ′, λ′) is called a contraction map if it satisfies
for all α ∈ F (X) : λ′(f(α)) ◦ f ≤ λα.

The category whose objects are convergence approach spaces and morphisms
are contraction maps is denoted by CApp and it is a Cartesian closed topological
category over Set [16, 18, 20].

Definition 3. (cf. [16, 18, 20]) Let X be a non-empty set and (Xi, λi) be the class
of convergence approach spaces.

(i) A source {fi : X → (Xi, λi)} in CApp has initial lift if and only if for
all α ∈ F (X), λα = sup

i∈I
λi(fi(α)) ◦ fi, where fi(α) is a filter generated by

{fi(Ai), i ∈ I}, i.e., fi(α) = {Ai ⊂ Xi : ∃B ∈ α such that fi(B) ⊂ Ai}.
(ii) A sink {fi : (Xi, λi) → X} in CApp has final lift if and only if for all

α ∈ F (X) and x ∈ X,

λ(α)(x) =


0, α = [x]

inf
i∈I

inf
y∈f−1i (x)

inf
β∈F (Xi)
⊂α

λi(β)(y), α 6= [x]
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(iii) The discrete structure (X,λdis) on X in CApp is defined by for all α ∈
F (X) and x ∈ X,

λdis(α) =

{
θ{x}, α = [x]

∞, α 6= [x]
(iv) The indiscrete structure (X,λind) on X in CApp is defined by for all

α ∈ F (X) and x ∈ X,
λind(α)(x) = 0

3. T0 Convergence Approach Spaces

Let B be a nonempty set, B2
∐
B2 be the coproduct of B2 and B2∨4B2 be two

distinct copies of B2 identified along the diagonal [2]. Let q : B2
∐
B2 → B2∨4B2

be the quotient map. A point (x, y) in B2 ∨4 B2 is denoted by (x, y)1 (resp.
(x, y)2) if (x, y) is in the first (resp. second) component of B2 ∨4 B2. Note that
(x, x)1 = (x, x)2 = (x, x).

Definition 4. (cf. [2]) A map A : B2 ∨4 B2 → B3 is called a principle axis map
if

A((x, y)i) =

{
(x, y, x), i = 1

(x, x, y), i = 2

Definition 5. (cf. [2]) A map ∇ : B2 ∨4 B2 → B2 is called a folding map if
∇((x, y)i) = (x, y) for i = 1, 2.
Definition 6. (cf. [2, 21]) Let U : E → Set be topological in the sense of [1, 22]
and X be an object in E with U(X) = B.

(i) X is T0 iff initial lift of the U-source {A : B2 ∨4 B2 → U(X3) = B3 and
∇ : B2 ∨4 B2 → UD(B2) = B2} is discrete, where D is a discrete functor
which is left adjoint to U .

(ii) X is T ′0 iff initial lift of the U-source {id : B2∨4B2 → U(B2∨4B2)′2∨4B2
and ∇ : B2 ∨4 B2 → UD(B2) = B2} is discrete, where (B2 ∨4 B2)′ is
the final lift of U-sink {q ◦ i1, q ◦ i2 : U(X2) = B2 → B2 ∨4 B2} and
ik : B

2 → B2
∐
B2 are the canonical injections for k = 1, 2.

(iii) X is T0 iff X doesn’t contain an indiscrete subspace with (at least) two
points.

Theorem 7. A convergence approach space (X,λ) is T0 iff for all x, y ∈ X with
x 6= y, λ([x])(y) =∞ or λ([y])(x) =∞.

Proof. Let (X,λ) be T0 for all x, y ∈ X with x 6= y. Note that [(x, y)1] ∈ F (X2 ∨4
X2), (x, y)2 ∈ X2 ∨4 X2 and

λdis([∇(x, y)1])(∇(x, y)2) = λdis([(x, y)])(x, y) = 0,

λ([π1A(x, y)1](π1A(x, y)2) = λ([x])(x) = 0,
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λ([π2A(x, y)1](π2A(x, y)2) = λ([y])(x)

and

λ([π3A(x, y)1](π3A(x, y)2) = λ([x])(y),

where πi : X3 → X are the projection maps, i = 1, 2, 3. Since (X,λ) is T0, by
Definition 3 (i),

∞ = sup{λdis([∇(x, y)1])(∇(x, y)2), λ([π1A(x, y)1])(π1A(x, y)2),
λ([π2A(x, y)1])(π2A(x, y)2), λ([π3A(x, y)1])(π3A(x, y)2)}

= sup{0, λ([x])(y), λ([y])(x)} = sup{λ([x])(y), λ([y])(x)}

and consequently, λ([x])(y) =∞ or λ([y])(x) =∞.
Conversely, let λ be an initial convergence approach structure on X2 ∨4 X2

induced by A : X2 ∨4 X2 → (X3, λ3) and ∇ : X2 ∨4 X2 → (X2, λdis), where λdis
is discrete convergence approach structure on X2 and λ3 is the product convergence
approach structure on X3 induced by πi : X3 → X the projection maps for i =
1, 2, 3. Suppose α ∈ F (X2 ∨4 X2) and v ∈ X2 ∨4 X2 with ∇v = (x, y). By
Definition 1, we show that

λ(α) =

{
θ{v}, α = [v]

∞, α 6= [v]

where θ{v} is the indicator of {v}. Let w be any point in X2 ∨4 X2. Note that

λdis(∇α)(∇w) =
{
θ{(x,y)}∇w, ∇α = [(x, y)]
∞, ∇α 6= [(x, y)]

=


0, ∇α = [(x, y)] and ∇w = (x, y)
∞, ∇α = [(x, y)] and ∇w 6= (x, y)
∞, ∇α 6= [(x, y)] and ∇w 6= (x, y)

Case I: If x = y, then ∇w = (x, x) implies w = (x, x)1 = (x, x)2 = v and
∇α = [(x, x)] implies α = [(x, x)i] = [(x, x)] for i = 1, 2. By Definition 3 (i),
λ(∇α)(∇w) = λ([(x, x)])(x, x) = 0 since λ is a convergence approach structure on
X2 ∨4 X2.
Suppose that x 6= y. ∇w = (x, y) implies w = (x, y)1 or u = (x, y)2 and ∇α =

[(x, y)] implies α = [(x, y)1], [(x, y)2], [{(x, y)1, (x, y)2}] or α ⊃ [{(x, y)1, (x, y)2}].
Firstly, we show that the case α ⊃ [{(x, y)1, (x, y)2}] with α 6= [∅] and α 6=
[{(x, y)1, (x, y)2}] cannot occur. To end this, if [∅] 6= α 6= [{(x, y)1, (x, y)2}], then
α ⊃ [{(x, y)1, (x, y)2}] iff α = [(x, y)1] or α = [(x, y)2]. Clearly, if α = [(x, y)1]
or [(x, y)2], then α ⊃ [{(x, y)1, (x, y)2}]. Conversely, if α ⊃ [{(x, y)1, (x, y)2}] with
[∅] 6= α 6= [{(x, y)1, (x, y)2}], then there exists V ∈ α such that V 6= {(x, y)1, (x, y)2}
and V 6= ∅. Since V and {(x, y)1, (x, y)2} are in α and α is a filter, it follows that
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V ∩ {(x, y)1, (x, y)2} = {(x, y)1} or {(x, y)2} is in α, i.e., α = [(x, y)1] or [(x, y)2].
Hence, we must have α = [(x, y)1], [(x, y)2] or [{(x, y)1, (x, y)2}].
If α = [(x, y)i] and w = (x, y)i, i = 1, 2, then λ([(x, y)i])((x, y)i) = 0 since λ is a

convergence approach structure on X2 ∨4 X2.
If α = [(x, y)2] and w = (x, y)1, then

λdis(∇α)(∇w) = λdis(∇[(x, y)2])(∇(x, y)1) = λdis([(x, y)])(x, y) = 0,

λ(π1Aα)(π1Aw) = λ([π1A(x, y)2])(π1A(x, y)1)) = λ([x])(x) = 0,

λ(π2Aα)(π2Aw) = λ([π2A(x, y)2])(π2A(x, y)1) = λ([x])(y)

and
λ(π3Aα)(π3Aw) = λ([π3A(x, y)2])(π3A(x, y)1) = λ([y])(x),

by Definition 3 (i),

λ(α)(w) = λ([(x, y)2])((x, y)1)

= sup{λdis([∇(x, y)2])(∇(x, y)1), λ([π1A(x, y)2])(π1A(x, y)1),
λ([π2A(x, y)2])(π2A(x, y)1), λ([π3A(x, y)2])(π3A(x, y)1)}

= sup{0, λ([y])(x), λ([x])(y)} = sup{λ([y])(x), λ([x])(y)} =∞
since by the assumption λ([y])(x) =∞ or λ([x])(y) =∞.
If α = [{(x, y)1, (x, y)2}] and w = (x, y)1, then
λdis(∇α)(∇w) = λdis(∇[{(x, y)1, (x, y)2}])(∇(x, y)1) = λdis([x])(x) = 0,

λ(π1Aα)(π1Aw) = λ([{π1A(x, y)1, π1A(x, y)2}])(π1A(x, y)1) = λ([x])(x) = 0,

λ(π2Aα)(π2Aw) = λ([{π2A(x, y)1, π2A(x, y)2}])(π2A(x, y)1) = λ([{x, y}])(y)
and

λ(π3Aα)(π3Aw) = λ([{π3A(x, y)1, π3A(x, y)2}])(π3A(x, y)1) = λ([{x, y}])(x).
Note that [{x, y}] ⊂ [y] and [{x, y}] ⊂ [x]. Since λ is a convergence approach
structure, we get λ([y])(x) ≤ λ([{x, y}])(x) and λ([x])(y) ≤ λ([{x, y}])(y). The
assumption λ([y])(x) =∞ (resp. λ([x])(y) =∞) implies λ([{x, y}])(x) =∞ (resp.
λ([{x, y}])(y) =∞).
By Definition 3 (i),

λ(α)(w) = λ([{(x, y)1, (x, y)2}])((x, y)1)
= sup{λdis([{∇(x, y)1,∇(x, y)2}])(∇(x, y)1), λ([{π1A(x, y)1, π1A(x, y)2}])

(π1A(x, y)1), λ([{π2A(x, y)1, π2A(x, y)2}])(π2A(x, y)1), λ([{π3A(x, y)1,
π3A(x, y)2}])(π3A(x, y)1)} = sup{0,∞} =∞.

For the cases α = [(x, y)1] or [{(x, y)1, (x, y)2}] and w = (x, y)2, it can be done
analogously to the above argument.
Case II: Let (z, z) = ∇w 6= (x, y) for some z ∈ X and ∇α = [(x, y)]. It follows

that w = (z, z)1 = (z, z)2 and α = [(x, y)1], [(x, y)2] or [{(x, y)1, (x, y)2}].
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If α = [(x, y)i] or [{(x, y)1, (x, y)2}] for i = 1, 2 and w = (z, z)1 = (z, z)2,
then λdis(∇α)(∇w) = λdis([(x, y)])(z, z) = ∞ since λdis is a discrete convergence
approach structure and (x, y) 6= (z, z). It follows that
λ(α)(w) = sup{λdis(∇α)(∇w), λ(π1Aα)(π1Aw), λ(π2Aα)(π2Aw), λ(π3Aα)(π3Aw)}

= sup{∞, λ(π1Aα)(z, z), λ(π2Aα)(z, z), λ(π3Aα)(z, z)} =∞.
Case III: Suppose ∇w 6= (x, y) and ∇α 6= [(x, y)], then λdis(∇α)(∇w) =∞ since

λdis is a discrete convergence approach structure, and consequently

λ(α)(w) = sup{λdis(∇α)(∇w), λ(π1Aα)(π1Aw), λ(π2Aα)(π2Aw), λ(π3Aα)(π3Aw)}
= sup{∞, λ(π1Aα)(π1Aw), λ(π2Aα)(π2Aw), λ(π3Aα)(π3Aw)} =∞.

Therefore, for all α ∈ F (X2 ∨4 X2) and ∀v ∈ X2 ∨4 X2, we get

λ(α) =

{
θ{v}, α = [v]

∞, α 6= [v]

i.e., by Definition 3 (iii), λ is discrete convergence approach structure on X2∨4X2

and by Definition 6 (i), (X,λ) is T0. �
Let X be a non-empty set and α, β ∈ F (X). We denote by α ∪ β the smallest

filter containing both α and β, i.e., α∪β is the filter generated by the set {V ∩W :
V ∈ α,W ∈ β}.

Lemma 8. Let (Xj , λj)j∈I be a class of CApp objects and X =
∐
j∈I

Xj, the co-

product of {Xj}j∈I . The coproduct convergence approach structure λ on X with
respect to the family of canonical injections ij : (Xj , λj) → X =

∐
j∈I

Xj is defined

by

λ(α)(xk) =


0, if α = [xk]

λk(α ∪ [Xk])(xk), if ik(β) ⊂ α for some k ∈ I and βk ∈ F (Xk)

∞, if ik(β) 6⊂ α for all k ∈ I and βk ∈ F (Xk)

Proof. Let α ∈ F (X) with α 6= [x] for all x ∈ X =
∐
j∈I

Xj . By definition 3 (iii),

λ(α)(xk) = inf{λk(βk)(xk) : βk ∈ F (Xk) for some k ∈ I such that ik(βk) ⊂ α}. If
ik(βk) ⊂ α for some k ∈ I and βk ∈ F (Xk), then such k can be at most one and
for this k, α ∪ [Xk] is the greatest element βk ∈ F (Xk) such that ik(βk) ⊂ α, i.e.,
ik(α ∪ [Xk]) = α. Hence, λ(α)(xk) = λk(α ∪ [Xk])(xk). �
Theorem 9. Every convergence approach space is T ′0.

Proof. Let (X,λ) be a convergence approach space. We show that (X,λ) is T ′0.
Let λ be an initial convergence approach structure on X2 ∨4 X2 induced by ∇ :
X2∨4X2 → (X2, λdis) and id : X2∨4X2 → (X2∨4X2, λ∗), where λdis is discrete
convergence approach structure on X2 and λ∗ is the final convergence approach
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structure on X2 ∨4 X2 induced by q ◦ ik : X2 → X2 ∨4 X2 for k = 1, 2 and let
v ∈ X2 ∨4 X2 with ∇v = (x, y). Suppose α ∈ F (X2 ∨4 X2) and w ∈ X2 ∨4 X2.
Note that

λdis(∇α)(∇w) =

{
θ{(x,y)}∇w, ∇α = [(x, y)]
∞, ∇α 6= [(x, y)]

=


0, ∇α = [(x, y)] and ∇w = (x, y)
∞, ∇α = [(x, y)] and ∇w 6= (x, y)
∞, ∇α 6= [(x, y)] and ∇w 6= (x, y)

Case I: If x = y, then ∇w = (x, x) implies w = (x, x)1 = (x, x)2 = (x, x) = v
and ∇α = [(x, x)] implies α = [(x, x)i] = [(x, x)] for i = 1, 2. By Definition 3 (i),
λ(α)(w) = λ([(x, x)i])(x, x)i = 0 since λ is a convergence approach structure on
X2 ∨4 X2.
Let x 6= y. ∇α = [(x, y)] implies α = [(x, y)1], [(x, y)2], [{(x, y)1, (x, y)2}] or

α ⊃ [{(x, y)1, (x, y)2}] and ∇w = (x, y) implies w = (x, y)1 or w = (x, y)2. By using
the similar argument given in the proof of Theorem 7, we must have α = [(x, y)1],
[(x, y)2] or [{(x, y)1, (x, y)2}].
If α = [(x, y)j ] and w = (x, y)j for j = 1, 2, then λ([(x, y)j ])((x, y)j) = 0 since λ

is a convergence approach structure on X2 ∨4 X2.
If α = [(x, y)1] and w = (x, y)2, then

λdis(∇α)(∇w) = λdis(∇[(x, y)1])(∇(x, y)2) = λdis([(x, y)])(x, y) = 0,

λ∗(idα)(idw) = λ∗(α)(w) = λ∗([(x, y)1])((x, y)2).

Since i2β 6⊂ α = [(x, y)1] for all β ∈ F (X2), by Lemma 8,

λ∗(α)(w) = λ∗([(x, y)1])((x, y)2) =∞.
Hence, by Definition 3 (i),

λ(α)(w) = λ([(x, y)1])((x, y)2)

= sup{λdis([∇(x, y)1])(∇(x, y)2), λ∗(id[(x, y)1])(id(x, y)2)}
= sup{0,∞} =∞.

Suppose α = [{(x, y)1, (x, y)2}] and w = (x, y)2.
In particular,

λ∗(idα)(idw) = λ∗(α)(w) = λ∗([{(x, y)1, (x, y)2}])((x, y)2).
Since λ∗ is a final convergence approach structure onX2∨4X2 and [{(x, y)1, (x, y)2}] ⊂
[(x, y)1], we get λ

∗([(x, y)1])((x, y)2) ≤ λ∗([{(x, y)1, (x, y)2}])((x, y)2). By the same
statement used above, λ∗([(x, y)1])((x, y)2) =∞, and consequently,

λ∗([{(x, y)1, (x, y)2}])((x, y)2) =∞.
By Definition 3 (i),

λ(α)(w) = λ([{(x, y)1, (x, y)2}])((x, y)1)
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= sup{λdis(∇[{(x, y)1, (x, y)2}])(∇(x, y)2), λ∗(id[{(x, y)1, (x, y)2}]), (id(x, y)2)}
= sup{0,∞} =∞.

For the cases α = [(x, y)2] (resp. [{(x, y)1, (x, y)2}]) and w = (x, y)1, by Lemma
8 and the argument used above, we get λ(α)(w) =∞.
Case II: Let (z, z) = ∇w 6= (x, y) for some z ∈ X and ∇α = [(x, y)]. It follows

that w = (z, z)1 = (z, z)2 and α = [(x, y)1], [(x, y)2] or [{(x, y)1, (x, y)2}].
If α = [(x, y)i] (resp. [{(x, y)i, (x, y)j}]) for i, j = 1, 2 with i 6= j and w =

(z, z)1 = (z, z)2 = (z, z), then λdis(∇α)(∇w) = λdis([(x, y)])(z, z) = ∞ since λdis
is a discrete convergence approach structure and (x, y) 6= (z, z) = ∇w. It follows
that

λ(α)(w) = sup{λdis(∇α)(∇w), λ∗(idα)(idw)}
= sup{∞, λ∗(α)(w)} =∞.

Case III: Suppose ∇w 6= (x, y) and ∇α 6= [(x, y)], then λdis(∇α)(∇w) =∞ since
λdis is a discrete convergence approach structure, and consequently

λ(α)(w) = sup{λdis(∇α)(∇w), λ∗(idα)(idw)}
= sup{∞, λ∗(α)(w)} =∞.

Therefore, for all α ∈ F (X2 ∨4 X2),

λ(α) =

{
θ{v}, α = [v]

∞, α 6= [v]

, i.e., by Definition 3 (iii), λ(α) is discrete convergence approach structure over
X2 ∨4 X2. By Definition 6 (ii), (X,λ) is T ′0. �

Theorem 10. A convergence approach space (X,λ) is T0 iff for all x, y ∈ X with
x 6= y, λ([y])(x) > 0 or λ([x])(y) > 0.

Proof. The proof is the same as the proof of [12, 19]. �

Example 11. Let X be a set with |X| ≥ 2. By Theorems 7, 9 and 10, every
indiscrete convergence approach space, i.e., for all α ∈ F (X) and for all x ∈ X,
λ(α)(x) = 0 is T ′0 but neither T0 nor T0.

Example 12. Let X be a non-empty set, F (X) be the set of all filters and λ :
F (X)→ [0,∞]X be a map defined as follows: For all α ∈ F (X) and u ∈ X,

λ(α)(u) =

{
0, α = [u]

1, α 6= [u]

Clearly, (X,λ) is a convergence approach space. By Theorems 7, 9 and 10, (X,λ)
is T0 (resp. T ′0) but not T0.
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Remark 13. (I) In Top (category of topological spaces and continuous maps),
T0, T ′0 and T0 are equivalent and reduce to classical T0 axiom (i.e., for each
distinct points x and y, there exists a neighborhood of x doesn’t contain y
or vice versa) [4].

(II) For any arbitrary topological category,
(i) T0 implies T ′0 but converse is not true in general [3].
(ii) There is no relation between T0 and each of T0 and T ′0 [3].

(a) T0 could be only discrete objects such as in ∞pqsMet (extended
pseudo-quasi-semi metric spaces and non-expansive maps) [7].

(b) T0 could be all objects, e.g., in Born (bornological spaces and
bounded maps) [3].

(c) In category Born, T0 =⇒ T0 = T ′0 [3].
(d) In category Lim of limit spaces and filter convergence maps,

T0 = T0 =⇒ T ′0 [3].
(e) In category SUConv of semi-uniform convergence spaces and

uniformly continuous maps, T0 =⇒ T0 =⇒ T ′0 [6].
(III) In convergence approach space (X,λ), by Theorems 7, 9 and 10, T0 =⇒

T0 =⇒ T ′0 but converse of each implication is not true in general by
Examples 11 and 12.
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