Available online: January 24, 2020

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 69, Number 1, Pages 603-[612] (2020)

DOI: 10.31801/cfsuasmas.609919

ISSN 1303-5991 E-ISSN 2618-6470

COMMUNICATIONS
http://communications.science.ankara.edu.tr/index.php?series=A1 SERIES A1

Ty CONVERGENCE APPROACH SPACES

MUHAMMAD QASIM AND MEHMET BARAN

ABSTRACT. In previous papers, several Tp-objects in set-based topological cat-
egory have been introduced and compared. In this paper, we give the char-
acterization of general Tp (resp. Tp, and Té) convergence approach spaces as
well as show how these notions are linked to each other.

1. INTRODUCTION

In 1989, Colebunders and Lowen [16] introduced convergence approach space to
satisfy the categorical properties such as Cartesian closedness which are failed in
approach space [I7].

Classical Tj separation of topology plays a vital role not only in mathematics such
as to get an alternative characterization of locally semi-simple coverings in terms of
light morphisms in algebraic topology [I3] but also in computer science where this
concept correspond to access the values through observations [26]. In addition to
that, Tp axiom has been used to build topological models in denotational semantics
of programming language and lambda calculus where Hausdorff topologies fail to
build such models [24] 25]. Furthermore, it has been used to characterize digital
line in digital topology and to construct cellular complex in image processing and
computer graphs [10, [14] [T5].

Due to huge importance of Ty separation, this concept has been extended to
topological categories by several mathematicians such as Briimmer [§] in 1971,
Marny [21] in 1973, Hoffmann [II] in 1974, Harvey [9] in 1977 and Baran [2] in
1991. Moreover, in 1991, Weck-Schwarz [27] and in 1995, Baran [3] analyzed the
relationship among these various generalization of Tj objects. One of the main
reason to extend Ty separation was to define 715 objects in arbitrary topological
categories [9].
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The main object of this paper is to characterize each of Ty, Ty and T}, convergence
approach spaces and show how these are related to each other.

2. PRELIMINARIES

Let £ and B be two categories. The functor U : &€ — B is called topological
functor if (7) U is concrete (i.e., faithful and amnestic) (i7) U consists of small fibers
and (i4i) every U-source has a unique initial lift [I], 22} 23].

Note that topological functor U : £ — B is called normalized if subterminals
have a unique structure.

Let X be a set, A C X, F(X) be the set of all filters and A be collection of
subsets of X. The stack of A and the indicator map 64 : X — [0, 00] are defined
by [A]={BC X|3A€ A: AC B} and

0, z€A
9A($):{OO v A

respectively.

Definition 1. (cf. [16,[18,20]) A map X : F(X) — [0, 00]X is called a convergence
approach structure on X if it satisfies the followings:
(i) Vz € X : A[z](z) =0,
(ii) Vo, € F(X):a C = A8 < Aa,
(iii) Va, B € F(X) : M(an B) = sup{A(a), A(B)}.

The pair (X, \) is called a convergence approach space.

Definition 2. (cf. [16, [18, 20]) Let (X,)\) and (X', \') be convergence approach
spaces. The map f : (X,\) — (X', \) is called a contraction map if it satisfies
foralla€ F(X): N(f(a))o f <.

The category whose objects are convergence approach spaces and morphisms
are contraction maps is denoted by CApp and it is a Cartesian closed topological
category over Set [16], 18] [20].

Definition 3. (¢f. [16,[18,120]) Let X be a non-empty set and (X;, \;) be the class
of convergence approach spaces.
(i) A source {f; : X — (X;,A\i)} in CApp has initial lift if and only if for
all a € F(X), da = sup \i(fi()) o fi, where fi(c) is a filter generated by
iel

{fi(A),i € I}, ie., fi(a) ={A; C X;: 3B € « such that f;(B) C A;}.
(ii) A sink {f; : (Xi, i) — X} in CApp has final lift if and only if for all
a€F(X)andz e X,

0, a = [z]

Ma)() = qinf inf  inf N . a#lx
e @) sEP(X B (), o [z]
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(iii) The discrete structure (X, Agis) on X in CApp is defined by for all o €
F(X) and z € X,

Oipy, «@
Adis(a):{ (=} N

(iv) The indiscrete structure (X, Aina) on X in CApp is defined by for all
ac€F(X)andx € X,

)\ind(a) (.’13) =0
3. Ty CONVERGENCE APPROACH SPACES

Let B be a nonempty set, B[] B2 be the coproduct of B2 and B2V A B? be two
distinct copies of B? identified along the diagonal [2]. Let ¢ : B> [ B> — B2V B>
be the quotient map. A point (x,y) in B2 VA B? is denoted by (z,y); (resp.
(x,9)2) if (x,y) is in the first (resp. second) component of B2V B?. Note that
(z,z)1 = (z,2)2 = (z,2).

Definition 4. (c¢f. [2]) A map A : B2 VA B?> — B? is called a principle axis map

if
o)) = (z,y,z), i=1
Al {(x,:c,y), i=2

Definition 5. (¢f. [2]) A map V : B2V B? — B? is called a folding map if
V((z,9)i) = (2,y) fori=1,2.

Definition 6. (c¢f. [221]) Let U : £ — Set be topological in the sense of [1l, 22]
and X be an object in & with U(X) = B.

(i) X is Ty iff initial lift of the U-source {A : B>V B?> — U(X?3) = B3 and
V : B2V B? — UD(B?) = B?} is discrete, where D is a discrete functor
which is left adjoint to U.

(i) X ids T} iff initial lift of the U-source {id : B>V o B — U(B?V o B%)?V A B?
and V : B2V B? — UD(B?) = B?} is discrete, where (B?> Va B?) is
the final lift of U-sink {q o i1,qoiy : U(X?) = B? — B?Va B?} and
ir, : B> — B2]] B? are the canonical injections for k = 1,2.

(iil) X is To iff X doesn’t contain an indiscrete subspace with (at least) two
points.

Theorem 7. A convergence approach space (X, ) is Ty iff for all x,y € X with
z #y, M[z])(y) = oo or A([y])(z) = oco.

Proof. Let (X, \) be T for all z,y € X with z # y. Note that [(z,y)1] € F(X%Va
X?), (z,9)2 € X2V X? and

Adis([V (2, y)1)(V(2, y)2) = Aais([(2, 9)]) (2, y) = 0,
A([m1 Az, y)](m1 Az, y)2) = Mla])(z) =0,
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A([m2 Az, y)1)(ma Az, y)2) = A[y]) ()

and

AM[msA(z, y)l(m3A(z, v)2) = M[2])(y),

where 7; : X3 — X are the projection maps, i = 1,2,3. Since (X,\) is Ty, by
Deﬁnitionﬁ (i),

= sup{Aais ([V (2, 1)) (V(2,9)2), A([m1 Az, yh]) (71 A2, )2),
([WzA(x,y) (2 A(z,y)2), Mlma Az, yh]) (w3 A2, y)2) }
= sup{0, A([z])(y), A([y])(2)} = sup{A([z])(y), A([y]) (=)}

and consequently, A([z])(y) = oo or A([y])(z) = oo.

Conversely, let A\ be an initial convergence approach structure on X2 vV, X?
induced by A: X2V X2 — (X3 X% and V: X2V X2 — (X2, Agis), where Ay
is discrete convergence approach structure on X2 and A? is the product convergence
approach structure on X2 induced by 7; : X® — X the projection maps for i =
1,2,3. Suppose a € F(X?Va X?) and v € X? Vo X? with Vv = (z,y). By
Definition [T} we show that

Ma) = {0{1}}7 a = [v]

0, a#l
where 0, is the indicator of {v}. Let w be any point in X2 VA X2 Note that

0@y Vw, Va=|[(z,y)]

Adis (V) (Vw) = {OO Va # [(z,y)]
0, Va=][(z,y)] and Vw = (z,vy)
={ 00, Va=|[(zy) and Vu # (z,y)
(

Case I: If x = y, then Vw = (z,z) implies w =
Va = [(z,2)] implies o = [(z,2);] = [(#,2)] for i = 1,2. By Definition [3] (i)
AMVa)(Vw) = X[(z,z)])(x,z) = 0 since X is a convergence approach structure on
X? VA X2

Suppose that © # y. Vw = (z,y) implies w = (z,y); or u = (z,y)2 and Va =
[({E,y)} implies o = [(:Evy)l]? [(1'7y)2], [{(xvy)l’ (1.7?/)2}] or o D [{(xay)la (mvy)Q}]
Firstly, we show that the case o D [{(z,y)1,(z,y)2}] with o # [0] and o #
[{(z,y)1, (%,y)2}] cannot occur. To end this, if [@] # « # [{(=,y)1, (z,y)2}], then
) [{(m,y)l,(x,y)g}] iff o = [(x,y)ﬂ or o = [(Ji,y)g} Clea‘rIY7 if @ = [(33,?})1}
or [(z,y)2], then a D [{(x,y)1, (x,y)2}]. Conversely, if o D [{(z,y)1, (z,y)2}] with
0] # « # [{(x,y)1, (z,y)2}], then there exists V' € a such that V' # {(z, y)1, (z,y)2}
and V # (. Since V and {(x,y)1, (x,y)2} are in @ and « is a filter, it follows that

z,z)1 = (z,x)2 = v and
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Vo {(z, v, (z,y)2} = {(z,9)1} or {(z,y)2} is in @, ie, a = [(2,y)1] or [(z,y)2].
Hence, we must have a = [(z, ;1 , [z, y)2) or [{(z, y)l, (55 Y)2}]

If o = [(z,y);] and w = (z, i=1,2, then \([(z,9):])((z,y);) = 0 since X is a
convergence approach structure on X2 Vv X?2.
If o = [(z,y)2] and w = (x,y)1, then

Adis(Va)(Vw) = Aais(VI(2,9)2]) (V (2, 9)1) = Aais ([(2, 9)])
A(miAa)(mAw) = A([m1 Az, y)2]) (M1 Az, y)1)) = A[2])(z) =
A(meAa)(maAw) = A([m2 A(z, y)2]) (r2 Az, y)1) = Al2])(y)

(z,y) =0,

and
A3 Ae) (m Aw) = M[ms A(z, y)a]) (m3 A, 9)1) = A([u])(
by Definition [3] (i),
AMay)(w) (@, m)2]) (2. )1)
sup{Aais ([V (2, 9)2]) (V (2, 9)1), A([m1 A2, y)a]) (M1 A2, 9)1),
A[meA(z, y)2]) (r2 Az, y)1), A 'Y) 'Y)
= sup{0, A([y]) (=), A[z])(9)} = sup{A([y ])(fﬂ)a)\ [2])(y)} = o0
since by the assumption A([y])(z) = oo or A([z])(y) = cc.
If o =[{(z,y)1,(z,v)2}] and w = (x,y)1, then
Adis(Va) (Vw) = Aais(VI[{(z, 9)1, (2, )2} (V(2,9)1) = Aais([2]) () = 0,
A(miAa)(mAw) = M[{m A(z,y)1, 1Az, y)2}]) (m1 A2, y)1) = A[z])(2) = 0,
A(maAa)(maAw) = A[{maA(z, y)1, ma Az, y)2}]) (2 A(2, y)1) = A([{z, y})(y)

and

AmgAa)(msAw) = A[{ms Az, y)1, T3 A, y)2}]) (3 A2, y)1) = AM[{z, y}) (@)
Note that [{z,y}] C [y] and [{z,y}] C [z]. Since A is a convergence approach
structure, we get A([y])(2) < A([{z,y}])(z) and A([z])(y) < A([{z,y}])(y). The
assumption A([y])(;ﬂ) = 00 (resp. A([z])(y) = oo) implies A([{z,y}])(x) = oo (resp.

Al{z, y}])(y) = oo
By Definition [3[ (i),

Ma)(w) = M{(z, ),

8
~—

(@,9)2})((z,9)1)
= sup{Aais({V(z,9)1, V(z,9)2 ) (V(z, 9)1), M[{m Az, y)1, m1 A2, y)2}])
(mA(z, y)1), M{{m2 Az, y)1, T Az, y)2}]) (2 Az, y)1), {73 Az, y)1,
m3A(2,y)2}])(m3A(z, y)1)} = sup{0, 00} = oo
For the cases a = [(z,y)1] or [{(z,¥)1, (z,y)2}] and w = (z,y)2, it can be done

analogously to the above argument.
Case II: Let (z,2) = Vw # (z,y) for some z € X and Va = [(z,y)

].
that w = (z,2)1 = (2,2)2 and a = [(x,9)1], [(z,y)2] or [{(z, )1, (x,y)2}].

— - =

It follows
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If o = [(z,9)i] or [{(z,9)1,(x,y)2}] for i = 1,2 and w = (2,2)1 = (2,2)q,
then Agis(Va)(Vw) = Aais([(z,9)])(z,2) = oo since Ag;s is a discrete convergence
approach structure and (z,y) # (z, z). It follows that

Ma)(w) = sup{Aais(Va)(Vw), A(m1 Aa) (11 Aw), M(me Aa) (2 Aw), A(m3 Aa) (3 Aw) }
= sup{oo, A(m1Aa)(z, 2), A(m2Aa)(z, z), A(m3Aa)(z, 2) } = co.
Case III: Suppose Vw # (z,y) and Va # [(x,y)], then Agis(Va)(Vw) = oo since
Adis 18 a discrete convergence approach structure, and consequently
AMa)(w) sup{Aais(Va)(Vw), A1 Aa) (1 Aw), AM(me Aa) (me Aw), (73 Aa) (w3 Aw) }
= sup{oo, A(m1Aa)(m1 Aw), My Aa) (maAw), AM(r3Aa) (m3 Aw) } = oo.
Therefore, for all & € F(X?Va X?) and Vv € X2 Va X2, we get

Ma) = {H{U}, a = [v]

o, a#[

i.e., by Definition [3| (iii), A is discrete convergence approach structure on X2V X2
and by Definition [6] (i), (X, \) is Tp. O

Let X be a non-empty set and «, 8 € F(X). We denote by o U 8 the smallest
filter containing both v and S, i.e., aU S is the filter generated by the set {VNW :
VeaWepS}

Lemma 8. Let (X;,\j)jer be a class of CApp objects and X = [[ X, the co-
jeI

product of {X;};jer. The coproduct convergence approach structure A on X with

respect to the family of canonical injections i; : (X;,\;) — X = [[ X, is defined

JEI
by
0, if o = [wg]
Ma)(zg) = § Me(a U [Xi))(zk),  if in(B) C a for some k € I and ), € F(Xy)
00, if ik(B) ¢ « for all k € I and B, € F(Xy)
Proof. Let v € F(X) with o # [z] for all z € X = [[ X,. By definition (3| (iii),
JEI

AMa)(zg) = inf{ A\ (By)(zk) : By € F(Xy) for some k € I such that i (8,) C a}. If
ix(B)) C « for some k € I and 8, € F(X}), then such k can be at most one and
for this k, oo U [X}] is the greatest element 3, € F(X}) such that i,(8;,) C a, i.e.,
ir(aU[Xg]) = @. Hence, A()(zx) = M\ (a U [Xi]) (zg). O

Theorem 9. Every convergence approach space is T}.

Proof. Let (X, \) be a convergence approach space. We show that (X, \) is T}.
Let X be an initial convergence approach structure on X2 VA X? induced by V :
X2VA X2 — (X2, M\gis) and id : X2V A X2 — (X2VA X2, 0, where Mg, is discrete
convergence approach structure on X2 and A\* is the final convergence approach
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structure on X2 Va X2 induced by qoiy : X2 — X2V X2 for k = 1,2 and let
v € X2V X? with Vv = (z,y). Suppose a € F(X%2Va X?) and w € X2V X2
Note that

Adis(Va)(Vw) = {i{)(mvy)}vw’ gz;&jz;}

{O, Va = |[(z,y)] and Vw = (z,y)

oo, Va=|[(z,y)] and Vw # (z,y)
oo, Va # [(z,y)] and Vw # (z,y)

Case I If = y, then Vw = (z, ) implies w = (z,2); = (z,2)2 = (z,2) = v
and Vo = [(z, )] implies o = [(x,z);] = [(z,z)] for ¢ = 1,2. By Definition 3| (i),

)\(a)( ) = M|[(z,7):])(z,7); = 0 since X is a convergence approach structure on
X2 VA X2.

Let # # y. Va = [(z,y)] implies o = [(z,y)1], [(@,y)2], [{(z,9)1, (2,9)2}] or
a D [{(z,y)1, (z,y)2}] and Vw = (x,y) implies w = (x,y); or w = (z,y)2. By using
the similar argument given in the proof of Theorem m we must have o = [(x, y)1],

[(z,9)2] or {(z,9)1, (z,y)2}]- N B
If o =[(z,y);] and w = (z,y); for j = 1,2, then A\([(z,y),])((z,y),;) = 0 since A
is a convergence approach structure on X2 VA X?2.
If o = [(z,y)1] and w = (z,y)2, then

Adis (Vo) (Vw) = Aais(V[(2,9)1])(V (2, 9)2) = Agis([(z, 9)]) (2, y) = 0,
A (idey) (idw) = X () (w) = X" ([(z, w1 ]) (2, y)2)-
Since 2 ¢ a = [(x,y)1] for all B € F(X?), by Lemmag]

A () (w) = A ([(z, y)1])((z,)2) = oo.
Hence, by Deﬁnition (1),
Ma)(w) = A[(z,»)1])((z,7)2)
= sup{Aais ([V(z, )1 )(V(2,y)2), A" (id[(2, y)1]) (id(2, y)2) }
= sup{0,00} = 0.
Suppose o = [{(z,y)1, (,y)2}] and w = (2, y)2.

In particular,
A" (ide) (idw) = A" () (w) = A ({(z, y)1, (2, 9)2}]) (@, y)2)-
Since A" is a final convergence approach structure on X2V A X2 and [{(z,y)1, (z,9)2}] C

[(z, y)1], we get A*([(z,9)1])((z,y)2) < A" ({(2,9)1, (,9)2}])((z, y)2). By the same
statement used above, A*([(z,y)1])((z,y)2) = oo, and consequently

)\*([{($,y)1, (JZ, Z/)2}])((ﬂ77y)2) = OQ.
By Deﬁnition (1),

Me)(w) = M{(@,9)1, (@, 9)2 1) (2, 9)1)
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= sup{Aais (V[{(z, 9)1, (2, 9)2}]) (V (2, 9)2), A" (id[{ (z, y)1, (2, y)2}]), (id(z, y)2) }
= sup{0,00} = 0

For the cases a = [(z,y)2] (resp. [{(z,y)1, (z,9)2}]) and w = (x,y)1, by Lemma

z,y)
and the argument used above, we get A(a)(w) = oco.
Case II: Let (z,2) = Vw # (z,y) for some z € X and Va = [(z,y)]. It follows
z y)2] or

that w = (sz)l = ( 72)2 and o = [(xvy)lL [( T,y {( ’y)l, (1' y) }]
If @« = [(z,9):] (resp. [{(z,v)s, (x,y);}]) for i,j = 1,2 with ¢ # j and w =
(z,2)1 = (2,2)2 = (2, 2), then \gis(Va)(Vw) = Agis([(z,9)]) (2, 2) = oo since Ag;s
is a discrete convergence approach structure and (z,y) # (z, ) Vw. It follows
that
AMa)(w) = sup{us(Va)(Vw), \*(ida) (idw)}
= sup{oo, A"(a)(w)} = o0
Case IIL: Suppose Vw # (z,y) and Va # [(z,y)], then )\dis(Va)(Vw) = oo since
Adis 18 a discrete convergence approach structure, and consequently
AMa)(w) = sup{Aus(Va)(Vw), \*(ida)(idw)}
= sup{oo, A*(a)(w)} = oo
Therefore, for all a € F(X?Va X?),

Ma) = {H{U}, a = [v]

o, a#[

, i.e., by Definition I (iii), A(«) is discrete convergence approach structure over
X2 \/A X2. By DeﬁnlthH@(l (X, \) is T§. O

Theorem 10. A convergence approach space (X, \) is Ty iff for all x,y € X with
z #y, M[y))(@) >0 or A[z])(y) > 0.

Proof. The proof is the same as the proof of [12] [19]. O
Example 11. Let X be a set with |X| > 2. By Theorems @ @ and every

indiscrete convergence approach space, i.e., for all a € F(X) and for all x € X,
Ma)(z) = 0 is T but neither Ty nor Tp.

Example 12. Let X be a non-empty set, F(X) be the set of all filters and \ :
F(X) — [0,00]* be a map defined as follows: For all « € F(X) and u € X,

= [u]
# [u]

Clearly, (X, ) is a convergence approach space. By Theorems m @ and (X, \)
is Ty (resp. T}) but not Ty.

«
(&%
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Remark 13. (I) In Top (category of topological spaces and continuous maps),

To, T} and Ty are equivalent and reduce to classical Ty axiom (i.e., for each
distinct points © and y, there exists a neighborhood of © doesn’t contain y
or vice versa) [4].
(IT) For any arbitrary topological category,
(i) To implies T} but converse is not true in general [3].
(i) There is no relation between Ty and each of Ty and T} [3].
(a) Ty could be only discrete objects such as in copgsMet (extended
pseudo-quasi-semi metric spaces and non-expansive maps) [1].
(b) Ty could be all objects, e.g., in Born (bornological spaces and
bounded maps) [3].
(c) In category Born, Ty = Ty = Tj [3].
(d) In category Lim of limit spaces and filter convergence maps,
TQZ Ty = Té Bﬂ
(e) In category SUConv of semi-uniform convergence spaces and
uniformly continuous maps, Ty = To = T} [6].
(ITII) In convergence approach space (X, \), by Theorems @ E and |10, Ty, =
Ty = T} but converse of each implication is not true in general by

Ezamples[11] and [13
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