
Enteric Nervous System and Its Internal
Structure
When compared to other peripheral organs of the body,
the gastrointestinal tract (GIT) differs from all of them.
GIT has a comprehensive internal nervous system called
enteric nervous system (ENS), which can control intestin-
al function, even if it is totally cut off from the central
nervous system (CNS).[1] The ENS provides unique inner-
vation of the intestine and is the most neurochemically
diverse part of the peripheral nervous system (PNS).[2]

The ENS was described by British physiologist John
Newport Langley as one of the three autonomic nervous
system parts: parasympathetic nervous system, enteric
nervous system and sympathetic nervous system.[3] More
than 100 million efferent neurons that reach the intestines
through the vagus nerve are present in human ENS.[4]

Unlike the rest of the PNS, the complexity of managing
bowel behavior is a privilege that evolution provides to the
ENS, which has led to the ability to manifest complemen-
tary neuronal activity and to control gastrointestinal

behavior independently of the brain or spinal cord.[5–7] The
ENS has at least as many neurons as in the spinal cord but
has more neurons than any other group of peripheral gan-
glia. Unique to PNS, the ENS is regulated in microcir-
cuits with intrinsic primary afferent neurons (IPANs) and
interneurons that are capable of initiating reflexes. The
phenotypic diversity of enteric neurons is very wide and
almost every class of neurotransmitters found in the CNS
has been identified in the ENS.[6] Although the ENS can
work independently from the CNS, it normally does not;
CNS affects the enteric system and the intestine also sends
information to the brain. Indeed, 90% of the vagal fibers
between the intestine and the brain are afferent, suggest-
ing that the brain is more recipient than a giver in brain-
intestinal communication.[6,8]

ENS is located within the tubular digestive system
walls, biliary system and pancreas. ENS has myenteric and
submucosal plexuses, two ganglioned plexuses in the intes-
tine, where almost all intrinsic nerve cells are present.[9]

The myenteric plexus is located between the outer longi-
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tudinal and circular muscle layers and runs from the
esophagus to the rectum along the full length of the diges-
tive tract. The submucosal plexus is found only in the
large and small intestines.[10]

The enteric motor neuron has five broad types and
many subtypes; excitatory neurons that excite intestinal
muscles, inhibitory neurons that inhibit intestinal mus-
cles, vasodilator/secretomotor neurons, non-vasodilator
secretomotor neurons, and neurons that innervate the
enteroendocrine cells.[11] In the guinea pig’s small intes-
tine, one type of ascending as well as three types of
descending interneurons have been identified. Neurons
that ascend, which have enkephalin/calretinin/ChAT
(ENK/calretinin/ChAT) chemical code, are cholinergic
and form chains extending across the intestine, such as
descending neurons.[12] The three descending interneuron
species that the intestines have are called by the following
names and chemical codes: nitric oxide synthase/choline
acetyltransferase/vasoactive intestinal peptide ± gamma-
aminobutyric acid ± bombesin ± neuropeptide Y (NOS/
ChAT/VIP±GABA±BN±NPY), choline acetyltransferase/
5-hydroxytryptamine (ChAT/5-HT) and choline acetyl-
transferase/somatostatin (ChAT/SOM). With the investi-
gation of all these neurons’ connections, the hypothesis
that ChAT/NOS/VIP neurons involved in local mobility
reflexes were related to the transmission of migrating
myoelectric complexes (MMCs) of ChAT/SOM neu-
rons. It was found that neurons were directly involved in
secretomotor reflexes but indirectly in mobility reflexes
in the small intestine and ChAT/5-HT.[11,13] ChAT/SOM
neurons have distinctive morphology with branching fil-
ament dendritic cell bodies. In the distal colon, filamen-
tous neurons with anal axons are not present but they are
present in the colon.[14–16]

Many studies have noted that reflexes occur in the iso-
lated intestine, even after the cut-off of the extrinsic nerves
feeding the intestines and after a certain period of time for
the ends to degenerate. This indicates the presence of
IPANs (sensory neurons) in the intestine.[17,18]

Intestinal secretomotor neurons of two types have been
identified that are cholinergic and non-cholinergic, and
also the release of IPANs in the mucosa from the ends of
these neurons, indicates that these cells may have secreto-
motor effects.[11] It has been shown that non-cholinergic
neurons use VIP or a related peptide as their main trans-
mitter and mediate the majority of the local reflex response.
The point of innervation of ACh/calretin neurons and the
secretory glands is the mucosal base where the former have
collaterals against submucosal arterioles but ACh/NPY
neurons don’t supply innervation to the arterioles.[11]

Gut-Brain and Vagus Nerve
The vagus nerve serves as the first neural communication
mediator between the brain and the gastrointestinal (GI)
system. The vagus nerve transmits energy state signals
through the vagal afferent (sensory) nerves from the intes-
tine to the brain. There are separate afferent fibers inner-
vating GI organs to determine intestinal nutrient content
or stomach volume.[19–21] Afferent fibers mentioned include
cell bodies inside the nodose ganglia synapsing with the
CNS. The medial nucleus of the solitary tract (mNTS) in
the caudal brain stem acquires vagal afferent/sensory
information in the brain and the information is then trans-
mitted via ascending neural pathways to the various hind-
brain and forebrain regions.[22] Vagal-mediated signaling
from the GI organs is first received in the mNTS area of
the brain.[23] GI-mediated signals, such as direct vagus
nerve stimulation, mechanical tension in the stomach, and
intestinal infusion, activate neurons in a region of the
brain that is classically affiliated with memory control,
feeding behavior, and learning; the hippocampus
(HPC).[22,24–27] Studies of Clark et al.[28–30] have shown that
unilateral cervical vagus nerve stimulation and stimulated
vagal afferents by inactivation of the vagal efferents,
improve inhibition-avoidance retention memory in rats,
while in humans, vagus nerve stimulation increases reten-
tion in recognition memory as stimulation occurs upon
learning.

The vagus nerve promotes neurotrophic and neuro-
genic signaling. The endogenous relevance of vagal sig-
naling, particularly the vagal afferent pathways of the
innervated intestines, abnormal and cognitive control is
not well understood. The neural pathways that enable
transmission of vagal mediated energy-state signals
between hippocampal neurons and the GI pathway have
not totally clarified. Furthermore, the neural pathways
which cater for the transmission of vagal mediated ener-
gy-state signals between the GI pathway and hippocampal
neurons are not completely understood. MNTS, where
sensory inputs from the digestive system synapse here,
sends projections to several brainstem and forebrain
regions, but not directly to the HPC.[31–33] This shows that
communication between mNTS and HPC is made
through multiple nerve projection pathways. The poten-
tial brain region reserve location that binds mNTS to the
ventral CA1 HPC (one of the subregions of the HPC) was
defined as the locus coeruleus (LC) and the medial septum
(MS).[31] In the world of gut-brain connection, HPC is a
new player. GI signal with in-meal saturation signals (eg,
gastric bloating, intestinal food infusion) activates cerebral
blood flow (CBF) in hippocampal neurons in rodents.[24,34]
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In addition, HPC blood flow is strongly actuated after
gastric vagal nerve stimulation in people suffering from
obesity.[27]

Suarez et al.[22] noted that the gastrointestinal derived
vagal sensory signaling supports hippocampus-dependent
memory function by way of brainstem–septal nerve path-
way, in this way initializing a previously unbeknown act
for the axis of the brain-gut in memory control. Other
studies have shown that vagal nerve stimulation, mimick-
ing afferent signaling from the intestine, has been success-
fully used to treat depression, and also increases memory
as well as learning in both humans and animals.[35,36]

Potentially, luminal microbiota can affect behavior, mood,
and brain development via signals transmitting by the
vagus nerve.[6,37–39]

The amygdala is a small, almond-like structure and is
considered one of the most important parts in the limbic
system and has a vast record of scientific research in emo-
tion processing with its role in behavior modulation.[40,41]

Because it is located centrally in the temporal lobe, the
amygdala complex is highly joined to multiple brain
regions. Amygdala receives sensory input from thalamus
and cortical regions, as well as various other sites in the
limbic system, including hippocampus and the prefrontal
cortex.[42]

There are noradrenergic projections extending direct-
ly and indirectly from NTS to amygdala.[43] Thus, visceral
information received by the vagus nerve may ultimately
affect amygdala activity. In fact, vagus nerve stimulation
has been shown to stimulate norepinephrine release in the
amygdala,[44] increasing behavioral outcomes in preclinical
fear extinction models and clinical trials of major depres-
sive disorder, and regulating connections to the amygdala
prefrontal cortex.[45,46] In contrast, the interruption of vagal
communication in the subdiaphragmatic disruption of the
vagus nerve has been shown to reduce fear depletion but
to reduce anxiety-like behavior in rats.[47]

Numerous neurodevelopmental complications are also
linked to abnormalities in the amygdala. Changes in amyg-
dala efficacy, volume (properties affected by the intestinal
microbiota)[48–51] and/or connectivity have been reported in
individuals diagnosed with attention deficit hyperactivity
disorder,[52] schizophrenia,[53,54] and autism spectrum disor-
ders (ASD).[55,56]

Link between the Gut Microbiota-Brain
and Neurodevelopmental Disorders
In humans, the gastrointestinal tract is collectively colo-
nized by trillions of microorganisms called intestinal

microbiota. This gut microbiota regulate host physiology
in many aspects, including the maturation and function of
the immune system.[57–59] Furthermore, increasing evidence
suggests that intestinal microbiota have effects on brain
development, function and regulation of behavior.[37,60,61]

Brain development in mammals is a complex process
that lasts until adolescence and in humans lasts until
early adulthood. In addition, the brain development
process involves the passage of cells over longer distances
to create specific circuits underlying behavior, as well as
the migration of cells to extraordinary, large-scale long
distances during certain fetal development.[62,63] The
biggest portal in the molecular universe is the intestine
hence it has been shown that various dietary ingredients
interact directly with the brain development and trigger
functional changes in the grown-up brain.[64,65] Recent
research has found evidence that the intestinal microbio-
ta has long-term effects on health, such as leading and
easing developmental processes in the brain.

The mammalian microbiome consists of a unique
combination of many different microorganisms (i.e. bac-
teria, fungi, archaea, and viruses) in the body. There are
many pieces of research showing the effect of the intes-
tinal microbiome on CNS function, but most of these
researches are preclinic, rather than human investiga-
tions.[61,66] These include diet management, interventions
that bolster the growth of beneficial bacteria (like prebi-
otics), administration of specific bacterial strains (like pro-
biotics), antibiotic treatments, germ-free mice (microbio-
ta deficient), fecal microbiota transplantation and C-sec-
tion.[67] Recent reports of studies on mice models show
that disruption of the microbiome will contribute to the
understanding of the pathology of various neurological
diseases. According to evidence from rodent models,
there is a direct link between intestinal microbiota, stress
and anxiety.[68] Research on human and animal models has
linked intestinal bacteria with the function and develop-
ment of the immune system. Microbiota includes all types
of immune cells, and specific microbes that increase or
ameliorate immunological disorders like asthma, inflam-
matory bowel disease and type 1 diabetes.[69] There are
many animal models research based on the potential role
of the microbiome in neuropsychiatric disorders like
depression, anxiety,[68] autism spectrum disorder,[70] schiz-
ophrenia,[71] Parkinson’s disease, and Alzheimer’s dis-
ease.[72]

Increasing evidence indicates bi-directional nature of
communication between intestinal microbial populations
and brain.[73–76] De Palma et al.[77] used a maternal separa-
tion model in mice and showed deep differences in intes-



tinal microbiota in response to early life stress resulting
in an anxiety-like phenotype. It has also been reported
that intestinal bacteria have a reciprocal effect where cer-
tain bacteria or whole microbial populations have an
effect on host stress and depression-like behavior.[78–80] It
is not yet clear whether these examples are directly driv-
en by an intestinal-brain interaction or mediated by
other physiological factors caused by the disease state.
But these reports and others illustrate potential interac-
tive relations between the gastrointestinal tract micro-
biome and the brain.

Evidences from studies in rodent animal models show
that intestinal microbiome plays a role in depressive
behavior.[81–83] Approximately 20% of patients with gas-
trointestinal symptoms have been reported to be associat-
ed with depression.[84] According to a hypothesis, depres-
sion or subsets of this disorder are the result of a microglial
disorder, since the presence of depression commonly leads
to either intense inflammatory episodes in the brain or a
descend in microglial function.[85] According to latest find-
ings on the role of the microbiota in microglia maturation
and activation, it is not difficult to predict that microbiota
can trigger depression by affecting microglial maturation
and activation.[86,87] In a study on depression, reduced bac-
terial richness and diversity were addressed and it was
reported that depression-like phenotypes could be trans-
mitted to rats by fecal transplantation.[88] More recently,
studies on mice and humans have indicated that microbio-
ta has an active role in guiding depression-like behavior
and suggests potential new ways of therapeutic develop-
ment.

In this review, in the light of general information about
the enteric nervous system and its internal structure, we
evaluate the relationship between microbiota and brain in
human as well as animal models through many studies
with gut and vagus nerve connections. The vagus nerve is
the primary neuron that enables the gastrointestinal
tract–brain communication. Vagus nerve mediated gas-
trointestinal signals activate the hippocampus.
Explanation of the exact mechanism concerning micro-
biota and amygdala communication requires further
research. By linking microbial activities to progressive
structural and functional events in the brain in mice mod-
els and in humans, we can suggest that intestinal micro-
biota is an important contributor to neurodevelopment
and neurodegeneration. Further researches revealing
these relations may provide new approaches for under-
standing neurodegenerative, psychiatric and behavioral
diseases.
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