
Trakya University Journal of Engineering Sciences

http://dergipark.gov.tr/tujes

ISSN 2147–0308

 Review Article / Derleme Makale

*Correspondence to: kadir.camoglu@bilgeadam.com 20(2): 79-91, 2019

COMPARISON OF REQUIREMENTS ENGINEERING KNOWLEDGE

AREAS IN TERMS OF TRADITIONAL AND AGILE SOFTWARE

METHODS

Kadir ÇAMOĞLU1* , Rembiye KANDEMİR2

1Trakya University, Department of Computer Engineering, Engineering Faculty, Edirne / Turkey

2Trakya University, Department of Computer Engineering, Engineering Faculty, Edirne / Turkey

Cite this article as:

Çamoğlu, K. & Kandemir, R. (2019). Comparison of Requirements Engineering Knowledge Areas in Terms of Traditional

and Agile Software Methods, Trakya University Journal of Engineering Sciences, 20(2), 79-91.

Highlights

 Determining requirements engineering key concepts

 Current requirements engineering approaches

 Advantages and Disadvantages of Traditional Methods and Agile Methods

Article Info Abstract

Article History:

Received:

May 22, 2019

Accepted:

August 12, 2019

One of the important points to be considered when implementing a

software project is the successful management of the requirements. The

success of the software depends on the accuracy and completeness of the

requirements. Knowing the positive and negative aspects, advantages and

disadvantages of the existing methodologies helps for selecting the

appropriate methodology and choosing the appropriate approach to the

situation and the project in this direction will increase the probability of

success of the project. Although there is a lot of research in the literature

about the traditional and agile approaches which are the main trends of

software development approaches, the publications made in specific for

requirements engineering process are limited. In this study, the necessary

engineering applications in traditional and agile methodology approaches

are evaluated to assist in the selection of methodology.

Keywords:

Requirements engineering;

Traditional software development

methods;

Agile software development

methods;

Agile and traditional comparison;

GEREKSİNİM MÜHENDİSLİĞİ BİLGİ ALANLARININ GELENEKSEL VE

ÇEVİK YAZILIM YÖNTEMLERİ AÇISINDAN KARIŞLAŞTIRILMASI

Makale Bilgileri Öz

Makale Tarihçesi:

Geliş:

22 Mayıs 2019

Kabul:

12 Ağustos 2019

Bir yazılım projesi uygularken dikkat edilmesi gereken önemli

noktalardan biri gereksinimlerin başarılı bir şekilde yönetimidir.

Yazılımın başarısı, gereksinimlerin doğruluğuna ve eksiksizliğine

bağlıdır. Mevcut metodolojilerin olumlu ve olumsuz yönlerini,

avantajlarını ve dezavantajlarını bilmek gerçekleştirilecek projeler için en

uygun metodolojinin seçilmesine yardımcı olacaktır. Proje için

kaynaklara, bağlama ve diğer unsurlara göre en uygun yaklaşımı seçmek

de proje başarımını artırır.

Literatürde yazılım geliştirme yaklaşımlarının ana eğilimleri olan

geleneksel ve çevik yaklaşımlar hakkında çok fazla araştırma olmasına

rağmen, gereksinim mühendisliği süreci için özel olarak yapılan yayınlar

sınırlıdır. Bu çalışmada, uygun metodoloji seçiminde yardımcı olmak

amacıyla geleneksel ve çevik metodoloji yaklaşımlarındaki gereksinim

mühendisliği uygulamaları karşılaştırılmıştır.

Anahtar Kelimeler:

Gereksinim mühendisliği;

Geleneksel yazılım geliştirme

yöntemleri;

Çevik yazılım geliştirme

yöntemleri;

Çevik ve geleneksel süreçlerin

karşılaştırılması;

https://orcid.org/0000-0002-9872-6613
https://orcid.org/0000-0003-3137-5019

80 K. Çamoğlu, R. Kandemir / Trakya University Journal of Engineering Sciences, 20(2): 79-91, 2019

1. Introduction

Every organization that develops software aims to

produce quality products by realizing successful

projects to meet the needs of its stakeholders. The

Standish Group's report published in 2015 states that

considering the budget, time, scope and quality

constraints of the projects, the success rate is 29%. 19%

of the projects were canceled, and the remaining 52%

could be completed by budget or timeout, quality loss

or scope contraction (Hastle & Wojewoda, 2015).

According to the same report, in the top ten factors

affecting the success or failure of the projects, "clearly

stated requirements" are in the third place. Similarly,

the changes and / or lack of requirements is the second

and third among the project difficulties, and the first

among the factors causing the cancellation of the

project.

Requirements engineering is a process of how the

possible system should be defined. Requirements serve

as a guide for the software development team. The

purpose of requirements engineering is to guide

software development activities to produce the right

software (Lawrence, Wiegers, and Ebert, 2001). If the

requirements are not achieved correctly from the right

stakeholders, it is highly likely that the project will fail,

even if the rest of the project is well executed. Complete

and accurate requirements provide many benefits, such

as avoiding errors, improving quality and reducing risk

in the software development process (Brooks, 1987;

Procaccino, Verner, & Overmyer, 2002). The Software

Engineering Body of Knowledge (SWEBOK) defines

software requirements engineering activities as the

determination, analysis, specification, approval of, and

management of requirements throughout the entire

lifecycle of the software product (Bourque & Fairley,

2014).

The ultimate goal of the traditional project management

approach is to successfully complete the project in the

planned time, budget, and scope following the plan set

up at the beginning of the project (Decarlo, 2004;

Shenhar, & Dvir, 2007; Wysocki, Junior, & Crane,

2007). For this purpose, the requirements, and scope

should be determined and fixed at the beginning of the

project. It is assumed that there will be no major

changes in the traditional approaches during the project

which will affect the scope. Conventional requirements

engineering is structured on these assumptions and

documentation is mainly weighted (Hastle &

Wojewoda, 2015).

Agile requirements engineering, however, specifies

how to manage requirements in software development

methods which implement the basic principles set in

Agile Manifesto (Agile Manifesto, 2001). In this

approach, documentation is given fewer space and

software requirement activities are extended to the

entire software development process (Bose, Kurhekar,

& Ghoshal 2014; Boyer & Mili 2014; Lucia & Qusef

2010).

In the literature, it is seen that the studies aimed at

comparing the traditional and agile approaches are

carried out to cover all the steps of the software

development process (Batool et al 2013; Elshandidy &

Mazen 2013; Palmquist et al 2013; Seda & Tarhan

2010; Shinde, Tangyde, & Kulkarni 2015; Stoica,

Mircea, & Ghilic-Micu 2013). Some studies on,

examining traditional and agile processes in terms of

requirements engineering activities, it has been

observed that certain areas are focused. For example,

Elshandidy and Mazen (2013) deal with traditional and

agile methods in their planning, focus, documentation,

development team roles, customer roles, development

model, communication, management style, and quality

control topics. Palmquist et al (2013) provide

requirements acquisition, prioritization, modeling,

documentation, validation, and management titles.

In this study, the requirements engineering discipline is

vital to perform more successful software projects, is

compared to the most widely applied traditional and

Comparison of Requirements Eng. Knowledge Areas in Terms of Traditional and Agile Software Methods 81

agile software methods based on six of the seven fields

of information specified in the SWEBOK (Bourque &

Fairley, 2014).

2. Requirements Engineering

Requirements engineering determines whether a new

software project is to be implemented and, if the project

is to be implemented, forms the basis of project launch

activities. The acquisition of requirements requires the

participation of end users, process owners, sponsors,

developers and all other stakeholders. Requirements

engineering ensures that the requirements for the

successful completion of the project and providing a

quality software product are obtained in a correct and

complete manner. Thus, it can be ensured that all

stakeholders are satisfied at the end of the project

(More, Sapre, & Chawan 2011; What are the Software

Development Models 2018).

Sommerville and Sawyer, claim that the requirements

engineering process consists of five main tasks:

elimination, analysis and negotiation, modeling,

verification/validation and management (Sommerville

& Sawyer 1997). However, SWEBOK breaks down

requirements engineering in seven sections: software

requirements fundamentals, requirements process,

requirement elicitation, requirement analysis,

requirement validation, practical considerations and

software requirements tools (Bourque & Fairley, 2014)

In this study, the requirements engineering process is

compared and discussed, on the basis of SWEBOK and

previous studies, under the following sections:

2.1. Software Requirements Fundamentals

SWEBOK elaborates the software requirements

fundamentals with a description of the definition of a

software requirement, product and process

requirements, functional and nonfunctional

requirements, emergent properties, quantifiable

requirements, system requirements and software

requirements (Bourque & Fairley, 2014).

2.2. Requirements Process

SWEBOK requirement process is addressed by process

models, process actors, process support and

management, process quality, and improvement

(Bourque & Fairley, 2014). The work on the

requirement process is mainly expected from

requirement engineers and analysts.

2.3. Requirements Elicitation

Requirement elicitation activities are carried out to

determine the scope of the system and to provide the

requirements that determine the characteristics that the

system must-have. It is necessary to work with project

stakeholders and other requirements resources for the

elicitation of requirements. During these studies, the

scope of the system is determined and started to be

managed. SWEBOK describes the requirements

elicitation as resources of software requirements and

requirements acquisition techniques (Bourque &

Fairley, 2014). During the requirements elicitation

process, face-to-face interviews, brainstorming,

prototyping, workshops, focus groups, etc. techniques

are used to carry out activities with all necessary

stakeholders, including sponsors, initiators of project

requests and domain knowledge experts (Batool et al

2013).

2.4. Requirements Analysis Knowledge Area

The SWEBOK requirement analysis addresses

requirements classification, conceptual design,

architectural design, linking requirements, negotiating

requirements, and formal analysis (Bourque & Fairley,

2014). At this stage, the consistency, completeness, and

applicability of the requirements obtained by the

elicitation, are checked. The scope of the system is

managed through negotiations and prioritization

activities in this process. The scope management of the

82 K. Çamoğlu, R. Kandemir / Trakya University Journal of Engineering Sciences, 20(2): 79-91, 2019

system is also carried out through negotiations and

prioritization activities at this stage.

2.5. Requirements Specification

The SWEBOK requirements specification is addressed

by the system identification specification, system

requirements specification, and software requirements

specification (Bourque & Fairley, 2014). One or more

analysis documents are created at this stage using the

business analysis information. This information

contains the functional and non-functional

requirements, analysis, risk, constraints, dependencies,

and other analysis information obtained and analyzed.

2.6. Requirements Validation

SWEBOK addresses the validation of requirements by

reviewing requirements, prototyping, model validation,

and acceptance testing (Bourque & Fairley, 2014).

Requirements validation is performed by reviews and

prototyping at the beginning of the development

process. It is performed after the development process

is completed, by acceptance tests over the resulting

software and system components.

2.7. Practical Considerations

The topics related to SWEBOK implementation

address the recurring nature of the requirement process,

change management, requirements attributes, tracing

requirements and measurement of requirements

(Bourque & Fairley, 2014).

3. Current Requirements Engineering Approaches

Stoica et al. defines Software Development Life Cycle

(SDLC) as a structure, which explains how software is

developed and how maintenance and changes are

carried out (Batool at el 2013). In the literature, the

defined international standard for SDLC is ISO/IEC

12207. This standard contains many software

development models that demonstrate how to

implement SDLC. In addition, some organizations are

creating and using organizations' own models. The

most common of all these models can be listed as

follows (Stoica et al 2013):

• Waterfall model

• V model

• Incremental model

• Rapid Application Development (RAD)

Model

• Rational Unified Process (RUP)

• Microsoft Solutions Framework (MSF)

• Iterative model

• Spiral model

• Scrum

• Kanban

• Extreme Programming (XP)

Each model has advantages and disadvantages, and the

model to be implemented should be selected according

to the organization's capacity, needs, and project (What

are the Software Development Models 2018; Software

development process 2018; SDLC – Overview 2018).

3.1. Traditional Approaches

In the traditional software development, approaches

such as waterfall and spiral, the requirement analysis,

architectural design, software development, test and

stabilization, and deployment phases required for

revealing the software, are carried out in successive

order. The basic motivation of the traditional method

can be defined as determining a clear scope of the

project, making a project plan and adhering to this

project plan to reveal the project without departing the

out of scope (Babok 2015; Bourque & Fairley 2014;

Withall 2007).

Traditional approaches are based on the following

assumptions (IEEE recommended practice for software

requirements specifications 1998; Lawrence et al 2001;

Software Requirements Engineering; Agile Manifesto

2001; More et al 2011):

Comparison of Requirements Eng. Knowledge Areas in Terms of Traditional and Agile Software Methods 83

• From the very beginning of the project, the

clients know exactly what they expect from

the system;

• The development team understands the needs

of the customer accurately and clearly;

• Only one or more stakeholders have the

responsibility to detail the requirements;

• There is a strict separation of different

functions in teams.

The basis for traditional requirement specification

approaches comes from the IEEE standard 830-1998

(Recommended Practice for Software Requirements

Specifications). This standard describes how to

document the requirements and any other business

information that requires for the project to be

accomplished. The standard generally refers to the

requirement and the associated components to be

expressed as texts. In addition to this, it is stated that

user interfaces should be composed as prototypes

except for the textual specification of the requirements

(IEEE recommended practice for software

requirements specifications 1998).

3.2. Agile Approaches

It is impossible to freeze software projects within a

certain scope due to constantly changing priorities and

competition. Therefore, the agile approach, being open

to change, aims to develop the highest value-added

product that can be produced within a certain period of

time and with a specific source and budget. For this

purpose, it focuses on the most effective way to manage

the changes can occur during the software process. The

most effective way of responding to changes is possible

with a system, based on close and face-to-face

communication of the stakeholders and minimum

documentation (Boyer et al 2014; Norton 2008; Patton

et al 2014; Rubin 2013).

Although a specific specification method is not

officially defined as an agile requirement specification,

“User Story” is common in the literature and

applications (Bose et al 2014; Norton 2008; Rubin

2013; Patton et al 2014)

4. Requirements Engineering in Traditional and

Agile Approaches

In our study, we have discussed the differences between

the traditional and agile approaches considering

application similarities, advantages and disadvantages

over six of the seven topics mentioned in SWEBOK. In

Table 1, the basic concepts related to the requirement

are considered especially in terms of the types of

requirements. Comparisons related to the requirements

processes, including process actors, are given in Table

2. In Table 3, requirement acquisition is discussed over

resources, techniques and roles. In Table 4, requirement

analysis is evaluated through concepts such as scope

management, prioritization of requirements, while

Table 5 presents the specification of requirements.

Table 6 describes the validation of requirements and

Table 7 describes the comparison of requirements

engineering in terms of implementation. In addition,

activities and concepts that are not included in

SWEBOK but encountered throughout the study are

also included in Table 8.

84 K. Çamoğlu, R. Kandemir / Trakya University Journal of Engineering Sciences, 20(2): 79-91, 2019

Table 1: Comparison of Traditional Methods and Agile Megh4thods in Terms of Software Requirements

Fundamentals

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Requirements It is assumed that they are stable and

are known from the beginning.

It is assumed that they will mature

and become clear over time.

Product and Process

Requirements

Product and process requirements are

handled and documented separately.

Requirements are followed in a

format called user story, without

product or process separation.

Functional and Non-

Functional Requirements

Functional and non-functional

requirements are documented

separately and in detail.

User stories are created based on

functional requirements. Non-

functional requirements are

included in the user story.

Emergent Properties

Emergent properties are documented

under a separate section.

Emergent properties concerning

multiple user stories are treated as

system constraints.

Quantifiable Requirements Each of the requirements is to be

measured separately.

It focuses on measuring the

usefulness of the functions that

fulfill the requirements.

Table 2: Comparison of Traditional Methods and Agile Methods in Terms of Software Requirements Process

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Process models Waterfall method, spiral model,

Rational Unified Process are the most

widely used traditional methods.

Scrum, Kanban, Extreme

Programming are the most widely

used agile methods.

Process actors Business stakeholders, analyst,

project manager, software developers,

test professionals, software architects

are the most basic process actors.

It generally includes agile coach,

product manager, and development

team roles.

Process Quality and

Improvement

Process quality and improvement are

handled outside the project. It is

executed by a separate role or team.

During the project execution, the

lessons learned are documented in

order to contribute to the

improvement.

In each cycle of the software

development process, a planned

activity for process quality and

improvement is realized.

Process Support and

Management

The requirement analysis process is

carried out by the “analyst” role.

The analysis process can be

conducted by the product manager,

developers or team. In some

applications, it is also carried out by

the analyst.

Comparison of Requirements Eng. Knowledge Areas in Terms of Traditional and Agile Software Methods 85

Table 3: Comparison of Traditional Methods and Agile Methods in Terms of Software Requirements Elicitation

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Requirements Sources

All relevant stakeholders are

considered as the source of

requirement in the elicitation phase.

In many agile methodologies, the

development team works with a

product manager as a source of

requirement. However, the product

manager is responsible for doing

the necessary work with all other

stakeholders for the acquisition of

requirements. In some agile

applications, the customer is

included in the team and is

considered a direct source of

requirement.

Elicitation Techniques It is performed by more formal

techniques.

Close work and face-to-face

communication techniques are

preferred.

Roles that fulfill

requirements elicitation

System analyst, requirement engineer,

domain expert.

Product Owner, development team,

and customers.

Table 4: Comparison of Traditional Methods and Agile Methods in Terms of Software Requirements Analysis

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Requirements Classification Requirements are classified and

documented as functional, non-

functional, and transition

requirements.

Requirements are not classified.

They all are covered in user stories.

Conceptual Modeling The conceptual design is done with

the designation of the requirements

first and the architectural design and

development are expected to be done

accordingly.

Conceptual design is created within

the first iteration and if required it is

updated within each iteration.

Architectural Design and

Requirements

Allocation

It is based on the creation of a formal

and visual model of the entire

system.

It is carried out in the form of

modeling only current iteration.

Requirements Negotiation It is based on the persuasion of

stakeholders for the successful

implementation of the project plan.

It aims to prioritize the work that

will provide the highest added value

to the product.

Formal Analysis When the project requires, formal

analysis is applied.

Formal analysis is not applied.

Scope Management Requirements are set in the early

stages of the project. The scope is

determined and frozen according to

these requirements.

The scope is not frozen under any

circumstances. In the later stages of

the project, the scope can be

differentiated according to

stakeholder expectations and priority

changes.

Requirements Prioritization The prioritization of the requirements

is carried out by the project manager

and determined by the stakeholders.

The prioritization of requirements is

carried out together by the product

owner, agile coach and the customer

altogether.

86 K. Çamoğlu, R. Kandemir / Trakya University Journal of Engineering Sciences, 20(2): 79-91, 2019

Table 5: Comparison of Traditional Methods and Agile Methods in Terms of Software Requirements

Specification

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Documentation of

Requirements

All requirements are written in detail. Documentation is not mandatory.

However, if the development team

needs it, it can do the documentation

as needed and in detail.

Requirements documents The system identification

specification, system requirements

specification, software requirements

specification are minimum required

documents.

It is executed through a simple list

called Product Backlog.

Specification methods Requirements can be specified with

formal, textual, and UML Use Case

methods.

Usually a user story is used to create

a common reference point among

stakeholders rather than

documentation.

Table 6: Comparison of Traditional Methods and Agile Methods in Terms of Software Requirements Validation

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Requirements Review Requires formal review and approval. Informal review meetings are held

under the leadership of the product

manager.

Prototyping Prototyping is used where necessary. It is often used for reconciliation

with stakeholders.

Model validation Model validation is used if necessary. Model validation is used if

necessary.

Acceptance Tests Acceptance tests are carried out at the

end of the project, based on the

requirements set that determined and

frozen at the beginning of the project.

Acceptance tests are performed at

the end of each iteration, based on

user stories that are set for iteration.

Verification Each of the requirements is checked

individually.

Definition of Done and Acceptance

Criteria is used to verify quality

expectations.

Comparison of Requirements Eng. Knowledge Areas in Terms of Traditional and Agile Software Methods 87

Table 7: Comparison of Traditional Methods and Agile Methods in Terms of Software Requirements

Engineering Applications

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Iterative Nature of the

Requirements

Process

Each step of SDLC is performed in

the form of sequential activities.

All activities of the SDLC are

repeated in each iteration.

Dealing with Changes New requirements and change

requests are seen as risky and

negative for the project.

It is open to changes and any change

requests that add value to the

product are welcomed.

Change Management Change management is carried out

through a comprehensive process

with many approval phases.

The changes are considered as a

natural part of planning at the

beginning of each iteration.

Requirements Attributes Additional qualifications, such as

when the requirement is received,

when it is received and the owner of

the requirement, are documented as

detailed as possible.

Attributes are not used unless they

are critical.

Requirements Tracing The relations of requirements with

each other are traced and documented

in detail.

Relationships between user stories

are traced in critical situations.

Measuring Requirements Each of the requirements is measured

separately.

It is based on the measurement of

user stories that can consist of more

than one requirement.

Table 8: Comparison of Traditional Methods and Agile Methods in Terms of the other Aspects

Key Activities and/or

Concepts

Traditional Methods Agile Methods

Timing of requirement

activities

All requirements are determined at

the beginning of the project.

Requirements are envisioned at the

beginning of the project and are

considered to change in the later

stages of the project.

Involvement of stakeholders Stakeholders are expected to be

actively involved during the analysis.

Stakeholders are expected to support

the project throughout the project.

Communication of

requirements

Written and formal communication. Face-to-face and informal

communication.

Planning Predictive Adaptive

Focus Process centric Focus on adding value.

The findings presented in these tables are summarized in Table 9, summarizing the advantages and

disadvantages of traditional methods and agile methods.

88 K. Çamoğlu, R. Kandemir / Trakya University Journal of Engineering Sciences, 20(2): 79-91, 2019

Table 9: Advantages and Disadvantages of Traditional Methods and Agile Methods

 Advantages Disadvantages

Traditional

Methods

Since change management is carried out within

detailed formality, it is possible to prevent changes

that will not be really effective.

Due to the tracing of the relations of the

requirements in detail, the impact analysis of the

change requests can be carried out effectively.

Comprehensive and formal review and verification

practices allow for better quality requirements.

With detailed and comprehensive documentation, it

is possible to create corporate knowledge base.

Budgeting and calendar management can be done

effectively in large projects by pre-determined scope

of design.

It is possible to work with a large number of

stakeholders in hierarchically structured and

dispersed locations.

The requirements engineering process is designed to

create standards for the entire organization.

It is easier to reach the requirements and to

understand due to compliance with corporate

standards.

Due to the detailed measurement of requirements,

budget and calendar planning can be done more

precisely and the final product can be defined from

the beginning of the project.

The extent of adherence to the

identified scope and the fact that

change management is carried out in a

detailed process prevents the project

from responding quickly to changing

priorities and business rules.

Due to detailed documentation, formal

verification and other requirement

activities, high resource costs and

additional time are needed.

In fact, it is not possible to determine

the scope at the beginning of the

project by 100% in many projects.

Based on this, prioritizations, plans,

budget studies and architectural

designs cannot meet project

expectations and negatively affect

project success.

The success of the project is adversely

affected when the change requests

exceeding a certain rate in the future

stages of the project.

Agile

Methods

The fact that the process is fully open to the new

requests and changes in cycles is able to provide the

highest added value to stakeholders in projects

where priorities and business rules change.

The output of the project can be more accurate and

reaches high quality because of the short form of

iterations and small frequent increments that

delivered to the end user.

The cost of requirements engineering is lower

through the lean documentation that is gradually

developed during iterations.

Negotiations of requirements can be managed better

through stakeholder collaboration and frequent

engagement.

The requirements for the relevant iteration can be

achieved quickly and practically.

It enables the management of projects that are not

specific at the beginning of the project and have

requirements that may change with various effects

throughout the project.

Through the defined improvement step of the

process within each cycle, the team and process

performance can reach the highest level.

A comprehensive impact analysis

cannot be performed due to the

inability to trace the attributes of the

requirements and their relations with

each other.

Documentation is optional and the

agile team and customer decide

together in which detail the document

will be created.

Since the documentation is optional, a

knowledge base may not be created for

the product.

The output of the project cannot be

seen as a whole from the beginning of

the project.

For extensive projects, face to face and

informal communication with many

stakeholders in different locations

cause difficulties in practice.

Since the entire system is not handled

at once, additional costs of reworks

may be encountered as cycles progress.

Comparison of Requirements Eng. Knowledge Areas in Terms of Traditional and Agile Software Methods 89

4. Conclusions

As "Standish Group" clearly shows, regardless of

which method is being used, requirement activities

have a great importance in the success and product

quality of the software project. In this study based on

the determination above, requirements engineering has

been compared in terms of traditional and agile

methods. Based on the SWEBOK Requirements

Engineering Knowledge Area, we have discussed the

basic concepts and key activities in both methods with

advantages and disadvantages.

According to the findings, traditional methods may be

more suitable for projects where a defined scope can be

established, the requirements can be determined from

the beginning and will change very little during the

project period. However, if the requirements are not

mature enough and / or are expected to change during

the project, then agile methods may be more

advantageous. While agile methods are more suitable

for projects with a stakeholder structure that is suitable

for face-to-face communication, traditional methods

seem to be more suitable for projects with stakeholders

located in different locations. While traditional

methods have a prominent place in organizations that

have formalities and give importance to written

documentation, agile methods can be preferred in

smaller organizations.

Taking into consideration all of these, the size of the

project, the complexity of the stakeholders, the level of

maturity of the organization and the potential of change

should be considered when choosing the most

appropriate method to ensure the success of the project.

Conflict of Interest:

There is no conflict of interest.

References

Babok v3: A guide to business analysis body of

knowledge. (2015). Toronto: IIBA.

BATOOL, A., MOTLA, Y.H., HAMID, B., ASGHAR,

S., RIAZ, M.N., MUKHTAR, M., AHMED,

Comparative study of traditional requirements

engineering and Agile requirements engineering.,

15th (ICACT), 1006-1014, 2013

BOSE S., KURHEKAR M., GHOSHAL I. (2014,

October) Agile Methodology in Requirements

Engineering, Retrieved from:

http://www.infosys.com/research/publica-

tions/agilerequirements-engineering.pdf

BOURQUE, P., & FAIRLEY, R. E. (2014). SWEBOK:

Guide to the software engineering body of

knowledge. Los Alamitos, CA: IEEE Computer

Society.

BOYER, J., & MILI, H. (2014). Agile Business Rule

Development Process, Architecture, and JRules

Examples. Berlin: Springer Berlin.

BROOKS. (1987). No Silver Bullet Essence and

Accidents of Software Engineering. Computer,

20(4), 10-19.

DECARLO, D. (2004). EXtreme project management:

Using leadership, principles, and tools to deliver

value in the face of volatility. San Francisco, CA:

Jossey-Bass.

ELSHANDIDY, H. & MAZEN, S., Agile and

Traditional Requirements Engineering: A Survey,

International Journal of Scientific & Engineering

Research, 4 (9), 2013

GRIFFITHS, M. (2015). PMI-ACP exam prep: Rapid

learning to pass the PMI Agile Certified Practitioner

(PMI-ACP) exam. Minnetonka, MN: RMC

Publications.

HASTLE, S., WOJEWODA S. (2015, October 4).

Standish Group 2015 Chaos Report - Q&A with

Jennifer Lynch. InfoQ. Retrieved from

90 K. Çamoğlu, R. Kandemir / Trakya University Journal of Engineering Sciences, 20(2): 79-91, 2019

https://www.infoq.com/articles/standish-chaos-

2015

IEEE recommended practice for software requirements

specifications. (1998). New York: IEEE.

Industry implementation of International Standard ISO

/ 1995: (ISO/IEC 12207) standard for information

technology: Software life cycle processes. (1998).

New York: Institute of Electrical and Electronics

Engineers.

LAWRENCE, B., WIEGERS, K., and EBERT, C.

"The top risk of requirements engineering," in IEEE

Software, vol. 18, no. 6, pp. 62-63, Nov.-Dec. 2001.

LUCIA A., QUSEF A., Requirements Engineering in

Agile Software Development, Journal Of Emergıng

Technologıes In Web Intellıgence, 2, (3), Ağustos

2010.

Manifesto for Agile Software Development, Agile

Manifesto (2001). Retrieved from

https://agilemanifesto.org/

MORE N., SAPRE B.S., CHAWAN P.M., An Insight

into the Importance of Requirements Engineering,

IJIC, ,1 (2), 2011.

NORTON D., Agile Estimation and Planning Is

Moving From a Dictatorship to a Democracy,

Gartner, 2008.

PALMQUIST M.S., LAPHAM M.A., MILLER S.,

CHICK T, OZKAYA I., Parallel Worlds: Agile and

Waterfall Differences and Similarities, CMU/SEI-

2013-TN-021, Ekim 2013.

PATTON, J., ECONOMY, P., FOWLER, M.,

COOPER, A., & CAGAN, M. (2014). User story

mapping. Beijing: OReilly.

PROCACCINO, J. D., VERNER, J. M., OVERMYER,

S. P., & Darter, M. E. (2002). Case study: Factors

for early prediction of software development

success. Information and Software Technology,

44(1), 53-62.

RUBIN, K. S. (2013). Essential Scrum: A practical

guide to the most popular agile process. Upper

Saddle River, NJ: Addison-Wesley.

SEDA, G. Y., TARHAN, A., Çevik Süreç ile

Kıyaslamaya Temel Olarak Artırımsal Sürecin

Nicel Analizi: Bir Durum Çalışması, 2. Yazılım

Kalitesi ve Yazılım Geliştirme Araçları

Sempozyumu, 2010.

SHENHAR, A., & DVIR, D. (2007). Reinventing

project management: The diamond approach to

successful growth and innovation. Boston, MA:

Harvard Business School Press.

SHINDE L.K., TANGDE Y.S., KULKARNI R.P.

Traditional vs. Modern Software Engineering - An

Overview of Similarities and Differences.

Advances in Computational Research, 7 (1), 187-

190, 2015.

SILLITTI, A., CESCHI, M., RUSSO, B., & SUCCI, G.

(n.d.). Managing Uncertainty in Requirements: A

Survey in Documentation-Driven and Agile

Companies. 11th IEEE International Software

Metrics Symposium (METRICS05).

doi:10.1109/metrics.2005.29

Software development process (2018, October),

Wikipedia (2018), Retrieved from:

https://en.wikipedia.org/wiki/Software_developme

nt_process

Software Requirements Engineering: What, Why,

Who, When ... (n.d.). Retrieved from

http://westfallteam.com/Papers/The_Why_What_

Who_When_and_How_Of_Software_Requiremen

ts.pdf

SOMMERVILLE I, and SAWYER, P. Requirements

Engineering, John Wiley & Sons, 1997.

Comparison of Requirements Eng. Knowledge Areas in Terms of Traditional and Agile Software Methods 91

STOICA, M., MIRCEA, M., & GHILIC-MICU, B.

(2013). Software Development: Agile vs.

Traditional. Informatica Economica, 17(4/2013),

64-76. doi:10.12948/issn14531305/17.4.2013.06

Try QA, What are the Software Development Models

(2018, October), Retrieved from:

http://istqbexamcertification.com/whatare-the-

software-development-models/.

Tutorialspoint, SDLC – Overview (2018, October) ,

Retrieved from:

http://www.tutorialspoint.com/sdlc/sdlc_overview.

htm

WITHALL, S. (2007). Software requirements patterns.

Erscheinungsort nicht ermittelbar: Microsoft Press.

WYSOCKI, R. K., JUNIOR, R. B., & CRANE, D.

(2007). Effective project management: How to

plan, manage, and deliver projects on time and

within budget. (Fourth Edition) New York: John

Wiley.

