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Abstract 

 

The aim of this study is to demonstrate the Genetic Algorithm (GA) optimization results for energy 

resolutions of the Hemispherical Deflector Analyzer (HDA). The HDAs are designed specifically to 

distinguish electrons according to their energies. In this context, high energy resolutions are important for 

the prevention of experimental data loss. Thus, the energy resolution values can be obtained in a short 

time with the aid of the genetic algorithm implemented in the proposed software. Genetic algorithm (GA) 

is an effective method developed with artificial intelligence technology. For the first time, analyzer 

resolution values in the widest range in the literature were calculated by genetic algorithm software. 

Optimum solutions not only for centric entry HDA but also for paracentric entry Hemispherical Deflector 

Analyzer (HDA) were obtained by the genetic algorithm. 

 

Keywords: Artificial intelligence, electron optics, electrostatic energy analyzer, genetic algorithm, 

optimization. 

 

1. Introduction 

 

Energy resolution studies are investigations aimed at 

increasing the resolution of energy analyzers used in a 

wide range of fields, from atomic and molecular physics 

to medical physics [1]. An ideal energy analyzer with 

high resolution means that the detector located at the 

analyzer output can better represent, solve, and 

distinguish different energetic charged particles. The 

numerically calculations to determine the energy 

resolution of hemispherical deflector analyzer dates back 

to the results by Kuyatt and Simpson [2] in the late 

1960s, but novel methods of producing fast and effective 

solutions remain important today. Energy profiles of 

transmitted particles and variation of the observed 

energy resolution of an HDA with mean kinetic energy 

are given by Imhof et al. [3]. It has been proposed to 

improve the energy resolution of charged particles 

analyzed by slowing down in subsequent studies [4-7]. 

Benis and Zouros [8] first showed that the energy 

resolution of an HDA can be improved by displacing the 

HDA input to a new position from the conventional 

position of R (mean radius). With this method, called 

with paracentric entry HDA, high energy resolution has 

been achieved [9,10]. The computational results of base 

energy resolution as a the function of beam entry 

diameter are given by Sise et al. [11]. These calculations 

are carried out by the electron ray-tracing program 

SIMION which uses the finite difference method [12]. 

The basic parameters used to determine the energy 

resolution are dispersion, magnification M and deviation 

coefficients. For this reason, the calculation values 

obtained for the different configurations of these 

parameters are also given by Sise et al. [13]. In these 

studies, the energy resolution is calculated for some 

values of parameters. Although these studies in the 

literature are successful, they need an appropriate dataset 

to predict an unknown data with high accuracy. 

Moreover, some of these studies require a training 

dataset. In this study, the energy resolution is calculated 

for a wide range of parameter values to get a dataset for 

future studies without any previously known data. 

 

The aim of this study is the investigation of optimum 

base energy resolution of the centric and paracentric 

entry HDA using the genetic algorithm. GA is an 

artificial search algorithm based on the mechanics of 

biological evolution [14]. The GA is used widely for 

many search and optimization problems such as science, 

business, engineering and education areas [15,16]. In 

physics, GAs is used for irreversible radiative-type heat 

engine optimization [17] and lithium-ion battery model 

optimization [18]. Similarly, in this study, the GA is 
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used effectively to optimize the base energy resolution of 

the hemispherical deflector energy analyzers over a wide 

range of parameters. The energy resolution equation has 

many parameters in a wide range of values. Thus, the 

GA is useful for these types of equations to get optimum 

values in a fast and simple way. 

 

This study consists of three basic parts: In Section 2, the 

energy resolution of the HDA and the genetic algorithm 

explained. Section 3 gives the results of the proposed 

method. The last section concludes the study. 

 

2. Material and Methods 

2.1. Base Energy Resolution of Hemispherical 

Deflector Analyzer 

 

The HDA base energy resolution is related to the 

maximal beamwidth of electrons. It is defined as the full 

width of the energy transmission function. The base 

energy resolution of HDA is given by 

 
∆E

E
=

∆rπ−M∆r0

D
−

P1

D
α −

P2

D
α2              (2.1) 

 

Here, 𝑀 and 𝐷 represent the analyzer magnification, and 

energy dispersion, respectively. 𝑃1  and 𝑃2 stand for the 

angular aberration coefficients. ∆r0 stands for the 

beamwidth of the analyzer entry and ∆rπ represent the 

exit beam width for the hemispherical deflector analyzer. 

Boundaries of these parameters are as follow; 0 < 𝛼 < 5, 

0 < ∆𝑟𝜋< 2, 0 < ∆𝑟0 < 2, -2 < 𝑀 < 4, 100 < 𝐷 < 500, -250 

< 𝑃1  < 250 and -250 < 𝑃2 < 250. 

 

2.2. Basic Principles of the Genetic Algorithm 

Method 

 

A genetic algorithm is a heuristic optimization and 

search method to find the best solutions for many 

problems [19]. As an evolutionary algorithm, the GA is 

inspired by evolutionary genetics in biology.  

Inheritance, mutation, selection, and crossover are 

fundamental components of the GA [20]. The basic steps 

of the GA are shown in Figure 1. Firstly, the population 

is initialized with random chromosomes. Then, 

according to the fitness function, each individual 

chromosome is evaluated. Best fitted chromosomes are 

selected to the new population. Selected chromosomes 

are reproduced by crossing over and mutated [21]. 

Thereafter, the new population is exposed to the new 

iteration. When the maximum number of generation 

count or termination conditions is reached, the GA is 

stopped [22]. The GA is used for many optimizations, 

search, and selection problems. The best parameters of 

components, arrangement, pinch, and approach point are 

obtained by optimization of a heat recovery steam 

generator [23]. In Askarzadeh’s study [24], power 

generation in a Microgrid is optimized for minimization 

of the energy production cost in the smart grid 

framework. In another study, optimal sensor placement 

is obtained for the construction of accurate strain maps 

for large-scale structural components [25]. Armaghani 

et. al. [26] make airblast prediction to minimize or 

reduce the environmental effects of overpressure. In 

another study, the electrical power load is forecasted to 

balance the electricity supply and demand [27]. 

 

 
Figure 1. Flow chart of genetic algorithm. 

 

3. Results and Discussion 

 

The proposed GA is used to find a base energy 

resolution of HDA using Equation (2.1).  

 

1. The initial population is generated. 

𝛼, ∆𝑟𝜋, ∆𝑟0, 𝑀, 𝐷, 𝑃1 and 𝑃2 that are variables in 

base energy resolution equation which are encoded 

as a chromosome with real numbers according to the 

boundaries (Figure 2). In this encoding, each 

chromosome is regarded as a candidate solution 𝐶𝑆1 

to 𝐶𝑆𝑛 where n is population size. 𝐶𝑆1𝐺1 to 𝐶𝑆𝑛𝐺1 

are genes that represent 𝛼, 𝐶𝑆1𝐺2 to 𝐶𝑆𝑛𝐺2 are 

genes that represent, ∆𝑟𝜋, 𝐶𝑆1𝐺3 to 𝐶𝑆𝑛𝐺3 are genes 

that represent  ∆𝑟0, 𝐶𝑆1𝐺4 to 𝐶𝑆𝑛𝐺4 are genes that 

represent 𝑀, 𝐶𝑆1𝐺5 to 𝐶𝑆𝑛𝐺5 are genes that 

represent 𝐷, 𝐶𝑆1𝐺6 to 𝐶𝑆𝑛𝐺6 are genes that 

represent 𝑃1, 𝐶𝑆1𝐺7 to 𝐶𝑆𝑛𝐺7 are genes that 

represent 𝑃2.  

2. In Equation (2.1), 
∆E

E
 is expected to be have a 

maximum value. Therefore, the fitness function 

which is to be minimized is founded as:  

 

F(x) = 1 (
∆rπ−M∆r0

D
−

P1

D
α −

P2

D
α2)⁄   (3.1) 
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3. Calculate the initial chromosome population 

according to the F(x) fitness function. Then, using 

the election rate, the best chromosomes that 

minimize the F(x) are selected to the new population 

(Figure 3). After, new chromosomes are regenerated 

and mutated by the mutation rate. The population 

size was 100, the mutation rate was 0.25, the 

election rate was 0.15, and the maximum generation 

count (ε) was 1000.  

4. When the maximum generation count (ε) is reached, 

GA is finished. The best chromosome in the last 

population is shown as the base energy resolution of 

the HDA (Figure 4). In Fig. 5, the genetic algorithm 

solutions for the M versus P1 and P2 values for α=0˚, 

Δrπ=0, Δr0 =1.97, D=100 mm are given. Although 

the variation of energy resolution parameters has 

been examined using different methods in the 

literature [10,11], for the first time in the literature, 

the variation of these parameters in Fig. 5 is given in 

detail, to the best of our knowledge. 

 

 

 

Figure 2. Encoded chromosomes and their boundaries for base energy resolution optimization. 

 

 

Figure 3. Fitness function values that is to be 

minimized. 

 

 

Figure 4. Base energy resolution values that is to be 

maximized. 

 

The computation results are obtained with the genetic 

algorithm for the HDA. The calculations are performed 

using Equation (1) according to 0 < 𝛼 < 5, 0 < ∆𝑟𝜋< 2, 0 

< ∆𝑟0 < 2, -2 < 𝑀 < 4, 100 < 𝐷 < 500, -250 < 𝑃1  < 250 

and -250 < 𝑃2 < 250. For this context, comparison of  𝑀 

versus 𝑃1  and 𝑃2 values for α=0˚, Δrπ=0, Δr0 =1.97, 

D=100 mm are given in Figure 5. Moreover comparison 

of  𝑀  versus 𝑃1  and 𝑃2   values for α=0˚, Δrπ=0, Δr0 

=1.97, D=100 mm are given in Figure 6. Considering 

the results, the GA gives the analyzer parameter values 

over a wide range of the operation. 

 

 

Figure 5. The genetic algorithm solutions for the M 

versus P1 and P2 values for α=0˚, Δrπ=0, Δr0 =1.97, 

D=100 mm. 
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Figure 6. The genetic algorithm solutions for the M 

versus Δrπ and Δr0 values for α=1˚, D=100 mm, P1=P2=-

250. 

 

4. Conclusion 

 

In this study, the base energy resolution of the 180˚ 

hemispherical deflector energy analyzers are calculated 

for optimization over a wide range of parameters. An 

artificial intelligence method, GA, is used for these 

calculations. The results have been presented in 

graphical form to show the effectiveness of the 

algorithm. The evolutionary computing based GA is 

useful for experimental studies in terms of giving 

solutions for many problems with a large number of 

parameters. While searching for solutions for the base 

energy resolutions, the fact that being trapped within the 

local minimums can be prevented by running the GA 

several times. The results show that the GAs prove to be 

an efficient tool to provide usable optimal solutions in a 

short amount of time. The proposed algorithm for HDA 

base energy resolution equations provides a list of good 

solutions and not just a single solution. Therefore, the 

GA method is very useful when the search space is very 

large and there are a large number of parameters 

involved. Without using any training dataset like ANN, 

Regression, etc., the GAs are very simple to apply for 

many problems and also fast for other methods. This 

article can guide for experimentalists to acquire 

optimum parameter values for the HDA having high 

energy resolution. 
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