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Decay of Fourier Transforms and Generalized Besov Spaces
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ABSTRACT. A characterization of the generalized Lipschitz and Besov spaces in terms of decay of Fourier trans-
forms is given. In particular, necessary and sufficient conditions of Titchmarsh type are obtained. The method is based
on two-sided estimate for the rate of approximation of a β-admissible family of multipliers operators in terms of decay
properties of Fourier transforms.
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1. INTRODUCTION

The study of decay of Fourier transform / Fourier coefficients is one of the classical
topics in Fourier analysis. Classical inequalities as Hardy-Littlewood and Haurdorsff-Young
(see [29]) give us the basic decay of Fourier transforms. Titchmarsh showed ([29]) that the decay
of Fourier transform can be improved for univariate functions satisfying a Lipschitz condition
defined by smoothness. His result reads as follows.

Theorem 1.1. ([29, Theorem 85]) Let f ∈ L2 and f̂ its Fourier transform. The following conditions
are equivalent ∫ ∞

−∞
|f(x+ h)− f(x− h)|2dx = O(h2α) as h→ 0+ (0 < α < 1)

and ∫
1/h≤|x|

[f̂(x)]2dx = O(h2α) as h→ 0+.

Extensions of the Titchmarsh theorem were obtained by several authors ([19, 20, 21, 33])
and can be extended to higher dimensional Euclidean spaces ([7, 34]) replacing the majorant
function ϕ(h) = hα in the Lipschitz condition by a regularly varying one ([4, 16]). The problem
concerning about Fourier series on T can be found in [24, 25] while for Fourier transforms in
[31]. The problem in Lp(Rd) for Fourier series can be seen in [13, 18] and for Fourier transforms
we suggest [6, 8, 13] and references quoted there.

In this paper, we provide a further extension of Theorem 1.1 for functions in Lp(Rd) and
an abstract Lipschitz condition, see Theorem 1.3 below. In particular, for p = 2, d = 1 and
ϕ(t) = tα, t ∈ (0,∞), 0 < α < 1, our achievement recovers Theorem 1.1, due Lemma 2.2. In
order to present this generalized version of the result, we need to establish a two-sided estimate
for the rate of approximation of an admissible family of multipliers operators in terms of decay
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properties of Fourier transforms. This extends the known results proved in [13] for d ≥ 2 and
for the combination of multivariate averages.

For d ≥ 1 the Fourier transform f̂ of a function f , in the Schwartz class S(Rd), is given by

f̂(ξ) =

∫
Rd

f(x)eiξ·xdx, x ∈ Rd.

We write Lp(Rd) := (Lp(Rd), ‖ · ‖p) for the usual Banach spaces of p-integrable functions (1 ≤
p ≤ ∞).

We deal with a family of multipliers operators ([23]) {Tt}t>0 on Lp(Rd) with its multiplier
family {ηt}t>0 generated by dilations of a measurable function η : (0,∞) −→ R, i.e.,

Tt(f)̂(ξ) = ηt(|ξ|)f̂(ξ),

where ηt(|ξ|) := η(t|ξ|), for all ξ ∈ Rd and t > 0. If there exists γ > 0 such that

(1.1) [min(1, ts)]2γ � |1− ηt(s)|, for all t > 0,

then we say that {Tt}t>0 is a γ-admissible family of multipliers operators on Lp(Rd). A well-known
admissible family of multipliers operators , on Lp(Rd) for d ≥ 2, includes the classical spherical
mean operator and its combinations (see [2, 9, 13] and references quoted there).

We will employ generalized Lipschitz (and Besov) classes defined in terms of the rate of ap-
proximation of an admissible family of multipliers operators. The main point of the definition
resides on the majorant function (defined ahead) and not on the fractional choice of orders of
admissibility for the families of multipliers operators above. Indeed, no new Lipschitz/Besov
classes are given just by considering fractional orders admissible family of multipliers opera-
tors, due condition (1.1) and Marchaud-type inequalities (see [10, 22, 30] and references quoted
there).

In order to state the main theorems of the paper, we need to introduce some more definition.
A majorant function in this paper is always a nondecreasing measurable functionϕ : (0,∞) −→
R+ such that

lim
t→0+

ϕ(t)→ 0,

and

(1.2)
∫ t

0

ϕ(u)

u
du . ϕ(t) for all t > 0.

We denote by M the collection of all majorant functions. For β > 0, we define the following
subset of M

Ωβ :=

{
ϕ ∈M :

∫ ∞
t

ϕ(u)

uβ+1
du .

ϕ(t)

tβ
, t > 0

}
.

The family Ωβ can be defined in terms of the almost monotonicity property.
A function ϕ : (0,∞) −→ R+ is β-almost decreasing ([4, p. 72]) if it satisfies the condition:

ϕ(u2)

uβ2
.
ϕ(u1)

uβ1
, for any u1 ≤ u2.

For β > 0, we write

Ω′β := {ϕ ∈M : there exists 0 < ε < β such that ϕ is (β − ε)-almost decreasing} .

A(t) � B(t) stands for B(t) . A(t) and A(t) . B(t), where A(t) . B(t) means that A(t) ≤ cB(t), for some
constant c > 0 not depending upon t.
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Simple calculations and Bari-Stechkin Lemma ([1], see also [26, p.754]) are enough to prove
that the classes Ω′β and Ωβ coincide:

(1.3) Ωβ = Ω′β , for each β > 0.

Obviously, ⋃
0<α<β

Ωα = Ωβ , for any β > 0.

In fact, for any 0 < α < β we have Ωα ⊂ Ωβ . In order to verify equality above, is enough to
prove that for a given ϕ ∈ Ωβ there exists 0 < α < β such that ϕ ∈ Ωα. If ϕ ∈ Ωβ , then (1.3)
implies that ϕ is (β − ε)-almost decreasing, for some 0 < ε < β. It means that for any t ≤ s, it
holds

ϕ(s)

sβ−ε/2
.

ϕ(t)

tβ−εsε/2
.

Integrating both sides of inequality above, we obtain∫ ∞
t

ϕ(s)

sβ−ε/2+1
ds .

ϕ(t)

tβ−ε

∫ ∞
t

s−ε/2−1ds = 2/ε
ϕ(t)

tβ−ε/2
.

Thus, ϕ ∈ Ωβ−ε/2.
An interesting subclass of Ωβ is given via the following definition. A function f : (0,∞) −→

R+ is regularly varying ([16]) with index α ∈ R if for any λ > 0, it holds f(λx)/f(x) → λα as
x →∞. We write RVα for the set of all regularly varying functions with index α. It is not hard
to see that if ϕ ∈ RVα, then it can be represented as ϕ(x) = xας(x), x ∈ (0,∞), where ς is a
regularly varying function with index zero (i.e., a slowly varying function). More than that the
Representation Theorem ([4, p. 17]) gives a characterization for all regularly varying functions.

We observe that RVα ( Ωβ , for all 0 < α < β. This fact follows from basic theory of regularly
varying functions, the needed details can be found in [4, p. 68–72]. Due to this, the following
functions belong to Ωβ ,

tα ln(1 + t), (t ln(1 + t))α, tα ln(ln(e+ t)), tα exp

[
ln t

ln(ln t)

]
and

tα exp[(log t)α1(log2 t)
α2 . . . (logn t)

αn ],

where αi ∈ (0, 1), i = 1, 2, . . . , n, for all 0 < α < β. The usual majorant function employed in
the Titchmarsh theorem ϕ(t) = tα, belongs to Ωβ if and only if 0 < α < β.

Definition 1.2. For ϕ ∈ Ω2β , we define the generalized Lipschitz class in Lp(Rd) by

(1.4) Lip (p, β, ϕ) =
{
f ∈ Lp(Rd) : ‖Tt(f)− f‖p = O(ϕ(t)) as t→ 0+

}
, 1 ≤ p ≤ ∞,

where {Tt}t is a β-admissible family of multipliers operators.

Necessary and sufficient conditions of Titchmarsh type for the generalized Lipschitz class
read as follow.

Theorem 1.3. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd) and ϕ ∈ Ω2β .
(A) Let 1 < p ≤ 2 and p ≤ q ≤ p′. If f ∈ Lip (p, β, ϕ), then

(1.5)

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

= O
(
ϕ(t−1)

)
, as t→∞.
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(B) Let 2 ≤ p <∞, | · |d(1−1/p−1/q)f̂(·) ∈ Lq and p′ ≤ q ≤ p. If(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

= O
(
ϕ(t−1)

)
, as t→∞,

then f ∈ Lip (p, β, ϕ).

In order to define the generalized Besov spaces, we need to restrict our majorant classes as
follows. For 0 < q, γ <∞, we write

Ωqγ :=

{
ϕ ∈ Ωγ :

∫ 1

0

1

[ϕ(t−1)]q
dt

t
<∞

}
.

Definition 1.4. For 0 < q <∞ and ϕ ∈ Ωq2β , we define the generalized Besov space Bϕp,q(Rd) by

(1.6) Bϕp,q(Rd) =

{
f ∈ Lp(Rd) : |f |Bϕ

p,q
:=

∫ 1

0

(
‖Tt(f)− f‖p

ϕ(t)

)q
dt

t
<∞

}
.

For q =∞ and ϕ ∈ Ωγ ,

Bϕp,∞(Rd) :=

{
f ∈ Lp(Rd) : |f |Bϕ

p,∞ := sup
t>0

{
‖Tt(f)− f‖p

ϕ(t)

}
<∞

}
.

As usual, if q <∞, we endow Bϕp,q with the norm ‖ · ‖Bϕ
p,q

:=
(
‖ · ‖qp + | · |Bϕ

p,q

)1/q
, otherwise

‖ · ‖Bϕ
p,∞ := ‖ · ‖p + | · |Bϕ

p,∞ . In particular, for q =∞, these spaces are the generalized Lipschitz
ones. The Besov spaces here seem to depend upon a majorant function and an admissible
family of multipliers operators, but, as usual, that is not true. As a matter of fact, this is a topic
of investigation [14].

The following gives us necessary and sufficient conditions in terms of decay properties of
Fourier transforms for functions in the generalized Besov spaces.

Theorem 1.5. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd) and ϕ ∈ Ωq2β .

(A) Let 1 < p ≤ 2 and p ≤ q ≤ p′. If f ∈ Bϕp,q(Rd), then

(1.7)
∫ ∞
0

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t
<∞.

(B) Let 2 ≤ p <∞, | · |d(1−1/p−1/q)f̂(·) ∈ Lq and p′ ≤ q ≤ p. If

(1.8)
∫ ∞
0

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t
<∞,

then f ∈ Bϕp,q(Rd).

For the particular choice ϕ(t) = tα, 0 < α < ` for some ` ∈ N, and the `-th family of

combinations of multivariate averages on Rd, for d ≥ 2, spaces Bϕp,q(Rd) ∩ ĜM
d

p became the

ones characterized in [13, Section 7] (ĜM
d

p is defined ahead).
The paper is organized as follows. In Section 2, we present a two-sided estimate for the

rate of approximation of an β-admissible family of multipliers operators in terms of decay
properties of Fourier transforms. This estimate plays a crucial role in the proof of Theorem 1.3,
presented in this section. The inverse Fourier-Hankel transform of certain radial functions is
applied in order to show the necessity of the condition concerning the majorant functions in
order to prove Theorem 1.3. Section 3 is regarded to the proof of Theorem 1.5. Finally, in Section
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4, we present the concept of general monotonicity of functions (GMd
p class) and we outline

how to make assumptions in Theorems 1.3 and 1.5 less restrictive. As a corollary, we prove a

pointwise inequality for Fourier transforms of functions in ĜM
d

p, that is, a Riemann-Lebesgue
type inequality.

2. PROOF OF THEOREM 1.3

The rate of approximation of an admissible family of multipliers operators can be estimated
in terms of decay properties of Fourier transforms as follows. For d ≥ 2, the following result
can be seen as a corollary of [13, Theorem 2.1, p. 1289] and the ideas of the proof are included
below for completeness.

Proposition 2.1. Let {Tt}t>0 be a γ-admissible family of multipliers operators on Lp(Rd) and f ∈
Lp(Rd).

(A) Let 1 < p ≤ 2. If p ≤ q ≤ p′, then | · |d(1−1/p−1/q)f̂(·) ∈ Lq and(∫
Rd

[
min(1, t|ξ|)2γ |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

. ‖Tt(f)− f‖p.

(B) Let 2 ≤ p <∞. If | · |d(1−1/p−1/q)f̂(·) ∈ Lq and p′ ≤ q ≤ p, then

‖Tt(f)− f‖p .
(∫

Rd

[
min(1, t|ξ|)2γ |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

.

The proof of proposition above is a simple adaptation of the proof of [13, Theorem 2.1, p.
1289], since the main arguments completely fit here. An application of Pitt’s inequality (see
[3]) combined to the admissibility condition on the family of multipliers operators finishes the
proof.

For d ≥ 2, Theorem 2.1 in [13] is easily recovered from Proposition 2.1 for γ = ` a natural
number and the combinations of multivariate averages family as the admissible one. The latter
has a generalized version as follows. All the facts mentioned below can be found in [15]. Let
r > 0, a real number. For each t > 0, we write

(2.1) Vr,t(f)(x) :=
−2(
2r
r

) ∞∑
k=1

(−1)k
(

2r

r − k

)
Vkt(f)(x), f ∈ Lp(Rd), x ∈ Rd,

where {Vt}t is the usual family of spherical mean operator on Lp(Rd), and for r and s real
numbers,(

r

s

)
=

Γ(r + 1)

Γ(s+ 1)Γ(r − s+ 1)
, for s 6∈ Z−,

(
r

0

)
= r and

(
r

s

)
= 0, for s ∈ Z−.

The operator defined by (2.1) is bounded on Lp(Rd) and for r = ` a natural number the family
{Vr,t}t becomes the combination of multivariate averages {V`,t}t given in [9]. If mr,t stands for
the multiplier of Vr,t, for each t > 0, then

1−mr
t (|ξ|) = 1−mr(t|ξ|) :=

22r+1Γ((m+ 1)/2)(
2r
r

)
Γ(m/2)Γ(1/2)

∫ 1

0

(sin(t|ξ|s/2))
2r

(1− s2)(d−1)/2ds, ξ ∈ Rd.

In this case, {Vr,t}t is a r-admissible family of multipliers operators, since

min(1, s)2r � 1−mr,t(s) = 1−mr(ts), s > 0.

Proof of Theorem 1.3 makes use of the next lemma.
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Lemma 2.2. Let ϕ ∈M , f ∈ Lp(Rd) and 1 < p, q <∞. The following two conditions are equivalent:

(2.2)

(∫
1/t≤|ξ|≤2/t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

. ϕ(t), t > 0

and

(2.3)

(∫
1/t≤|ξ|

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)1/q

. ϕ(t), t > 0.

Proof. It is easy to see that (2.3) implies (2.2). Assuming that (2.2) holds, we write the integral
in the left-hand side of inequality (2.3) in terms of the radial part (see [32]) of the integrating
function, as follows

I(t) :=

∫ ∞
1/t

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr, t > 0,

where Sd−1 is the (d− 1)-dimensional unit sphere in Rd centered at origin endowed with σd−1
the induced Lebesgue measure (if d = 1 we skip this step). It is easily seen that

I(t) .
∫ ∞
1/t

rdq(1−1/p−1/q)
[∫ 2r

r

(∫
Sd−1

|f̂(ρω)|qdω
)
dρ

]
r(d−1)

dr

r
.

If r ≤ ρ ≤ 2r, then rdq(1−1/p−1/q) . ρdq(1−1/p−1/q), and due to inequality (2.2) we arrive at

I(t) .
∫ ∞
1/t

[ϕ(r−1)]q

r
dr =

∫ t

0

[ϕ(u)]q

u
du.

In order to finish the proof, it is enough to observe that∫ t

0

[ϕ(u)]q

u
du . [ϕ(t)]q and

∫ t

0

[ϕ(u)]

u
du . ϕ(t), t > 0,

are equivalent (see [26]) and the later is the condition (1.2) for ϕ ∈M . �

Proof. of Theorem 1.3. The proof of part (A) is a trivial application of Proposition 2.1, part (A).
In order to prove part (B), we apply Proposition 2.1, part (B), and we obtain

‖Tt(f)− f‖qp .
∫
Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ.

Denoting by Iβq (f) the right-hand side of inequality above, we have

‖Tt(f)− f‖qp . Iβq (f),

where

Iβq (f) =

∫
|ξ|≥1/t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ + t2qβ

∫
|ξ|<1/t

|ξ|2qβ
[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ.

Due to Lemma 2.2, the proof will be completed if the following holds

(2.4) t2qβ
∫
|ξ|<1/t

[
|ξ|2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ = O (ϕ(t))

q
, as t→ 0+.
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We first consider the case d ≥ 2 and we employ an adaption of the Titchmarsh proof in [29,
Theorem 84]. For t > 0, denote

Iβ<
q (f) :=

∫
|ξ|<1/t

[
|ξ|2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ.

The following inequality holds

Iβ<
q (f) ≤

∫
|τ |<1/t

|τ |2qβh(τ)|τ |q(d−1)dτ,

where

h(τ) :=

∫
Sd−1

[
|τω|d(1−1/p−1/q)|f̂(τω)|

]q
dσd−1(ω), −1/t < τ < 1/t.

By writing

(2.5)
∫
|τ |<1/t

|τ |2qβh(τ)|τ |q(d−1)dτ := Iβ
−

q (h, t) + Iβ
+

q (h, t),

where

Iβ
−

q (h, t) :=

∫ 0

−1/t
(−τ)2qβ

∫
Sd−1

[
|τω|d(1−1/p−1/q)|f̂(τω)|(−τ)(d−1)

]q
dσd(ω)dτ

and

Iβ
+

q (h, t) :=

∫ 1/t

0

τ2qβ
∫
Sd−1

[
|τω|d(1−1/p−1/q)|f̂(τω)|τ (d−1)

]q
dσd(ω)dτ, t > 0,

it is sufficient to show that both Iβ
−

q (h, t) and Iβ
+

q (h, t) are O
(
t−2qβ (ϕ(t))

q) as t→ 0+.
We define

φ+(t) =

∫ +∞

1/t

h(τ)τ q(d−1)dτ, t > 0,

and observe that

(2.6) lim
t→0+

t2qβφ+(t−1) = 0.

In fact, we have

lim
t→0+

t2qβφ+(t−1) . lim
t→0+

(
t2βϕ(t)

)q
= lim
t→∞

(
ϕ(t−1)

t2β

)q
.

Equality (1.3) implies that there exists 0 < ε < 2β such that ϕ is (2β − ε)-almost decreasing.
This leads us to

lim
t→∞

(
ϕ(t−1)

t2β

)q
= lim
t→∞

(
ϕ(t−1)

t2β−ε

)q
1

tqε
. (ϕ(1))q lim

t→∞

1

tqε
= 0,

and (2.6) holds.
Note that φ

′

+(τ) = −h(τ−1)τ−q(d−1)/2, 0 < τ < 1/t, and

Iβ
+

q (h, t) =

∫ 1/t

0

−τ2qβφ
′

+(τ−1)dτ, t > 0,
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thus integration by parts and (2.6) imply

Iβ
+

q (h, t) =
(
−τ2qβφ+(τ−1)

)1/t
0

+ 2qβ

∫ 1/t

0

τ2qβ−1φ+(τ−1)dτ

= −t−2qβφ+(t) + 2qβ

∫ 1/t

0

τ2qβ−1φ+(τ−1)dτ

≤ 2qβ

∫ 1/t

0

τ2qβ−1φ+(τ−1)dτ, t > 0.

Since φ+((·)−1) is a nondecreasing function on (0,∞), it follows

(2.7) Iβ
+

q (h, t) ≤ 2qβφ+(t)

∫ 1/t

0

τ2qβ−1dτ = φ+(t)t−2qβ , t > 0.

Handling Iβ
−

q (h, t) as above, by defining

φ−(t) =

∫ −1/t
−∞

h(τ)(−τ)q(d−1)dτ, t > 0,

we get

(2.8) Iβ
−

q (h, t) ≤ t−2qβφ−(t) + 2qβφ−(t)

∫ 0

−1/t
(−τ)2qβ−1dτ = 2t−2qβφ−(t), t > 0.

Combining inequalities (2.5), (2.7) and (2.8) with our assumptions (i.e. φ+(t) = O (ϕ(t))
q

and φ−(t) = O (ϕ(t))
q , as t→ 0+), we reach to

‖Tt(f)− f‖p .
(∫

Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

= O (ϕ(t)) , as t→ 0+.

Thus, f ∈ Lip (p, β, ϕ).
For d = 1, the same proof presented above can be rewritten with minor adjustments as

follows. For t > 0, denote

Iβ<
q (f) :=

∫
|ξ|<1/t

[
|ξ|2β |ξ|(1−1/p−1/q)|f̂(ξ)|

]q
d ξ = Iβ

−

q (f, t) + Iβ
+

q (f, t),

where

Iβ
−

q (f, t) :=

∫ 0

−1/t

[
ξ2β |ξ|(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

and

Iβ
+

q (f, t) :=

∫ 1/t

0

[
ξ2β |ξ|(1−1/p−1/q)|f̂(ξ)|

]q
d ξ, t > 0,

it is sufficient to show that both Iβ
−

q (f, t) and Iβ
+

q (f, t) are O
(
t−2qβ (ϕ(t))

q) as t→ 0+.
It is not hard to see that if

g(t) =

∫
|s|<1/t

|s|q(1−1/p−1/q)|f̂(s)|qd s, t > 0,

then

Iβ
−

q (f, t) =

∫ 0

−1/t
s2qβg′(s−1)d s, and Iβ

+

q (f, t) =

∫ 1/t

0

s2qβg′(s−1)d s, t > 0,
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Also, we observe that the same reasoning applied in order to prove equality (2.6) fits here and
we have

(2.9) lim
t→0+

t2qβg(t−1) = 0.

Thus integration by parts and (2.9) imply

Iβ
+

q (f, t) = −t−2qβg(t) + 2qβ

∫ 1/t

0

s2qβ−1g(s−1)d s

≤ 2qβ

∫ 1/t

0

s2qβ−1g(s−1)d s, t > 0.

Since g((·)−1) is a nondecreasing function on (0,∞), it follows

(2.10) Iβ
+

q (f, t) ≤ 2qβg(t)

∫ 1/t

0

s2qβ−1d s = g(t)t−2qβ , t > 0.

Handling Iβ
−

q (f, t) similarly as above, we reach to

(2.11) Iβ
−

q (f, t) ≤ t−2qβg(t) + 2qβg(t)

∫ 0

−1/t
(−s)2qβ−1d s = 2t−2qβg(t), t > 0.

Combining inequalities (2.10) and (2.11) with our assumption (g(t) = O (ϕ(t))
q as t → 0+),

we obtain

‖Tt(f)− f‖p .
(∫

R

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

= O (ϕ(t)) , as t→ 0+,

and therefore f ∈ Lip (p, β, ϕ). �

Corollary 2.3. If ϕ ∈ Ω2β , then f ∈ Lip (2, β, ϕ) if and only if(∫
t≤|ξ|≤2t

|f̂(ξ)|2dξ

)1/2

= O
(
ϕ(t−1)

)
, as t→∞.

Remark 2.4. We have defined the class Ωβ by the collection of all ϕ ∈M satisfying the follow-
ing

(2.12)
∫ ∞
t

ϕ(u)

uβ+1
du .

ϕ(t)

tβ
.

Inequality (2.12) is necessary in order to have Theorem 1.3, part (B), true. Let ϕ ∈M a function
that does not fulfill (2.12), then Theorem 1.3, part (A), still holds true. However, the same does
not hold for part (B).

We consider the case d ≥ 2, similarly we can deal with d = 1. Let 2 ≤ p <∞ and f : Rd −→ R
in Lp(Rd) given in terms of the inverse Fourier-Hankel transform of |ξ|−(2β+1/p′), ξ ∈ R \ {0},
that is,

f(x) =
σd

(2π)d

∫ ∞
0

jd/2−1(xs)

|x|2β+1/p′
sd−1ds,

where σd is the volume of the unit sphere in Rd and jα( · ) denotes the normalize Bessel function
(see [11]).

If ϕ(t) := t2β , then ϕ ∈M but ϕ does not meet condition (2.12). Also, it is clear that∫
1/t≤|ξ|

|f̂(ξ)|p
′
dξ = 2

∫ +∞

1/t

1

|ξ|2βp′+1
dξ = O([ϕ(t)]p

′
)
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or, equivalently, (∫
1/t≤|ξ|≤2/t

|f̂(ξ)|p
′
dξ

)1/p′

= O(ϕ(t)).

It means that for q = p′, the function f fits into assumptions of Theorem 1.3, part (B). Also, we
have

t2p
′β

∫
1/t<|ξ|

|ξ|2p
′β |f̂(ξ)|p

′
d ξ = t2p

′β

∫
1/t<|ξ|

|ξ|−1d ξ = +∞, for all t > 0,

and therefore, f 6∈ Lip(p, β, ϕ).

3. PROOF OF THEOREM 1.5

In this section, we only work with d ≥ 2. For d = 1, the result was proved in [13] for the
usual fractional moduli of smoothness ([5, 22]). If one wants to consider the admissible family
of multipliers operators instead the fractional moduli of smoothness, for this case, with small
adjustments the same proof presented in [13, p. 1310] fits here.

Proof. of Theorem 1.5.We rewrite the integral in the left-hand side of inequality (1.7), as I1 + I2,
where

I1 :=

∫ 1/2

0

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t

and

I2 :=

∫ ∞
1/2

∫
t≤|ξ|≤2t

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dt

t
.

Since ϕ is non-decreasing, for any t ≤ |ξ| ≤ 2t it holds ϕ(t−1/2) ≤ ϕ(|ξ|−1) and we have

I1 .
∫ 1/2

0

1

[ϕ(t−1/2)]q

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)
ds

s
.

The change of variables t = s/2 leads us to

I1 .
∫ 1

0

1

[ϕ(s−1)]q

(∫
s/2≤|ξ|≤s

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
dξ

)
dt

t

. ‖(·)d(1−1/p−1/q)f̂(·)‖qq.

For I2, the change of variables t = s−1/2 implies

I2 =

∫ 1

0

∫
1/2s≤|ξ|≤1/s

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
ds

s
.
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We note that if 0 < s ≤ 1 and 1/2s ≤ |ξ| ≤ 1/s, then ϕ(s) ≤ ϕ(|ξ|−1) and s|ξ| ≤ 1. Combining
these inequalities to Propositon 2.1, part (A), we have

I2 .
∫ 1

0

∫
1/2s≤|ξ|≤1/s

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
ds

s

≤
∫ 1

0

∫
1/2s≤|ξ|≤1/s

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(s)

)q
dξ
ds

s

.
∫ 1

0

‖Ts(f)− f‖qp
[ϕ(s)]q

ds

s
=

∫ 1

0

‖Ts(f)− f‖qp
[ϕ(s)]q

ds

s
≤ ‖f‖q

Bϕ
p,q
.

Thus the first part of the theorem is proved.
To prove the second part, with an application of Proposition 2.1, part (B), we arrive at

‖Tt(f)− f‖qp
[ϕ(t)]q

.
∫
Rd

It(ξ)d ξ =

∫ ∞
0

It,0(r)r(d−1)dr for all t > 0,(3.1)

where

It(ξ) :=
min(1, t|ξ|)2qβ

[ϕ(t)]q
|ξ|dq(1−1/p−1/q)|f̂(ξ)|q, ξ ∈ Rd,

and It,0 denotes its radial part. Integrating both sides of inequality (3.1) and defining

J1 + J2 :=

∫ 1

0

(∫ 1

0

It0(r)r(d−1)dr

)
dt

t
+

∫ 1

0

(∫ 1/t

1

It0(r)r(d−1)dr

)
dt

t

and

J3 :=

∫ 1

0

(∫ ∞
1/t

It0(r)r(d−1)dr

)
dt

t
,

we just need to conclude that Ji <∞, i = 1, 2, 3.
In order to estimate J1, we apply the (2β− ε)-almost decreasingness property to ϕ, to obtain

J1 =

∫ 1

0

t2qβ

[ϕ(t)]q

[∫ 1

0

rdq(1−1/p−1/q)+2qβ

(∫
Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
dt

t

.
∫ 1

0

tεq
[∫ 1

0

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
dt

t

≤ ‖(·)d(1−1/p−1/q)f̂(·)‖qq
∫ 1

0

tεq−1dt <∞.

Moving on to the estimate for J2 + J3, we first write J2 explicitly as follows

J2 =

∫ 1

0

t2βq

[ϕ(t)]q

[∫ 1/t

1

rdq(1−1/p−1/q)+2qβ

(∫
Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
ds

s
.

Since ϕ is (2β − ε)-almost decreasing, we have

ϕ(r−1)

r−2β+ε
.

ϕ(t)

t2β−ε
, for 1 ≤ r ≤ 1/t,

which leads us to
t2β

ϕ(t)
.
r−2β+εtε

ϕ(r−1)
, for 1 ≤ r ≤ 1/t.
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Consequently,

J2 .
∫ 1

0

tεq

[∫ 1/t

1

rdq(1−1/p−1/q)+qε

(∫
Sd−1

|f̂(rω)|q

[ϕ(r−1)]q
dω

)
r(d−1)dr

]
ds

s
.

Now, the change of variables t = s−1 in the right-hand side of inequality above gives us

J2 .
∫ ∞
1

s−qε

[∫ s

1

rdq(1−1/p−1/q)+qε

(∫
Sd−1

|f̂(rω)|q

[ϕ(r−1)]q
dω

)
r(d−1)dr

]
ds

s

.
∫ ∞
1

s−qε

{∫ s

1

rqε−1

[∫ 2r

r

udq(1−1/p−1/q)

(∫
Sd−1

|f̂(uω)|q

[ϕ(u−1)]q
dω

)
u(d−1)du

]
dr

}
ds

s
.

For J3, the change of variable t−1 = s implies

J3 =

∫ 1

0

1

[ϕ(t)]q

[∫ ∞
1/t

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
dt

t

=

∫ ∞
1

1

[ϕ(s−1)]q

[∫ ∞
s

rdq(1−1/p−1/q)
(∫

Sd−1

|f̂(rω)|qdω
)
r(d−1)dr

]
ds

s
.

Observing that, for all 1 ≤ s ≤ r <∞, the inequality ϕ(r−1) ≤ ϕ(s−1) holds, we obtain

J3 .
∫ ∞
1

[∫ ∞
s

rdq(1−1/p−1/q)

(∫
Sd−1

|f̂(rω)|q

[ϕ(r−1)]q
dω

)
r(d−1)dr

]
ds

s

.
∫ ∞
1

{∫ ∞
s

r−1

[∫ 2r

r

udq(1−1/p−1/q)

(∫
Sd−1

|f̂(uω)|q

[ϕ(u−1)]q
dω

)
u(d−1)du

]
dr

}
ds

s
.

Finally, taking in account the estimates for J2 and J3, Hardy’s inequalities [23, p. 272] imply

J2 + J3 .
∫ ∞
0

[∫ 2r

r

udq(1−1/p−1/q)

(∫
Sd−1

|f̂(uω)|q

[ϕ(u−1)]q
dω

)
u(d−1)du

]
dr

r

=

∫ ∞
0

∫
r≤|ξ|≤2r

(
|ξ|d(1−1/p−1/q)|f̂(ξ)|

ϕ(|ξ|−1)

)q
dξ
dr

r
<∞,

and f ∈ Bϕp,q(Rd). The theorem is proved. �

We close this section with a direct consequence of Theorem 1.5.

Corollary 3.1. If ϕ ∈ Ωq2β , then f ∈ Bϕ2,2(Rd) if and only if∫ ∞
0

∫
t≤|ξ|≤2t

(
|f̂(ξ)|
ϕ(|ξ|−1)

)2

dξ
dt

t
<∞.

4. ĜM
d

p CLASS: RIEMANN-LEBESGUE TYPE INEQUALITY AND FINAL REMARKS

From now on, we will work with GM -classes (general monotone classes) of functions. This
concept was firstly introduced in [27], where also the main properties were established.

A locally bounded variation function g : (0,∞) −→ R, vanishing at infinity and such that
for some c > 0 (only depending on g) satisfies

(4.1)
∫ ∞
t

|d g(s)| .
∫ ∞
t/c

|g(s)|
s

ds <∞, for all t > 0,
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is called general monotone (see [17, 25, 28]) and we write g ∈ GM . In addition, if g satisfies the
following condition ∫ 1

0

sd−1|g(s)|ds+

∫ ∞
1

s(d−1)/2|dg(s)| <∞,

for d ≥ 1 an integer number, then we write g ∈ GMd (see [12, 13] and references quoted there
for details).

In this section, we write f0 for the radial part of a given f from Rd. We consider the following
collection of functions defined in terms of the inverse Fourier-Hankel transform:
(4.2)

ĜM
d

p :=

{
f ∈ Lp(Rd) : f is radial, f0(t) =

σd−1
(2π)d

∫ ∞
0

sd−1F0(s)jd/2−1(ts)ds, F0 ∈ GMd

}
.

For d ≥ 2 and 1 ≤ p < 2d/(d + 1), the collection above contains all radial positive-definite
functions f(x) = f0(|x|), x ∈ Rd, such that its Fourier transforms F0 lies in GMd. For d = 1, the
same conclusion holds if p = 1 (see [13, p. 1293] and [17] for more examples).

Conditions in Theorem 2.1 can be considerably relaxed if we consider the class ĜM
d

p as
showed in [13, Theorem 4.1]. Following the path designed by the authors in [13], conditions of
Theorem 2.1 are extended as follows.

Proposition 4.1. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd) and f ∈
ĜM

d

p.

(A) Let 1 < p ≤ q <∞. If f̂ is nonnegative, then

(4.3)
(∫

Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)f̂(ξ)

]q
d ξ

)1/q

. ‖Tt(f)− f‖p.

(B) Let 1 < q ≤ p <∞ with 2d/(d+ 1) < p. If | · |d(1−1/p−1/q)f̂(·) ∈ Lq , then

(4.4) ‖Tt(f)− f‖p .
(∫

Rd

[
min(1, t|ξ|)2β |ξ|d(1−1/p−1/q)|f̂(ξ)|

]q
d ξ

)1/q

.

Due to [13, Theorem 4.1, p. 1293] is not hard to see that the basics facts (besides several
calculations) needed in order to repeat that proof in here are the following: [min(1, t(·))]2βF0(·)
must be in GMd, h := f − Tt(f) must be radial and its radial part given by h0(s) = [1 −
ηt(s)]F0(s), s ∈ (0,∞). It is clear that all these facts hold true under assumptions made in
Proposition 4.1, that is why the details of the proof were omitted.

Proposition 4.2. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd), 1 < p ≤
q <∞, and ϕ ∈ Ω2β . If f ∈ Lip (p, β, ϕ) ∩ ĜM

d

p and f̂ is nonnegative, then

(4.5)

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)f̂(ξ)

]q
dξ

)1/q

= O
(
ϕ(t−1)

)
.

Additionally, if 2d/(d+ 1) < q, f ∈ ĜM
d

q , | · |d(1−1/p−1/q)f̂(·) ∈ Lp(Rd) and

(4.6)

(∫
t≤|ξ|≤2t

[
|ξ|d(1−1/p−1/q)|f̂(ξ)|

]p
dξ

)1/p

= O
(
ϕ(t−1)

)
,

then f ∈ Lip (q, β, ϕ).
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The proof of (4.5) is a direct application of Theorem 4.1, part (A). While (4.6) follows from
the proof of Theorem 1.3, but instead of applying Proposition 2.1, we need to apply Proposition
4.1, part (B). For p = q, the proposition above becomes the following.

Corollary 4.3. Let 2d/(d+ 1) < p and f ∈ ĜM
d

p such that f̂ is non-negative and | · |d(1−2/p)f̂(·) ∈
Lp(Rd). Then f ∈ Lip (p, β, ϕ) if and only if(∫

t≤|ξ|≤2t

[
|ξ|d(1−2/p)f̂(ξ)

]p
dξ

)1/p

= O
(
ϕ(t−1)

)
.

Another consequence of Proposition 4.1 is a pointwise estimate for the Fourier transforms

of functions in ĜM
d

p satisfying the Lipschitz condition. The Riemann-Lebesgue type inequality
is the content of the next result.

Corollary 4.4. Let 1 < p ≤ q < ∞ and ϕ ∈ Ω2β . If f ∈ ĜM
d

p ∩ Lip (p, β, ϕ) is such that f̂ is
nonnegative, then

f̂(ξ) = O
(
|ξ|−d/q

′
ϕ(|ξ|−1)

)
, as |ξ| → ∞.

Proof. Observe that for f ∈ ĜM
d

p, if its Fourier transform f̂ is written as F0, then it satisfies
inequality (4.1) and it holds

F0(t) .
∫ ∞
t/c

F0(s)

s
ds, for all t > 0.

An application of Hölder inequality leads us to

F0(t) . t−d/q
′

(∫ ∞
t/c

sqd−d−1[F0(s)]qds

)1/q

, for all t > 0.

Finally, Proposition (4.2) implies(∫ ∞
t/c

sqd−d−1[F0(s)]qds

)1/q

= O
(
ϕ(t−1)

)
, as t→∞,

and the proof follows. �

A version of Theorem 1.5 for ĜM
d

p class also has a more relaxed condition version.

Proposition 4.5. Let {Tt}t>0 be a β-admissible family of multipliers operators on Lp(Rd), ϕ ∈ Ωq2β

and f ∈ ĜM
d

p.

(A) Let 1 < p ≤ q <∞. If f ∈ Bϕp,q(Rd) is such that f̂ is nonnegative, then∫ ∞
0

td(q−1)
(
F0(t)

ϕ(t−1)

)q
dt

t
<∞.

(B) Let 1 < q ≤ p <∞ with 2d/(d+ 1) < p. If | · |d(1−1/p−1/q)f̂(·) ∈ Lq , and∫ ∞
0

td(q−1)
(
|F0(t)|
ϕ(t−1)

)q
dt

t
<∞,

then f ∈ Bϕp,q(Rd).
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The proof is a simple adaptation of the proofs of Theorem 1.5 above and Theorem 7.3 in [13,
p. 1310]. For p = q, we obtain the following.

Corollary 4.6. Let 2d/(d+1) < p, f ∈ ĜM
d

p such that f̂ is nonnegative and |·|d(1−2/p)f̂(·) ∈ Lp(Rd).
Then, f ∈ Bϕp,q(Rd) if and only if ∫ ∞

0

td(q−1)
(
F0(t)

ϕ(t−1)

)q
dt

t
<∞.
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