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Abstract
Small area estimates have received much attention from both private and public sectors due
to the growing demand for effective planning of health services, apportioning of government
funds and policy and decision making. The uncertainty of empirical best linear unbiased
predictor (EBLUP) estimates is widely assessed by mean squared error (MSE). MSEs are
criticized as they are not area specific since they do not depend on the direct estimators
from the survey. In this paper, we compare the performances of different MSE estimators
with respect to the relative bias and relative risk using a Monte Carlo simulation study.
Simulation results suggest the superiority of the proposed MSEs over the existing methods
in some situations. As a case study, the 2010/11 household consumption expenditure
survey (HCES) and the 2007 housing and population census of Ethiopia have been used
to study the performances of the MSE estimators.
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1. Introduction
Reliable small area statistics are needed for local planning, formulating policies and pro-

grams, marketing decisions, allocation of funds and so on. For example, government poli-
cies and private sectors in both developed and developing countries increasingly demand
poverty and income estimates for small areas [20]. The census data gives demographic in-
formation once in a decade, while sample surveys aim to provide estimates at the national
or regional/provincial levels and pay little or no attention to the sub-national or district
levels. Because planning large sample surveys with adequate sample size is expensive and
time-consuming [2,20]. The direct survey estimates (estimates from the given sample sur-
vey) for small areas have unacceptably large standard errors and coefficient of variations
(CV) due to small sample sizes. Therefore, it requires strengthening of such estimates
with the use of information from census or other data sources from related small areas
through linking models. This can be achieved by employing indirect small area estimators
such as using the well known Fay-Herriot (FH) model [9] in small area estimation. The
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FH model was introduced by [9] to obtain model-based estimates for per-capita income
for small places in the United States. This model is useful in cases where auxiliary data
are available at the area level or when it is not possible to link the information of the
sample units with census data or unit-level data, which might not be available due to
confidentiality issues [17,20].

Small area estimation has been extensively used as an indirect estimation technique for
estimating poverty indicators, per-capita income, etc. Moreover, indirect estimation of
small area means or totals through linking models has received much attention in recent
years, including mean squared error (MSE) [7]. The variability of indirect small area
estimators is often measured using MSE. According to [20], MSE estimators are area-
specific in the sense that the MSE depends on the area-specific data, that is, on the direct
estimator yi, if we are estimating in the area i. This is the sense of the term area-specific
used in [20]. The estimated MSE obtained by [17] or [5] are not area-specific since the
MSEs do not depend directly on the direct estimator yi. For this reason, [19] proposed
alternative area-specific MSEs to fill this gap. Moreover, [22] proposed confidence intervals
using some area-specific MSEs. The MSE estimators by [19] are unstable, but its effect
should be small for a large number of small areas (m) [20]. The aims of this paper are:
(i) to study and compare the performance of the conventional MSEs [5, 17] and the area-
specific MSEs [19, 22] in terms of RB and RR through a simulation study; and (ii) to
provide the estimates of percentage of food expenditure and poverty measure at the zone
level for the Ethiopian data and to evaluate the results based on the RB, RR and width
of prediction intervals.

2. Materials and methods
2.1. The Fay-Herriot model

The well-known FH small area estimation model [9] consists of two levels. Level 1
represents the sampling model

yi|θi
ind∼ N [θi, ψi], i = 1, ...,m, (2.1)

where ψi represents the sampling variance of yi to be estimated from the sample survey.
Level 2 represents the linking model,

θi
ind∼ N [x′

iβ, A], i = 1, ...,m. (2.2)

Level 1 accounts the sampling variability of the direct survey estimates yi of the true
small area means θi. Level 2 is set to link θi to a p × 1 vector of auxiliary variables
xi = (xi1, · · · , xip)′. Let y1, · · · , ym be observations for the m small areas. Then the FH
model is defined as

yi = x′
iβ + vi + ei, i = 1, · · · ,m, (2.3)

where
• β = (β1, ..., βp)′ is a p× 1 vector of unknown regression coefficients,
• vi is the area-specific random effects with E(vi) = 0 and Var(vi) = A (≥ 0),
• ei is the sampling error with E(ei) = 0 and Var(ei) = ψi, is assumed to be known

for all areas i = 1, 2, · · · ,m,
• v′

is and e′
is are independent with vi

iid∼ N(0, A) and ei
ind∼ N(0, ψi).

The FH model is designed to estimate the small area means θi = x′
iβ+vi, 1, ...,m. Letting

X = (x1, ..., xm)′, y = (y1, ..., ym)′, v = (v1, ..., vm) and e = (e1, ..., em), then the matrix
natation of the FH model may be expressed as

y = Xβ + v + e. (2.4)
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The variance-covariance matrix of y is Σ(A) = diag(ψ1, ..., ψm) +AIm, where Im denotes
an m×m identity matrix.

In practice, there are different procedures for the estimation of unknown model param-
eters β and A. The FH method of moment estimator by [9], maximum likelihood (ML)
and restricted maximum likelihood (REML) methods by [5], and so on. Substituting Â
for A reveals the empirical best linear unbiased predictor (EBLUP) given by

θ̂EB
i = (1 − γ̂i)yi + γ̂ix′

iβ̂, i = 1, ...,m, (2.5)

where β̂ = (X′Σ̂−1X)−1X′Σ̂−1y =
{∑m

i=1(Â+ ψi)−1xix′
i

}−1 ∑m
i=1(Â + ψi)−1xiyi is the

weighted least squares (WLS) estimator of β and γ̂i = ψi

ψi+Â
, the weight attached to the

regression synthetic estimator. The EBLUP is a weighted combination of a direct survey
estimator yi and the regression-synthetic estimator x′

iβ̂. When ψi is small relative to
Â+ψi, then the direct estimator yi is efficient. However, when ψi is large as compared to
Â+ ψi, then more weight is attached to the regression synthetic estimator x′

iβ̂ [16].

2.2. Mean squared error
The MSE is the most commonly used measures of uncertainty of θ̂EB

i in small area
estimation. A second-order correct approximation for the MSE of EBLUP has been ob-
tained first by [17] using a moment estimator A. Later, [5] derived a second order correct
approximation of the MSE of EBLUP for the ML and REML estimators of A. A detailed
review of EBLUP and MSE are given in [20]. The MSE of θ̂EB

i is defined as

MSE(θ̂EB
i ) = E

{
θ̂EB
i − θi

}2
. (2.6)

The MSE of θ̂EB
i which is accurate to the order O(m−1) can be approximated by

MSE(θ̂i
EB) = g1i(A) + g2i(A) + g3i(A) +O(m−1), (2.7)

where g1i(A) = Aψi
A+ψi

, g2i(A) = γ2
i x′

i(X′Σ−1X)−1xi and g3i(A) = ψ2
i

(A+ψi)3V (Â)+o(m−1)
(see [17,20]). For example, Datta et al. (2002) derived the asymptotic variance of the FH
moment estimator which is given by V (Â) = 2m

[∑m
i=1

1
A+ψi

]−2
.

For the REML estimator of A, [5] obtained an unbiased estimator of the MSE of θ̂EB
i given

by
M̂SE(θ̂EB

i ) = g1i(ÂRE) + g2i(ÂRE) + 2g3i(ÂRE) (2.8)

where g1i(ÂRE) = ÂREψi(ÂRE+ψi)−1, g2i(ÂRE) = ψ2
i

(ÂRE+ψi)2 x′
i

{∑m
u=1(ÂRE + ψu)−1xux′

u

}−1
xi,

g3i(ÂRE) = γ̂2
i
V (ÂRE)
ÂRE+ψi

and V (ÂRE) = 2∑m

i=1(ÂRE+ψi)−2 . It is known that the M̂SE(θ̂EB
i ) is

second order unbiased if E
[
M̂SE(θ̂EB

i )
]

= MSE(θ̂EB
i ) +O(m−1) (see [20]).

For the ML estimator of A, [5] obtained an unbiased estimator of the MSE of θ̂EB
i given

by

M̂SEML(θ̂EB
i ) = g1i(ÂML) + g2i(ÂML) + 2g3i(ÂML) − bÂML

(ÂML)∇g1i(ÂML), (2.9)

where ∇g1i(ÂML) = ( ψi

ÂML+ψi
)2 > 0. The estimated bias of ÂML for the ML estimator

ÂML is given by

bÂML
(ÂML) =

−tr
{

[
∑m
u=1(Â+ ψu)−1xux′

u]−1[
∑m
u=1(ÂML + ψu)−2xux′

u]
}

∑m
u=1(ÂML + ψu)−2

.
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Similarly, for the FH estimator of A, [6] obtained an unbiased estimator of the MSE of
θ̂EB
i given by

M̂SEFH(θ̂EB
i ) = g1i(ÂFH) + g2i(ÂFH) + 2g3i(ÂFH) − bÂF H

(ÂFH)
{
γi(ÂFH)

}2
. (2.10)

The bias to terms of order O(m−1) for the FH model is given by

bÂF H
(ÂFH) =

2
{
m

∑m
u=1(ÂFH + ψu)−2 −

{∑m
u=1(ÂFH + ψu)−1

}2
}

∑m
u=1(ÂFH + ψu)−2

.

2.3. Area-specific mean squared errors
According to [20], MSE estimators are area-specific when they incorporate area-specific

direct survey estimators within it. The g3i(A) which was proposed by [5, 17] and others
are given by

g3i(A) = ψ2
i

(A+ ψi)3V (Â). (2.11)

This g3i(A) is not area-specific since it does not incorporate the direct survey estimate yi
within it. Thus, [19] and [22] proposed alternative area-specific g3i(A, yi)′s under the FH
model. The [19] g3i(A, yi) is given as

Rao : g̃3i(A, yi) = ψ2
i

(ψi +A)4 (yi − x′
iβ̃)2V (Â). (2.12)

Similarly, [22] proposed the following alternative area-specific g3i(A, yi)′s as follows:

JY : g3JYi(A, yi) = ψ2
i

(ψi +A)4
(yi − x′

iβ̃)2

V(yi − x′
iβ̃)

V (Â), (2.13)

where V(yi − x′
iβ̃) = A+ ψi − x′

i(X′Σ−1X)−1xi.
The second g3i(A)′s which was proposed by [22] has the form:

JY1 : g̃3JY 1i(A) = g3i(A) − g5i(A), (2.14)

where g5i(A) = g2i(A)
(A+ψi)2V (Â). Note that g̃3JY 1i(A) in (2.14) does not include yi, but it

includes the area-specific auxiliary variables unlike the usual g3i(A) in equation (2.11).
Equation (2.13) standardizes the residuals in order to make them scale-free [1].

3. Results and discussion
3.1. Comparison of the MSEs

We now investigate the finite sample performances of the different MSEs under the FH
model. Note that MSE_Rao, MSE_JY and MSE_JY1 are the MSE estimators based on (2.12),
(2.13) and (2.14) respectively under the three different methods of estimation. However,
MSE_REML, MSE_ML and MSE_FH are the MSE estimators based on (2.11) under the REML,
ML and FH methods of estimation [24]. The MSEs we want to compare are given as
follows. The four different MSE estimators based on the REML estimator ([5]) are given
by:

MSE_Raoi ≈ g1i(Â) + g2i(Â) + g3i(Â) + g∗
3Raoi(Â, yi). (3.1)

MSE_JYi ≈ g1i(Â) + g2i(Â) + g3i(Â) + g∗
3JYi(Â, yi). (3.2)

MSE_JY1i ≈ g1i(Â) + g2i(Â) + g3i(Â) + g∗
3JY1i(Â). (3.3)

MSE_REMLi ≈ g1i(Â) + g2i(Â) + 2g3i(Â). (3.4)
The four different MSE estimators based on the ML ([5]) and FH ([6]) estimators can
be written similar to the REML case. The relative bias (RB) and relative risk (RR) are
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used to compare the MSEs given above. Smaller RB and RR values indicate better MSE
performance ([12]). The RB and RR are given as follows:

RBi = 100 ×
E

[
M̂SE(θ̂EB

i ) − MSE(θ̂EB
i )

]
MSE(θ̂EB

i )
, RRi = 100 ×

E
{

M̂SE(θ̂EB
i ) − MSE(θ̂EB

i )
}2

{
MSE(θ̂EB

i )
}2 .

The average RB and RR of each MSE estimator over areas are given by

RB = 1
m

m∑
i=1

RBi, RR = 1
m

m∑
i=1

RRi, i = 1, · · · ,m. (3.5)

In addition to RB and RR, the coverage probability (CP) of prediction intervals by [17],
[4] and [22] are used to compare the proposed MSEs. The confidence interval proposed
by [4] is easy to construct, but it has under-coverage problem since it does not account
the uncertainty due to the estimation of β and A. This confidence interval is accurate to
terms O(m−1), not accurate enough in most small area applications [26]. The [4] empirical
Bayes interval for θi based on θ̂EBi is given as follows:

ICox
i : θ̂EB

i ± zα/2ψ
1/2
i (1 − γ̂i)1/2. (3.6)

Similar to [4]’s method, the confidence interval proposed by [17] is also accurate to terms
O(m−1). The confidence interval [17] for θi can be written as follows:

IPR
i : θ̂EB

i ± zα/2

√
M̂SE(θ̂EB

i ). (3.7)
The area specific corrected confidence intervals for a small area mean θi; i = 1, · · · ,m
based on θ̂EBi are proposed by [22] as follows:

IFH
i : θ̂EB

i ± t∗α

√
M̂SE(θ̂EB

i ), (3.8)

where t∗α = zα/2(1 + h(Â)), h(Â) = (z2
α/2

+ 1) ψ2
i

8Â2(Â+ψi)2V (Â).

IRao
i : θ̂EB

i ± tRao
√

MSE_Raoi, (3.9)
where tRao = zα/2 + (z3

α/2
+ zα/2) (A+ψi)g3Raoi

8A2 .

IJY
i : θ̂EB

i ± tJY
√

MSE_JYi, (3.10)

where tJY = zα/2 + (z3
α/2

+ zα/2) (A+ψi)g3JYi

8A2 .

IJY1
i : θ̂EB

i ± tJY1
√

MSE_JY1i, (3.11)

where tJY1 = zα/2 + (z3
α/2

+ zα/2) (A+ψi)g3JY1i

8A2 .
The performance of the above confidence intervals are evaluated using the CP given as

follows:
CPi =

m∑
i=1

|θi ∈ CIi|
m

, (3.12)

where , i=1,...,m, CIi is the confidence interval of a certain method.

3.1.1. Simulation setup. The simulation experiments are carried out through consid-
ering the [6] with minor modifications. The range of small areas are selected through
consideration of related literatures in the area. m cannot be large in many applications
[11]. Researchers such as [25] considered m = 30 in testing the performance of their pro-
posed step-wise Bayes estimator. Other researchers such as [3] considered a sample of
small areas such as m = 8, 20 and 100 to assess their proposed measure of goodness-of-fit
statistics. Another study by [14] considered a range of small areas m = 15 and 45 to study
the asymptotic behaviour of their proposed confidence intervals. Further, [22] considered
a sample of small areas such as m = 15, 20, 30, 40, 50, 60, 80 and 100 for comparing their
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proposed area specific confidence intervals under the FH model. Similarly [23] considered
a sample of small areas such as m = 10, 15, 30, 45 and 60 in comparing their proposed con-
fidence intervals. Taking the above literature into consideration and to study the effect
of m, this paper considered a range of small areas such as m = 10, 15, 30, 45 and 60. The
vector of auxiliary variables are given as xi = (1,xi)′, where xi; i = 1, ...,m were gener-
ated i.i.d. from N(0, 1), β = (1, 1)′ and A = 1. The sampling errors, ei, were generated
from N(0, ψi) for ψi specified by the following three different variance patterns: pattern
(I) 0.7, 0.6, 0.5, 0.4, 0.3, pattern (II) 2, 0.6, 0.5, 0.4, 0.2 and pattern (III) 4, 0.6, 0.5,
0.4, 0.1. The random effects, vi are generated from two different distributions, namely
the normal N(0, 1) and the Laplace (0, 1) distributions. We have considered the Laplace
distribution to assess the robustness of the methods to possible deviations from the nor-
mality assumptions. We considered two different cases; (i) without covariates: xiβ = 0,
we generate 10,000 data sets from yi = vi + ei, (i = 1, · · · ,m) and (ii) with covariates:
β = (1, 1)′, we generate 10,000 data sets from yi = xiβ + vi + ei, (i = 1, · · · ,m) to
account for the estimation of the unknown regression parameters which comes from the
real data applications. The SAS code by [13] were adopted with modification to check the
performance of the proposed MSE estimators.

3.1.2. Simulation results without covariates. Following [6], we used a model with
no auxiliary variables to obtain Table 1. These results are shown separately for each of
the sampling variances ψi, distinguishing among the cases Â = ÂML, Â = ÂREML and
Â = ÂFH . The FH, ML and REML correspond to the FH, ML and REML estimators of
the MSE of the EBLUP, respectively [24].

Table 1 shows the RB and RR values of the MSE estimators that were obtained through
the simulation study for m = 15 without covariates. RR is a number that measures the
risk of using MSE estimators under certain circumstances. The lower risk MSE estimators
perform better than their higher risk counterparts. The RR of MSE_Rao, MSE_JY and
MSE_JY1 are nearly zero for the ML, REML and FH methods for all patterns. In terms
of RB and RR the MSE estimators based on the ML, REML and FH behave similarly for
the pattern (I), with no particular one emerging as clearly better than the other three.
The MSE estimators based on the FH method have a very small bias for all variance
patterns. The bias of the MSE_JY1 estimator is smaller than MSE_Rao and MSE_JY
for the ML and REML methods. The bias and risk of all the estimators are less than 7%
when Â = ÂFH for both patterns (II) and (III) are negligible for group G5 and the normal
distribution. Under the Laplace distribution, the RR of MSE estimators based on the FH
method are less than 7% in all cases [24].

3.1.3. Simulation results with covariates. For the FH model incorporating covari-
ates, the RB and RR of MSE estimators are presented in Table 2. As shown in Table 2,
for pattern (II), the average RR of MSE_ML, MSE_Rao, MSE_JY and MSE_JY1 are
6.32%, 1.22%, 1.66% and 1.38% respectively [24]. Figures 1 - 3 plot the average RBs of
the MSE estimators over the range of m. We have simulated the RB for the 5 groups
within each pattern and m. Then we took the average of the absolute values of the RB
over groups for each pattern and m. We have presented the findings for the patterns (I),
(II) and (III) in Figures 1, 2 and 3 respectively, as shown below. The green, blue, red and
black colours indicate that the MSE estimators based on g3i(Â)’s (Rao2001, JY, JY1 and
ML or REML or FH) respectively [24]. The key findings in Figure 1 are:

• For the homogeneous ψi pattern, the average RB of all the MSE estimators is less
than 10%.

• The average RB of MSE_Rao, MSE_JY and MSE_JY1 are less than the MSE of
the ML and REML estimators.
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• All the MSE estimators based on the FH method are identical. They are nearly
unbiased.

Table 1. Simulated values of the RB and RR of M̂SE(θ̂EB
i ) for A = 1, m = 15,

ψi pattern (I), (II), (III) and for the normal and the Laplace random effects
distributions

Normal Distribution Laplace Distribution

Groups Pattern I Pattern II Pattern III Pattern I Pattern II Pattern III

ML RE FH ML RE FH ML RE FH ML RE FH ML RE FH ML RE FH

RB

MSE based on ML, REML and FH methods
G1 -12.4 -7.7 -0.8 -15.4 -8.5 -2.9 -15.6 -6.9 -4.8 -16.7 -9.1 1.9 -20 -9.5 -3.8 -21.9 -7.5 -9.4
G2 -10.9 -6.5 0.4 -12.8 -7.6 -0.4 -14.8 -8.4 -3.3 -15.8 -8.4 3.1 -20 -10.8 -0.6 -27.6 -14.1 -12.3
G3 -11.4 -7.2 -0.6 -13.2 -8.3 -1.3 -15.3 -9 -4.6 -14.5 -7.6 4.3 -19.2 -10.2 0.3 -27.4 -13.7 -12.9
G4 -8.7 -4.8 1.6 -10.6 -5.8 0.9 -13.1 -6.7 -3 -13.5 -6.9 5.8 -18.4 -9.6 1.4 -27.8 -13.8 -13.8
G5 -7.2 -3.8 2.4 -6.5 -2.7 3.5 -10.5 -1.5 -2.5 -9.4 -3.2 10.9 -9.5 -0.7 16.7 -23.8 -1 -1.5

MSE_Rao
G1 -1.1 -1.1 -0.9 -4 -2.7 -3 -4.7 -2.4 -4.5 1.6 1.5 1.7 -5.3 -2.6 -3.5 -9.6 -3 -8.9
G2 0.5 0.3 0.3 -0.5 -0.1 -0.3 -3 -1 -3.3 3.3 2.8 2.8 -0.5 0.9 -0.8 -11.1 -3.7 -12.3
G3 -0.1 -0.5 -0.5 -1 -0.8 -1.1 -3.7 -1.8 -4.5 5.9 4.7 4.2 1.8 2.6 0.3 -10.1 -2.6 -12.7
G4 2.7 2.1 1.9 1.9 1.9 1.3 -1.3 0.7 -2.7 8.8 6.7 6.1 4.6 4.6 1.9 -9.2 -1.8 -13.5
G5 4.5 3.3 3.2 8.3 5.8 6.1 18.2 7.9 -1.5 16.9 12.7 12.1 30.4 21 23.8 63.2 28.7 -1

MSE_JY
G1 -0.6 -0.6 -0.4 -3.6 -2.3 -2.5 -4.4 -2.1 -4.1 2.4 2.2 2.4 -4.8 -2.1 -3 -9.3 -2.7 -8.5
G2 1 0.8 0.8 0.1 0.4 0.2 -2.4 -0.5 -2.8 4.1 3.6 3.6 0.4 1.8 0.1 -10.4 -3 -11.7
G3 0.4 0 0 -0.4 -0.3 -0.6 -3.1 -1.2 -4 6.8 5.5 5.1 2.8 3.5 1.2 -9.2 -1.8 -12.2
G4 3.2 2.6 2.4 2.5 2.4 1.8 -0.7 1.2 -2.2 10 7.7 7.1 5.8 5.6 2.9 -8.3 -1 -12.9
G5 5.2 3.8 3.7 9.1 6.4 6.9 20.1 8.5 -1.2 18.3 13.8 13.3 32.8 22.6 25.9 69 30.8 -0.6

MSE_JY1
G1 -2.1 -1.6 -1.1 -4.8 -3.3 -4.9 -5.4 -3.1 -4.9 -0.1 0.5 1.3 -6.4 -3.6 -4 -10.4 -3.8 -9.5
G2 -0.7 -0.3 -0.1 -2.4 -1.3 -3.8 -5.3 -2.6 -3.8 1.5 1.8 2.4 -3.8 -1.4 -1.2 -14.9 -6.6 -12.8
G3 -1.4 -1.1 -1 -3.1 -2.1 -5 -6.1 -3.4 -5 3.7 3.5 3.5 -2.3 -0.1 -0.5 -14.5 -5.9 -13.4
G4 1.2 1.3 1.1 -0.5 0.4 -3.5 -4.1 -1.2 -3.5 5.9 5.2 4.8 -0.5 1.3 0.3 -14.7 -5.8 -14.3
G5 2.6 2.3 1.9 3.2 3.2 -2.9 -3 2.8 -2.9 12.7 11 9.4 14.8 14.7 13.9 -3.2 11.8 -2.1

RR

MSE based on ML, REML and FH methods
G1 1.5 0.6 0 2.4 0.7 0.1 2.4 0.5 0.2 2.8 0.8 0.1 4 0.9 0.2 4.8 0.6 0.9
G2 1.2 0.4 0 1.6 0.6 0 2.2 0.7 0.1 2.5 0.7 0.1 4 1.2 0 7.6 2 1.5
G3 1.3 0.5 0 1.8 0.7 0 2.4 0.8 0.2 2.1 0.6 0.2 3.7 1 0 7.5 1.9 1.7
G4 0.8 0.2 0 1.1 0.3 0 1.7 0.5 0.1 1.8 0.5 0.3 3.4 0.9 0 7.7 1.9 1.9
G5 0.5 0.2 0.1 0.4 0.1 0.1 1.1 0 0.1 0.9 0.1 1.2 0.9 0 2.8 5.7 0 0

MSE_Rao
G1 0 0 0 0.2 0.1 0.1 0.2 0.1 0.2 0 0 0 0.3 0.1 0.1 0.9 0.1 0.8
G2 0 0 0 0 0 0 0.1 0 0.1 0.1 0.1 0.1 0 0 0 1.2 0.1 1.5
G3 0 0 0 0 0 0 0.2 0.1 0.2 0.4 0.2 0.2 0 0.1 0 1 0.1 1.6
G4 0.1 0.1 0 0 0 0 0 0 0.1 0.8 0.5 0.4 0.2 0.2 0 0.9 0 1.8
G5 0.2 0.1 0.1 0.7 0.3 0.4 3.3 0.6 0 2.9 1.6 1.5 9.3 4.4 5.7 39.9 8.2 0

MSE_JY
G1 0 0 0 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.9 0.1 0.7
G2 0 0 0 0 0 0 0.1 0 0.1 0.2 0.1 0.1 0 0 0 1.1 0.1 1.4
G3 0 0 0 0 0 0 0.1 0 0.2 0.5 0.3 0.3 0.1 0.1 0 0.9 0 1.5
G4 0.1 0.1 0.1 0.1 0.1 0 0 0 0.1 1 0.6 0.5 0.3 0.3 0.1 0.7 0 1.7
G5 0.3 0.2 0.2 0.9 0.4 0.5 4.1 0.7 0 3.4 1.9 1.8 10.8 5.1 6.7 47.6 9.5 0

MSE_JY1
G1 0.1 0 0 0.2 0.1 0.3 0.3 0.1 0.3 0 0 0 0.4 0.1 0.2 1.1 0.1 0.9
G2 0 0 0 0.1 0 0.1 0.3 0.1 0.1 0 0 0.1 0.2 0 0 2.2 0.4 1.6
G3 0 0 0 0.1 0.1 0.3 0.4 0.1 0.3 0.1 0.1 0.1 0.1 0 0 2.1 0.4 1.8
G4 0 0 0 0 0 0.1 0.2 0 0.1 0.4 0.3 0.2 0 0 0 2.2 0.3 2.1
G5 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 1.6 1.2 0.9 2.2 2.2 1.9 0.1 1.4 0
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Table 2. Simulated values of the RB and RR of M̂SE(θ̂EB
i ) for A = 1, m = 15,

ψi pattern (I), (II) and (III) under the normal random effects distribution.

Groups Pattern I Pattern II Pattern III Pattern I Pattern II Pattern III

ML RE FH ML RE FH ML RE FH ML RE FH ML RE FH ML RE FH

RB

MSE based on ML, REML and FH methods MSE_JY
G1 -18.3 -8 -1.4 -26.7 -9.4 -4.3 -34.9 -7.9 -6.1 -1.5 -0.5 -0.3 -10.9 -3.2 -3.4 -21.5 -3.1 -5.1
G2 -16.2 -6.3 0.3 -24 -7.5 -0.7 -39.6 -8.4 -4 1.2 1.5 1.5 -5.7 1.1 0.7 -24.8 -0.1 -2.8
G3 -16.4 -7.1 -0.6 -24.8 -8.2 -1.6 -41.1 -9.1 -5.1 1.2 0.9 0.9 -5.8 0.6 0.1 -25.9 -0.7 -3.7
G4 -13.5 -4.4 2 -22.9 -5.5 1 -41.4 -6.6 -3.1 5.3 4 3.8 -1.8 3.9 3.2 -24.8 2.2 -1.5
G5 -11.7 -3.3 3 -27.1 -2.1 4.9 -54.9 -0.9 1.4 9.7 5.8 5.8 25.5 10.5 11.6 125.3 16.6 6.4

MSE_Rao MSE_JY1
G1 -2.8 -1.6 -1.4 -11.8 -4.1 -4.4 -22 -3.8 -5.8 -4.7 -2.5 -2.1 -12.9 -4.8 -4.7 -22.8 -4.5 -6.3
G2 -0.2 0.4 0.4 -7.2 -0.2 -0.5 -26 -1.3 -3.9 -2.4 -0.7 -0.4 -10.6 -1.9 -1.6 -29.3 -3.3 -4.8
G3 -0.3 -0.3 -0.3 -7.5 -0.7 -1.2 -27.2 -2 -4.8 -3 -1.5 -1.4 -11.6 -2.6 -2.5 -31.2 -4.1 -5.9
G4 3.6 2.8 2.5 -3.9 2.5 1.7 -26.4 0.9 -2.7 0.2 1.3 1 -9.5 0.2 -0.1 -31.7 -1.6 -4.1
G5 7.4 4.4 4.3 18.5 8.4 9.3 98.6 13.3 4.8 2 2.3 1.9 -13.3 3.4 3.2 -44.1 3.1 0.3

RR

MSE based on ML, REML and FH methods MSE_JY
G1 3.4 0.7 -1.4 7.1 0.9 0.2 12.2 0.6 0.4 0 0 0 1.2 0.1 0.1 4.6 0.1 0.3
G2 2.6 0.4 0.3 5.8 0.6 0 15.7 0.7 0.2 0 0 0 0.3 0 0 6.1 0 0.1
G3 2.7 0.5 -0.6 6.1 0.7 0 16.9 0.8 0.3 0 0 0 0.3 0 0 6.7 0 0.1
G4 1.8 0.2 2 5.3 0.3 0 17.2 0.4 0.1 0.3 0.2 0.2 0 0.2 0.1 6.2 0.1 0
G5 1.4 0.1 3 7.3 0.1 0.3 30.1 0 0 1 0.4 0.4 6.5 1.1 1.4 157 2.8 0.4

MSE_Rao MSE_JY1
G1 0.1 0 0 1.4 0.2 0.2 4.9 0.2 0.4 0.2 0.1 0.1 1.7 0.2 0.2 5.2 0.2 0.4
G2 0 0 0 0.5 0 0 6.8 0 0.2 0.1 0 0 1.1 0 0 8.6 0.1 0.2
G3 0 0 0 0.6 0 0 7.4 0.1 0.2 0.1 0 0 1.4 0.1 0.1 9.7 0.2 0.4
G4 0.1 0.1 0.1 0.2 0.1 0 7 0 0.1 0 0 0 0.9 0 0 10.1 0 0.2
G5 0.6 0.2 0.2 3.4 0.7 0.9 97.2 1.8 0.3 0.1 0.1 0.1 1.8 0.1 0.1 19.5 0.1 0
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Figure 1. Simulated values of the average of the absolute value of the RB of
M̂SE(θ̂EB

i ) for A = 1 and ψi pattern (I) and for the normal random effects distri-
bution. The points are connected with lines for visibility purposes.
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The key findings in Figure 2 are [24]:
• For the ψi pattern (II), the average RB of all the MSE estimators are less than

15% .
• The average RB of MSE estimators based on the FH method is less than 5% over

all domains. MSE estimators based FH method are nearly unbiased.
• For the ML and REML estimators, MSE_JY1 remains nearly unbiased over all

areas.

Figure 2. Simulated values of the average of the absolute value of the RB of
M̂SE(θ̂EB

i ) for A = 1 and ψi pattern (II) and for the normal random effects
distribution. The points are connected with lines for visibility purposes.
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The key findings in Figure 3 are [24]:
• The average RB of MSE estimators decreases as m increases.
• When m < 30, the average RB of MSE estimators based on MSE_JY1 is small

when compared to its competitors for the ML and REML methods.
• MSE estimators are approximately unbiased for the FH method in all cases.

Figure 3. Simulated values of the average of the absolute value of the RB of
M̂SE(θ̂EB

i ) for A = 1 and ψi pattern (III) and for the normal random effects
distribution. The points are connected with lines for visibility purposes.
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3.1.4. Simulation results of the coverage probability. This section explored the
CPs of the confidence intervals given in equations (3.6-3.11). The MSEs and CPs from
the simulation study for the normal distribution and m = 20 are summarized in Table 3.
As shown in this table, the corrected confidence intervals such as IFH

i , IRao
i , IJY

i and IJY1
i

have larger CPs than the uncorrected (naive) confidence intervals such as IPR
i and ICox

i ,
indicating that the coverage is quite accurate [24]. Figure 4 also shows the CPs of the
confidence intervals (3.6-3.11) over a range of m.

Table 3. Simulated values of M̂SE(θ̂EB
i ) multiplied by 100 and CPs of ICox

i , IPR
i ,

IFH
i , IRao

i , IJY
i and IJY1

i for A = 1, m = 20, ψi pattern II and for the normal
random effects distributions.

Groups MSE
Coverage probability

ICox
i IPR

i IFH
i IRao

i IJY
i IJY1

i

G1 70.4 90.6 93.1 93.8 94.0 93.7 93.8

G2 38.7 91.8 94.2 94.5 94.6 94.5 94.7

G3 34.3 91.9 94.4 94.8 94.7 94.7 94.7

G4 29.4 92.1 94.6 94.8 94.8 94.6 95.0

G5 17.2 93.1 95.0 95.2 95.1 95.3 95.0

Figure 4. Simulated values of the CPs of ICox
i , IPR

i , IFH
i , IRao

i , IJY
i and IJY1

i for
nominal 95% CIs for ψi pattern III and FH method. The points are connected
with lines for visibility purposes.



Mean squared error estimators 451

3.1.5. Discussion of simulation results. In this section, we discuss results from the
simulation studies of the area-specific MSE estimators. We investigate the performances
of the proposed area-specific MSE estimators using simulation studies. As shown in Table
1, in terms of RB and RR the MSE estimators based on the ML, REML and FH behave
similarly for the pattern (I), with no particular one emerging as clearly better than the
other three. When m = 15, estimators based on the FH method have a very small bias
for all variance patterns. For the same pattern, the bias of MSE estimators are generally
positive and thus accumulative at higher levels of aggregation. The bias of the MSE_JY1
estimator is smaller than MSE_Rao and MSE_JY estimators for the ML and REML
methods. All the estimators have small biases and risks for the case where Â = ÂFH and
the biases are generally smaller than the biases obtained when Â = ÂML for all variance
patterns, particularly for the smaller variance ψi. The bias and risk of all the estimators
are less than 7% when Â = ÂFH for both patterns (II) and (III) are negligible for group
G5. This result is in agreement with the previous results of [6] and [5]. Thus, the FH
method performed better than the ML and REML methods for patterns (II) and (III).
The RR of MSE_Rao, MSE_JY and MSE_JY1 are nearly zero for the ML, REML and
FH methods for all patterns. In terms of RR, for the pattern (I), all the MSE estimators
are robust. In addition, in terms of RR, all the MSE estimators are robust for all patterns
[24].

Results under the Laplace distribution: the RB and RR are generally higher than the
RB and RR when the random effects are generated from the normal distributions. The
MSE estimator based on the ML method has a large negative bias. For example, the
RB of the MSE estimators are -23.8%, 63.2%, 69% and -3.2% for MSE_ML, MSE_Rao,
MSE_JY and MSE_JY1, respectively when Â = ÂML for pattern (III) and ψi = 0.1
(small sampling error variance). All the methods are sensitive to the deviation from
normality of the random effects distribution considered in the simulation for all patterns
with ψi = 0.1 except the FH method for pattern (III). The RB of MSE_JY1 is smaller
when Â = ÂFH for the pattern (III) and ψi = 0.1. The RR of MSE estimators based on
the FH method are less than 7% in all cases. In summary, MSE estimators based on the
REML and FH methods are robust [24].

For the FH model incorporating covariates, the RB and RR of MSE estimators are
presented in Table 2. For the simulation exercise with covariates MSE estimators based on
ML methods are biased for all variance patterns. The RB of MSE estimators based on ML
method are -54.9%, 98.6%, 125.3% and -44.1% for MSE_ML, MSE_Rao, MSE_JY and
MSE_JY1 respectively for G5 (the smallest variance in pattern (III)). MSE_JY1 performs
well for the ML, REML and FH methods. The RR of MSE_ML, MSE_Rao, MSE_JY
and MSE_JY1 are 30.1%, 97.2%, 157% and 19.5%, respectively for G5. For pattern (II),
the average RR of MSE_ML, MSE_Rao, MSE_JY and MSE_JY1 are 6.32%, 1.22%,
1.66% and 1.38% respectively. However, the RR of MSE estimators based on the REML
and FH methods are negligible (less than 5%) for all patterns indicating the robustness
of these methods. Thus, it is recommended to use MSE estimators based on these two
methods [24].

Lastly, the simulation results in Table 3 shows the estimated CPs of confidence intervals
for θi under the normal random effects distribution for m = 20. The coverage accuracy
of the confidence intervals based on the area specific MSEs: IRao

i , IJY
i and IJY1

i are larger
than the coverage accuracy of the naive confidence intervals: ICox

i and IPR
i . In addition,

the coverage accuracy of the corrected confidence interval based on the non area specific
MSE (i.e., IFH

i ) is comparable with the confidence intervals based on the area specific
MSEs ( IRao

i , IJY
i and IJY1

i ). In other words, all the corrected confidence intervals given
in equations (3.8 - 3.11) meet the nominal coverage rate better than the naive confidence
intervals given in equations (3.6 - 3.7). Figure 4 shows that with the increase of m the CPs
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of all the confidence intervals increase. In other words, all the above confidence intervals
based on the area specific MSEs gets better and the percentage difference between their
CPs are negligible, supporting asymptotic theory. There is very little difference observed
by using any of the confidence intervals and MSEs when m ≥ 60. These findings are
consistent with the findings in the above related literatures [14,22,23].

3.2. Application Results
In this section, we illustrate the MSE estimators in an application to a real data set

relating to the estimation of the percentage of food expenditure and poverty measures in
all zones of Ethiopia. This helps us to examine the performance of the MSE estimators
using real data sets.

3.2.1. Data sources. The 2010/11 household consumption expenditure survey (HCES)
and the 2007 housing and population census of Ethiopia were used to study the perfor-
mances of the MSE estimators. The HCES was conducted by the government of statistical
agency of Ethiopia. The survey includes Rural, Major urban centers, and Other urban
centers categories. In the first two categories, the two stage cluster sampling method
was implemented by considering enumeration areas as the primary sampling units and
12 households as the secondary sampling units. In the third category, a stratified three
stage cluster sampling was considered by taking urban centers as primary sampling units,
enumeration areas as secondary units and households as a third stage sampling units. A
total of 27,830 households were successfully covered by the survey at the country level. In
order to fill the possible gap in the survey data, we used the auxiliary information from
the 2007 Ethiopian census data. This can be achieved by borrowing strength from related
zones, based on a model linking all zones using the FH model. The HCES data are avail-
able for 86 zones, regional towns, Addis Ababa sub cities (Kifle Ketemas) and Dire Dawa
sub city in Ethiopia. These are the second level administrative divisions in Ethiopia, and
we consider each zone as a small area, namely m = 86. For the ith zone, data of ni are
available in 2011.

3.2.2. Example 1: percentage of food expenditure. For i = 1, 2, · · · ,m, yi is the
annual household consumption expenditure for households in the ith zone. The simple
analytical expression of the percentage of food expenditure yi for the ith zone is given as

yi =
( FEi

TEi

)
∗ 100%, i = 1, 2, · · · ,m, (3.13)

where total expenditure (TE) refers to expenses for accommodation, food, purchases,
travel, leisure activities and miscellaneous expenditure, while food expenditure (FE) refers
expenses on food. The Akaike information criterion (AIC), Bayesian information criterion
(BIC) and log-likelihood function were used to choose regressor variables and propose the
following linear mixed model:

yi = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4 + x5iβ5 + x6iβ6 + vi + ei, i = 1, ...,m, (3.14)
where x1 denotes men, x2 denotes age category less than or equal to 30, x3 denotes single
marital status, x4 denotes greater than 12 years of schooling, x5 denotes employed and
x6 denotes household size less than or equal to 5. Then, the estimates of the parameters are
given by Â = 28.79, and β̂(Â) =

(
β̂1, β̂2, β̂3, β̂4, β̂5, β̂6

)
= (14.375,−5.8656, 8.788,−69.1976,

29.5893,−0.3843). It is interesting to note that the percentage of food expenditure de-
creases when age category less than or equal to 30, greater than 12 years of schooling and
household size less than or equal to 5 increases.

Now we give the MSEs of the average percentage of food expenditure for the ith zone,
namely, θi = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4 + x5iβ5 + x6iβ6 + vi for i = 1, · · · ,m. The
average RB and RR of MSE estimators shown in equation (3.5) and the average width
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of prediction intervals based on the FH moment estimator are computed to study the
performance of the MSE estimators using real data sets. The FH moment estimator was
chosen to estimate the variance of the random effect since it does not require normality
assumptions. It was also performed better than the other competitive methods through a
simulation study. In addition to RB and RR, the average width of the following prediction
intervals are computed using the following equations (see [16]):

CIFH
i = θ̂EB

i ∓ Zα/2
√

MSE_FHi.

CIRao
i = θ̂EB

i ∓ Zα/2
√

MSE_Raoi.

CIJY
i = θ̂EB

i ∓ Zα/2
√

MSE_JYi.

CIJY1
i = θ̂EB

i ∓ Zα/2
√

MSE_JY1i.

(3.15)

We used the average RB, average RR and the average width of prediction intervals to study
the performance of the MSE estimators. The MSE estimators based on the FH method
were used to obtain the RB, RR and width of prediction intervals. Table 4 shows the
average RB, RR and width of prediction intervals for the percentage of food expenditure
over the m = 15, 30, 45, 60, 86 sampled Ethiopian zones. From this table, we observe that
the average RB, RR and width of prediction intervals for the MSE estimators based on
the JY equation (2.13) and JY1 equation (2.14) are slightly smaller than the one based on
equation (2.11) and equation (2.12), indicating that MSE_JY and MSE_JY1 estimators
provide better performance.

Table 4. Mean relative bias (RB), mean relative risk (RR) and mean width of
prediction intervals for percentage of food expenditure using the 2010/11 HCES
and 2007 population and housing census of Ethiopia

Number of sampled areas (m) MSE_FH MSE_JY1 MSE_JY MSE_Rao

RB 0.749 0.454 0.649 0.737
15 RR 0.006 0.005 0.009 0.005

Width of CI 5.679 5.663 5.674 5.679
RB 0.494 0.398 0.533 0.490

30 RR 0.002 0.004 0.006 0.002
Width of CI 5.646 5.641 5.648 5.646

RB 0.282 0.244 0.327 0.281
45 RR 0.001 0.002 0.003 0.001

Width of CI 5.679 5.677 5.682 5.679
RB 0.193 0.174 0.231 0.192

60 RR 0.000 0.001 0.002 0.000
Width of CI 5.677 5.676 5.679 5.677

RB 0.177 0.165 0.198 0.176
86 RR 0.000 0.001 0.002 0.000

Width of CI 5.636 5.635 5.637 5.636

3.2.3. Example 2: incidence of total poverty (Headcount Ratio), HCO. Con-
sider a finite population D of size N partitioned into m areas Di, i = 1, ...,m. Let S ⊂ D
be a sample drawn from the population and let Si = S

∩
Di be the sample from area i.

The poverty incidence, gap and severity index are measured using the well-known FGT
measures [10]. Using this method, an approximately design unbiased survey based direct
estimator of Pαi for the ith zone is given by (see [20], [18])

P̂αi = 1
N̂i

∑
j∈Si

wij

(
Z − Eij

Z

)α
I(Eij < Z); i = 1, ...,m, j = 1, ..., Ni, α = 0, 1, 2, (3.16)
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where N̂i =
∑
j∈Si

wij , wij be the sampling weight of individual j from sampled area i and
I(Eij < Z) = 1 if Eij < Z (person under poverty) and I(Eij < Z) = 0 otherwise (person
not under poverty). The FGT poverty indicators P̂αi are defined as poverty incidence (or
Headcount Ratio) if α = 0, poverty gap if α = 1 and poverty severity if α = 2. The FH
model can be used with

θi = Pαi, yi = P̂αi, ψi = Var(P̂αi) = V̂ (yi), (3.17)

where the design-based variances of these estimators is given by (see [8])

V̂ (yi) = 1
N̂2
i

∑
j∈Si

wij(wij − 1)(Eij − yi)2. (3.18)

We use the generalized variance function (GVF) to smooth out the uncertainty of the
design based variance estimate equation (3.18). The GVF was first introduced by [9] in a
complex sample survey setting in order to motivate the sampling error component of their
two level Bayesian model. Then the estimated GVF is given by

ĜV F = exp( σ̂
2

2
)exp(b̂0 + b̂1yi), (3.19)

where b̂0 and b̂1 are the least squares estimates from the log-linear regression model
log(V̂ (yi)) = b0 + b1yi + ϵi and ϵi

iid∼ N(0, σ2), i = 1, ...,m. If we ignore the correc-
tion term in the GVF method, underestimation of the true variances will be occurred
([21],[8]).

The proportion of individuals under poverty in the ith zone is called headcount ratio or
poverty incidence (P0i, this ratio corresponds when α = 0). We use the 2010/11 HCES and
the 2007 population and housing census of Ethiopia to estimate poverty headcount index
for the zones, regional towns, Addis Ababa sub cities and Dire Dawa sub city in Ethiopia.
The response variable is the estimate of poverty measures based on the 2010/11 HCES
data. An Ethiopian household is considered to be living in poverty when its consumption
expenditure is below the poverty line of 3,781 birrs (Ethiopian currency) per adult per
year ([15]).

Similar to the percentage of food expenditure case in section (3.2.2.), the AIC, BIC and
log-likelihood function were used to propose the following linear mixed model

yi = x1iβ1 + x2iβ2 + x3iβ3 + x4iβ4 + x5iβ5 + x6iβ6 + vi + ei, i = 1, ...,m, (3.20)

where x1 denotes women, x2 denotes age category less than or equal to 30, x3 denotes mar-
ried, x4 denotes greater than 12 years of schooling, x5 denotes employed and x6 denotes
household size less than or equal to 5. Then, the estimates of the parameters are given by
Â = 23.78, and β̂(Â) =

(
β̂1, β̂2, β̂3, β̂4, β̂5, β̂6

)
= (7.7328,−0.6766,−0.1154,−0.4565, 2.6392,

−1.0076). Here it is also interesting to see poverty decreases when the household has fam-
ily of less than 5, married, greater than 12 years schooling, and employed. Now we obtain
the RB, RR (3.5) and width of prediction intervals (3.15) to assess the performances of
the different MSE estimators. These results are presented in Table 5. From this table, we
can easily observe that MSE_JY1 performed slightly better than the other three MSEs
considered in this paper under the FH method.
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Table 5. Mean relative bias (RB), mean relative risk (RR) and mean width
of prediction intervals for poverty measures using the 2010/11 HCES and 2007
population and housing census of Ethiopia

Number of sampled areas (m) MSE_FH MSE_JY1 MSE_JY MSE_Rao

RB 27.718 18.458 21.383 27.27
15 RR 8.948 5.984 7.389 8.675

Width of CI 0.610 0.565 0.585 0.607

RB 8.004 6.257 6.78 7.917
30 RR 0.650 0.864 0.990 0.636

Width of CI 0.568 0.561 0.564 0.567

RB 4.430 3.683 3.917 4.397
45 RR 0.197 0.329 0.366 0.194

Width of CI 0.578 0.576 0.577 0.578

RB 2.483 2.166 2.301 2.469
60 RR 0.062 0.126 0.147 0.061

Width of CI 0.620 0.619 0.62 0.620

RB 1.724 1.592 1.681 1.717
86 RR 0.030 0.062 0.067 0.030

Width of CI 0.618 0.618 0.619 0.618

We also examined the performance of the proposed methods over a range of m (see Ta-
bles 4 and 5). The average RB, average RR and the average width of prediction intervals
were obtained for the number of areas such as m = 15, 30, 45, 60 and 86. Our proposed
methods (i.e., MSE_JY and MSE_JY1) have slightly lower RB and RR especially for
lower sampled small areas, m. When the number of sampled areas, m, are small, the area
specific MSE estimators perform better when compared to the non-area specific counter-
parts. When m ≥ 45, the percentage difference between average RB, average RR and the
average width of prediction intervals are negligible.

4. Conclusions
The results of this study indicate that the REML and FH methods perform consistently

better than the other methods for normal random effects distribution. For Laplace random
effects distribution, FH performs better than other methods. In terms of RB and RR,
MSE_JY1 performs even better than the existing MSE estimators based on the ML and
REML methods. The difference, however, gets smaller as the number of areas increases
for all variance patterns. Thus, it is advisable to use MSE estimators based on REML and
FH methods for normal random effects distribution; the FH method for Laplace random
effects distribution. The usefulness of the proposed methods was illustrated under the FH
model using real data sets. We chose the 2010/11 HCES and the 2007 census data sets to
demonstrate how the methods work. The RB, RR and width of prediction intervals based
on the FH method were computed to assess the reliability of the MSE estimates.
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