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ABSTRACT 

This paper presents algebraic invariants and bifurcation analysis of a nonlinear financial system. We focus on the 

local stability of the equilibrium points of this system and find the suitable values of parameters for Hopf 

Bifurcation. Finally, we investigate the invariants to show the general behaviour. 
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Doğrusal Olmayan Bir Finansal Sistemin Hesaplamalı Cebir 

Metotlarıyla Dinamik Analizi 

ÖZET 

Bu çalışmada doğrusal olmayan bir finansal sistemin çatallanma analizi ve cebirsel değişmezleri sunulmaktadır. 

Sistemin denge noktalarının kararlılık analizi ve Hopf çatallanmasının göründüğü parametre değerlerine 

odaklanılmıştır. Son olarak genel davranışın gösterilmesi için değişmezler incelenmiştir.  
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(1) 

I. INTRODUCTION 
 

A nonlinear financial system is a mathematical system that models the savings, the investment and the 

financing tools between the accumulator and the party in need of these resources. Economists and 

researchers from many other disciplines have studied how mathematical methods can be used in 

finance to make financial decisions and to predict the future. The search for the causes and the results 

of the financial events has always been difficult to predict. The curiosity to predict the financial events 

before they occur has led to an increasing interest in the economic models of nonlinear dynamical 

systems which model financial events in recent years. However, the methods used to examine 

nonlinear financial systems are either conventional methods based on time series, decision trees and 

similar discrete approaches or methods applied by linearization of nonlinear systems such as linear 

stability analysis. Nowadays, it is possible to obtain new results by means of the new studies in 

computational algebra field and powerful methods such as algebraic invariant surfaces and Hopf 

bifurcation with our advanced computer technology. Recent powerful methods of computational 

algebra enable better understanding of the financial processes, forces, balances, risks and crises. 

 

One of the most used nonlinear financial system in modeling financial dynamics is proposed by Ma et 

al. in 2001 with the chaotic dynamical system [1,2] 

 

�̇� = 𝑧 + (𝑦 − 𝑎)𝑥 = 𝑃(𝑥, 𝑦, 𝑧) 

�̇� = 1 − 𝑏𝑦 − 𝑥2 = 𝑄(𝑥, 𝑦, 𝑧) 

�̇� = −𝑥 − 𝑐𝑧 = 𝑅(𝑥, 𝑦, 𝑧) 

where the nonnegative parameters a, 𝑏, and 𝑐 denote the saving amount, the per-investment cost and 

the elasticity of demands of commercials which are positive, respectively. The variables 𝑥, 𝑦 and 𝑧 

represent the interest rate, the investment demand and the price exponent, respectively. 

 

Many generalizations of system (1) has been studied ever since. In 2012, Yu et al. have constructed 

the improved chaotic 4D finance system introducing a new variable to the system which demonstrates 

the average profit margin [3]. They have stabilized the hyperchaotic system to its unstable equilibrium 

by using speed feedback control and linear feedback control. Tacha et al. have replaced the 𝑥2 term, in 

the second equation of the system (1), with |𝑥| in 2016, suggesting a more accurate economic point of 

view [4].  

 

In this work, they have employed the bifurcation diagrams, Lyapunov exponents and phase portraits to 

observe the route to chaos through the mechanism of period doubling and crisis phenomena. The 

results have shown that when the parameter 𝑎 is small the system fluctuates, leading to chaos. 

Similarly, the parameter 𝑐 can be kept small to avoid chaos. On the contrary the parameter 𝑏 can be 

kept large to avoid chaos otherwise there is not enough investment in the mechanism.  Combining the 

work of Yu et al. and Tacha et al., Hajipour et al. have proposed a new system where they have 

replaced the 𝑥2 term in the second equation of the improved chaotic 4D finance system in 2018 [5]. 

This is because of the fact that in the real economy world the interest rate is kept in a small positive 

value. They have developed an efficient adaptive sliding mode controller technique to stabilize the 

system. 
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(2) 

(3) 

On the other hand, time delayed generalization of system (1) have been discussed by Chen et al. in 

2008 to observe complex dynamics such as periodic, quasi-periodic, and chaotic behaviors. In 2011, 

the effect of delayed feedbacks on the bifurcations of the system have been extensively investigated by 

Chen et al. [6]. The small-amplitude periodic solution emerging from a Hopf bifurcation and invariant 

algebraic surfaces for any parameter values of this system have been recently studied by M. R. 

Candido et al. by averaging theory [9]. In this paper we focus on stability analysis and invariant 

algebraic surfaces of this system that will lead to the new researches on this system. 

 

 

II. LINEAR STABILITY ANALYSIS  
 

Considering that the equations of system (1) are equal to zero, we obtain the following three 

equilibrium points: 

𝐸1(0, 𝑦1
∗, 0), E2(x2

∗ , y2
∗ , z2

∗), and 𝐸3(𝑥3
∗, 𝑦3

∗, 𝑧3
∗) where 𝑦1

∗ =
1

𝑏
,  𝑥2

∗ = −√1 − 𝑎𝑏 −
𝑏

𝑐
,  𝑦2

∗ = 𝑦3
∗ = 𝑎 +

1

𝑐
,  

 

 𝑧2
∗ = √

1

𝑐2 −
𝑏(1+𝑎𝑐)

𝑐3 , 𝑥3
∗ = √1 − 𝑎𝑏 −

𝑏

𝑐
, and 𝑧3

∗ = −√
1

𝑐2 −
𝑏(1+𝑎𝑐)

𝑐3 . 

 

The Jacobian is obtained as the following matrix by linearizing system (1): 

 

𝐽1 = (
𝑦 − 𝑎 𝑥 1
−2𝑥 −𝑏 0
−1 0 −𝑐

).  

 

At 𝐸1, the eigenvalues of the Jacobian are obtained as  𝜆1 = −𝑏 and  

 

𝜆2,3 =
1

2𝑏
−

𝑎 + 𝑐

2
±

√(𝑏(𝑎 − 𝑐 − 2) − 1)(𝑏(𝑎 − 𝑐 + 2) − 1)

2𝑏
. 

 

When the real part of all of these eigenvalues are negative, the solution of system (1) at this 

equilibrium E1 is locally asymptotically stable. We consider that the characteristic polynomial at 𝐸1 is 

given by 𝜆3 + 𝑎11𝜆2 + 𝑎12𝜆 + 𝑎13 where 𝑎11 = 𝑎 −
1

𝑏
+ 𝑏 + 𝑐, 𝑎12 = −

𝑐

𝑏
+ 𝑏𝑐 + 𝑎(𝑏 + 𝑐) and 

𝑎13 = 𝑏 − 𝑐 + 𝑎𝑏𝑐. According to the Routh-Hurwitz criterion, the equilibrium point is asymptotically 

stable when 𝑎11 > 0,  𝑎12 > 0,  𝑎13 − 𝑎11𝑎12 < 0. The parameter conditions that satisfy the stability 

case with 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑐 ≥ 0 are given as below: 

i. 𝑎 = 0 𝑎𝑛𝑑 
1

𝑏
< 𝑐  𝑎𝑛𝑑 𝑏 > 1  𝑎𝑛𝑑 𝑏 > 𝑐 

ii. 𝑏 =
1

𝑎
 𝑎𝑛𝑑 ((𝑎 + 𝑐 >

1

𝑏
  𝑎𝑛𝑑 𝑎 > 0 𝑎𝑛𝑑 𝑎 < 1 )  𝑜𝑟 (𝑐 > 0  𝑎𝑛𝑑 𝑎 ≥ 1)) 

iii. 𝑎 > 0 𝑎𝑛𝑑 ((
1

𝑎
> 𝑏 𝑎𝑛𝑑 

𝑏

1−𝑎𝑏
> 𝑐 𝑎𝑛𝑑 𝑎 + 𝑐 >

1

𝑏
 𝑎𝑛𝑑 

1

1+𝑎
< 𝑏) 𝑜𝑟 (𝑎𝑏 > 1 𝑎𝑛𝑑 𝑐 ≥ 0)) 

For example, when 𝑎 = 4 and 𝑏 = 1.2, system (1) has a stable equilibrium point 𝐸1 (0, 0.833, 0).  

This system has the following eigenvalues for 𝑘 = 6.0278 − 6.33 𝑐 +  𝑐2: 
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i. 𝐸𝑖𝑔11 = {−1.2}  

ii. 𝐸𝑖𝑔12 = {−1.583 − 0.5 𝑐 −  0.5√𝑘}  

iii. 𝐸𝑖𝑔13 = { 0.5(−3.16 − 𝑐 + √𝑘)}.   

For the case 𝑎 = 4, 𝑏 = 1.2, the Routh-Hurwitz criterion indicates that system (1) is stable at 𝐸1 

for 𝑐 > −0.315789. This result contains both complex conjugate and reals roots. When another 

subcases are introduced to the system such as 𝑘 ≥ 0 and real parts of  𝜆2,3 are negative, we have the 

following interval −0.315789 < 𝑐 ≤ 1.16667 or 𝑐 ≥ 5.16667. In both cases we assume that 𝑐 ∈ ℝ.   

The real parts of the eigenvalues that indicates the stability at this equilibrium point are plotted for 

−10 < 𝑐 < 10 in Fig. 1. The first region (−0.315789 < 𝑐 ≤ 1.16667) gives negative real roots, 

1.16667 < 𝑐 < 5.16667 gives complex conjugate roots therefore real parts of 𝜆2,3 coincide in this 

interval in Fig.1., c ≥ 5.16667 gives negative real roots. 

 

 

Figure 1. Real parts of the eigenvalues of System (1) at 𝐸1 depending on 𝑐.  

 

 

 
 

Figure 2. Real parts of the eigenvalues of System (1) at 𝐸2 depending on 𝑐 for −10 < 𝑐 < 10. 
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(4) 

(5) 

It is not possible to determine the eigenvalues of the linearized system at 𝐸2,3 by linear stability 

analysis. The characteristic polynomial at 𝐸2,3 is  

𝜆3 + (𝑏 −
1

𝑐
+ 𝑐) 𝜆2 + (2 + 𝑏 (𝑐 −

3

𝑐
− 2𝑎)) 𝜆 − 2(𝑏(1 + 𝑎𝑐) − 𝑐) = 0. 

According to the Routh-Hurwitz criterion, all the roots of the characteristic polynomial of the linear 

system at 𝐸2,3 have negative real parts when the following case is satisfied  

(b −
1

c
+ c) (2 + b (c −

3

c
− 2a)) + 2(b − c + abc) = 0. 

Hence, system (1) is stable at E2,3 when the parameters satisfy the given condition above.  

The second equilibrium point 𝐸2 has real and complex conjugate components for 𝑎 = 4 and 𝑏 = 1.2. 

The real parts of the eigenvalues at this equilibrium point are plotted in Fig. 2 for−10 < 𝑐 < 10  to 

show the general behavior. When Routh-Hurwitz criteria is applied on this equilibrium point, values 

that makes the second equilibrium point stable are given as−0.428976 < 𝑐 < −0.315789.   The third 

equilibrium point has the values we omitted here. In Fig.3. the detailed behavior of these eigenvalues 

indicating this interval is given for −1 < 𝑐 < 0.  

For example, when 𝑐 = −0.35, eigenvalues at the second equilibrium point 𝐸2 and the third 

equilibrium point 𝐸3 are equal and negative {−0.1501, −0.582, −2.9749}. Both equilibrium points are 

stable under this condition. 

 

 

Figure 3. Real parts of the eigenvalues of System (1) at 𝐸2 for −1 < 𝑐 < 0. 

 

 



1147 

 

In Figure 4 , 5, and 6, we choose the parameters 𝑎 = 3, 𝑏 = 0.2, and 𝑐 = 1.61. The Equilibrium points 

are 𝐹𝑃1 = 𝐸𝑃1 = (-0.525, 3.62, 0.326), 𝐹𝑃2 = 𝐸𝑃2 =(0,5,0), 𝐹𝑃3 = 𝐸𝑃3=(0.521, 3.621,-0.326) with the 

following eigenvectors: 

i. 𝐸𝑖𝑔11 = {−1.187, −0.00066 ± 0.8647𝑖}  

ii. 𝐸𝑖𝑔12 = {1.6976, −1.3076, −0.2}  

iii. 𝐸𝑖𝑔13 = 𝐸𝑖𝑔11.   

 

In order for system (1) to have Hopf bifurcation at 𝐸1, one of the following cases need to be satisfied 

since a real and a pair of pure imaginary eigenvalues indicate Hopf bifurcation: 

 

i. (0 ≤ 𝑎 ≤ 1 𝑎𝑛𝑑 𝑏 >
1

1+𝑎
) 𝑜𝑟 (𝑎 > 1 𝑎𝑛𝑑 

1

1+𝑎
< 𝑏 <

1

𝑎−1
) 

ii. 𝑐 =
1−𝑎𝑏

𝑏
. 

 

When the second case is reorganized as a=
1−𝑏𝑐

𝑏
,  𝐸1 has the following eigenvalues {−𝑏,

±√−1 + 𝑐2}. To observe Hopf bifurcation case in a numerical example, we choose 𝑎 =

4, 𝑏 = 1.2, and 𝑐 = −3.166. We find the eigenvalues at this equilibrium point 𝐸1 =

{ 3.00463, −3.00463, −1.2}, at 𝐸2 and 𝐸3 are {−3.347, 2.49 ± 0.474𝑖}.  
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Fig. 4. 3D State Space Trajectory of System (1) for 𝑎 = 3, 𝑏 = 0.2, 𝑎𝑛𝑑 𝑐 = 1.61 where FP defines the 

equilibrium points. 
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Fig. 5. Time vs. x, 𝑦, and 𝑧 for 𝑎 = 3, 𝑏 = 0.2, and 𝑐 = 1.61. 
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Fig. 6. 2D plot of x, 𝑦, and 𝑧 vs 𝑡 for 𝑎 = 3, 𝑏 = 0.2, and 𝑐 = 1.61. 
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III. ALGEBRAIC INVARIANT SURFACES 
 

The study of algebraic invariants is a powerful method of computational algebra that can be used to 

examine the system when methods such as linear stability analysis do not yield results similar to the 

situation for the equilibrium points 𝐸2,3 in the nonlinear financial system.  

The algebraic invariants are polynomial varieties of the system which remain invariant under given 

transformations. Hence, it is possible to simplify the system with transformations according to these 

invariants and to solve the simplified system [7,8]. The simplified system according to the algebraic 

invariant will then have the same characteristic properties with the original system. So, it will be 

possible to find the characteristics of the original system.  

Let �̇� = 𝑃(𝑥, 𝑦, 𝑧), �̇� = 𝑄(𝑥, 𝑦, 𝑧), �̇� = 𝑅(𝑥, 𝑦, 𝑧) be a polynomial system of differential equations. 

Definition: A polynomial 𝐼(𝑥, 𝑦, 𝑧) is called an algebraic partial integral of system if there exists a 

polynomial 𝐾(𝑥, 𝑦, 𝑧) such that 𝑋𝐼 =
𝜕𝐼

𝜕𝑥
𝑃 +

𝜕𝐼

𝜕𝑦
𝑄 +

𝜕𝐼

𝜕𝑧
𝑅 = 𝐾𝐼 where 𝑋 is the vector field associated 

to the given polynomial differential system whose components are𝑃, 𝑄, and 𝑅, 𝐾(𝑥, 𝑦, 𝑧) is called a 

cofactor of 𝐼(𝑥, 𝑦, 𝑧) and the degree of 𝐾(𝑥, 𝑦, 𝑧) is at most 𝑚 − 1 since the degree of system is 

𝑚 = 𝑚𝑎𝑥 (𝑑𝑒𝑔(𝑃) , 𝑑𝑒𝑔(𝑄) , 𝑑𝑒𝑔(𝑅)). 𝐼(𝑥, 𝑦, 𝑧) is an algebraic invariant surface of the system if and 

only if 𝐼(𝑥, 𝑦, 𝑧) is an algebraic partial integral of the system. For this reason, mostly in the literature 

I(𝑥, 𝑦, 𝑧) is referred as an algebraic invariant surface[7].  

System (1) has no algebraic invariants of degree one (Please see the Theorem 3 and Proposition 1 in 

the publication of M. R. Candido et. Al. [9]).  In order to determine the algebraic invariants of degree 

two, we consider the quadratic form 𝐼 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑥2 + 𝑎5𝑦2 + 𝑎6𝑧2 + 𝑎7𝑥𝑦 +

𝑎8𝑥𝑧 + 𝑎9𝑦𝑧 as an algebraic invariant surface of second degree and 𝐾 = 𝑠0 + 𝑠1𝑥 + 𝑠2𝑦 + 𝑠3𝑧 as the 

cofactor corresponding to this invariant. 

Solving the equation 
𝜕𝐼

𝜕𝑥
𝑃 +

𝜕𝐼

𝜕𝑦
𝑄 +

𝜕𝐼

𝜕𝑧
𝑅 = 𝐾𝐼 according to x, y, z, leads to the following set of 

polynomials 

𝐼1 = 𝑎12  −  𝑎10𝑠0,  

𝐼2 = −𝑎 𝑎11 −  𝑎13  +  𝑎17  −  𝑎11𝑠0  −  𝑎10𝑠1,  

𝐼3 = −𝑎12  −  2𝑎𝑎14  − 𝑎18  −  𝑎14𝑠0  −  𝑎11𝑠1,  

𝐼4 = −𝑎17  −  𝑎14𝑠1,  

𝐼5 = −𝑎15𝑠2, 

 𝐼6 = 2𝑎15  − 𝑎12𝑏 −  𝑎12𝑠0  −  𝑎10𝑠2,  

𝐼7 = 𝑎11  −  𝑎𝑎17  −  𝑎19  −  𝑎17𝑏 −  𝑎17𝑠0  −  𝑎12𝑠1  −  𝑎11𝑠2,  

𝐼8 = −2𝑎15𝑏 −  𝑎15𝑠0  −  𝑎12𝑠2, 

𝐼9 = 2𝑎14  −  2𝑎15 − 𝑎17𝑠1 − 𝑎14𝑠2, 

𝐼10 =  𝑎17 − 𝑎15𝑠1 − 𝑎17𝑠2,  
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(6) 

𝐼11 = −𝑎16𝑠3, 

𝐼12 =  𝑎11  +  𝑎19  −  𝑎13𝑐 − 𝑎13𝑠0  −  𝑎10𝑠3, 

𝐼13 = 2𝑎14  −  2𝑎16  −  𝑎𝑎18  −  𝑎18𝑐 −  𝑎18𝑠0  −  𝑎13𝑠1  −  𝑎11𝑠3,  

𝐼14 = 𝑎17 − 𝑎19𝑏 − 𝑎19𝑐 − 𝑎19𝑠0  − 𝑎13𝑠2 − 𝑎12𝑠3,  

𝐼15 = 𝑎18  −  2𝑎16𝑐 −  𝑎16𝑠0  −  𝑎13𝑠3, 

𝐼16 = −𝑎19 − 𝑎18𝑠1  −  𝑎14𝑠3,  

𝐼17 = −𝑎19𝑠2 −  𝑎15𝑠3, 

𝐼18 =  𝑎18  −  𝑎19𝑠1 −  𝑎18𝑠2. 

By equalizing the right hand sides to zero and eliminating the coefficients of these polynomials, we 

find a condition for the parameters of system (1) which is 𝑏 = 𝑐 and 𝑐(𝑎 − 𝑐) = 1. Under this 

condition system (1) has only one algebraic invariant surface that is 𝐼∗ =
1

𝑐2 + 𝑥2 −
2𝑦

𝑐
+ 𝑦2 + 𝑧2 with 

the corresponding cofactor 𝐾∗ = −2𝑐.  

According to this quadratic invariant the following transformation can be used to simplify the system. 

By solving 𝐼∗ = 0 for 𝑥 then we obtain 𝑥 = ±
√(2𝑐𝑦−𝑐2(𝑦2+𝑧2)−1)  

𝑐
. When 

𝑥 → 𝑥 + √(2𝑐𝑦 − 𝑐2(𝑦2 + 𝑧2) − 1)  is transform to system (1) and moved to the origin then we have 

the following system by computer algebra routine    

�̇� = −𝑥(1 −
1

𝑐
+ 𝑐 + 𝑦 +

1

𝑐(𝑐𝑦 − 1)2 + 𝑐3𝑧2
) 

�̇� =
1

𝑐2
(1 − 𝑐3𝑦 + 𝑐2(1 − 𝑥2 + 𝑦2 + 𝑧2) − 2𝑐(𝑦 + 𝑥√2𝑐𝑦 − 1 − 𝑐2(𝑦2 + 𝑧2)) 

�̇� = −(𝑥 + 𝑐𝑧) +
√2𝑐𝑦 − 1 − 𝑐2(𝑦2 + 𝑧2)

𝑐
. 

The Jacobian matrix of the linearized transformed system is 𝐽2 = (
𝐽211 𝐽212 𝐽213

𝐽221 𝐽222 𝐽223

−1 𝐽232 𝐽233

) where 

𝐽211 = −1 +
1

𝑐
− 𝑐 − 𝑦 −

1

𝑐(𝑐𝑦 − 1)2 + 𝑐3𝑧2
, 

𝐽212 = −𝑥(1 +
2 − 2𝑐𝑦

((𝑐𝑦 − 1)2 + 𝑐2𝑧2)2
, 

𝐽213 =
2𝑐𝑥𝑧

((𝑐𝑦 − 1)2 + 𝑐2𝑧2)2
, 

𝐽221 = −
2

𝑐
(𝑐𝑥 + √−1 + 2𝑐𝑦 − 𝑐2(𝑦2 + 𝑧2)), 
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𝐽222 = −
1

𝑐2
(𝑐3 − 2𝑐2𝑦 + 2𝑐 (1 +

𝑐𝑥(𝑐𝑦 − 1)

(𝑐𝑦 − 1)2 + 𝑐2 𝑧2), 

𝐽223=
1

(𝑐𝑦−1)2+𝑐2 𝑧2(2𝑧(1 + 𝑐(𝑦(𝑐𝑦 − 2) + 𝑐𝑧2 − 𝑥√−1 + 2𝑐𝑦 − 𝑐2(𝑦2 + 𝑧2)), 

𝐽232 =
(1 − 𝑐𝑦)√−1 + 2𝑐𝑦 − 𝑐2(𝑦2 + 𝑧2)

(𝑐𝑦 − 1)2 + 𝑐2 𝑧2
, 

𝐽233 =
𝑐((𝑐𝑦 − 1)2 + 𝑐2𝑧2 + 𝑧√−1 + 2𝑐𝑦 − 𝑐2(𝑦2 + 𝑧2))

(𝑐𝑦 − 1)2 + 𝑐2 𝑧2
 

Solving �̇� = �̇� = �̇� = 0 yields the term 2𝑐𝑦 − 1 − 𝑐2(𝑦2 + 𝑧2) must be negative. Hence, the 

transformed system is in the complex space and its singular points are all complex. Please see papers 

that explains the calculation for calculating invariant algebraic surfaces and Hopf Bifurcation arising 

from that surfaces on two dimension to three dimension (Please see Definition 1, Theorem 1 

(Elimination) and Theorem 2 by Kusbeyzi Aybar et. al.[8])  and difficulties arising in complex 

domains have been extensively investigated for degree one by averaging theory by M. R. Candido et. 

al. (See Theorem 5[9]). 
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