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Abstract
In this study, we propose confidence intervals and their bootstrap versions for the differ-
ence of variances of two independent population using some robust variance estimators.
The proposed confidence intervals are compared with Herbert confidence interval in terms
of coverage probability and average width. A simulation study is conducted to evaluate
performances of the proposed confidence intervals under different scenarios. The simula-
tion results indicate that the coverage probabilities for the proposed confidence intervals
are very close to nominal confidence levels when the difference of population variances
is zero. Confidence interval based on binary distance produces the narrowest average
widths. Herbert confidence interval have not perform well for skewed distribution pop-
ulations. Confidence interval based on comedian is generally recommended when the
difference of population variances for skewed distributions is not zero. Average widths
of bootstrap percentile confidence intervals are smaller, and decreases as sample size and
nominal size increases, as expected. Consequently, we recommend bootstrap percentile
confidence interval based on binary distances for skewed distributions.
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1. Introduction
Confidence intervals for the ratio of population variances are well known for the case

where the populations are normally distributed. Although interpretation of variance dif-
ferences in randomized and clinical trials is critical, few statistical methods consider the
variance differences. It is very important to examine variance differences between exper-
imental and control groups in randomized experiments. Information about the variance
of effects of intervention may be of substantive interest. For example, the effect of change
in clinical trials allows the study of different factors in an investigation. Variability in in-
tervention effects in health care can be explained by interpretation of variance differences.
Interpreting of this difference with interval estimation provides a more realistic view of
population parameters than point estimates [13], since it provides the desired information
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within a range, and each statement is based on an assumption that is unquestionably true.
This forms the basis for robust statistics, allows to be checked assumptions and provides
a bridge between predicted models and real-life data.

The sample variance S2 is the maximum likelihood estimation for the population vari-
ance, and it is widely used to estimation normal population variances. The variance
distribution converges to the asymptotically normal distribution [20]. The Chi-square dis-
tribution is a special form of Gamma distribution with parameters α = (n − 1)/2 and
β = 2. When the sample sizes and variances of two normal populations are equal, the
difference of two random Gamma variables with parameters (α, β) have McKay Type II
distribution with parameters a = (α − 0.5), b = β2, and c = 0, which is close to normal
even when the sample size is too small [20].

Nevertheless, S2 is not robust for estimation of non-normal population variance and
coverage probabilities of confidence interval for this estimators are much smaller than
nominal confidence levels [13,26]. In such cases, it is essential to use robust scale estimators
to estimate population variance.

Barham and Jeyeratnam [7] proposed robust confidence intervals based on the L-
estimators. Cojbasica and Tomovica [14] obtained nonparametric confidence intervals
based on the bootstrap method for variance differences of exponential distribution. Co-
jbasica and Loncar [15] determined one-sided confidence intervals for population variance
of skewed distributions. Abu-Shawiesh et al. [1] conducted a simulation study for confi-
dence interval of population standard deviation. Niwitpong [21] studied the generalized
and closed form confidence intervals for normally distributed population. Niwitpong [22]
proposed an analytical definition of coverage probabilities (CP) and average widths (AW)
of closed form confidence intervals and compared with confidence intervals suggested by
Niwitpong [21]. Burch [9] proposed a nonparametric bootstrap confidence interval for
variance components. Suwan and Niwitpong [27] studied interval estimation methods for
a linear function of variances of non-normal populations using the kurtosis coefficient.
Burch [10] considered asymptotic variance of the natural logarithm of sample variance
to construct approximate confidence intervals for population variance. Akyüz et al. [4]
focused on interval estimation with sample variance estimators based on winsorized and
trimmed mean for the differences of non-normal population variances. Burch [11] obtained
confidence intervals based on a power transformation of the sample variance. Thangjai
and Niwitpong [28] proposed the simultaneous confidence intervals, based on generalized
confidence interval approach and simulation-based approach, for all differences of vari-
ances of log-normal distributions. Herbert et al. [20] obtained confidence intervals based
on the sample variance difference estimator for variance differences of normal populations.
Skewed distributions are very common in applications. Therefore;we consider the squares
of some scale estimators to estimate population variance.

The focus of this article is on calculating confidence intervals, because methods for inter-
val estimation of the variances difference based on robust estimators have not previously
been described. Robust estimators were used to estimate the difference of population vari-
ances based on binary distance (Q2

n), median binary distance (S2
n), and comedian (COM)

which is equal to the square of median absolute deviation from the median (MAD). We
proposed confidence intervals for the difference of variances of two independent popula-
tions based on three robust estimators, and compared these and their bootstrap percentile
versions with Herbert confidence intervals in terms of the CP and AW. The AWs were
obtained by dividing the total differences of the lower limit and upper limits found for
each replication to the number of replications. Also, the CPs were determined as the pro-
portion of cases where the variance difference was between the lower and upper interval
limit [3].
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The rest of this article is organized as follows. In Section 2, the Herbert confidence
interval is presented for normal population variance differences. The existing robust vari-
ance estimators are presented in Section 3. Section 4 describes the proposed and bootstrap
percentile confidence intervals, and Section 5 details a Monte Carlo simulation study. The
study findings are summarized in Section 6. Section 7 presents real-life data set examples.
Finally, Section 8 summarizes and concludes the paper.

2. Herbert confidence interval
Herbert et al. [20] estimated δ = σ2

A−σ2
B, where σ2 is population variance and subscripts

A and B denote independent populations. The natural unbiased estimator of δ is D =
S2

A − S2
B, where S2

A and S2
B are the sample variances. The sampling distribution variance

of S2 can be expressed as:

Var(S2) = 1
n

{
η −

(
n − 3
n − 1

)
σ4

}
(2.1)

where η is the fourth central moment and n is sample size [23]. Thus, the sampling variance
of the difference between independent population A and B variances can be expressed as
follows:

Var(D) = Var(S2
A − S2

B) = Var(S2
A) + Var(S2

B)

= 1
nA

{
ηA −

(
nA − 3
nA − 1

)
σ4

A

}
+ 1

nB

{
ηB −

(
nB − 3
nB − 1

)
σ4

B

}
(2.2)

which is more conveniently expressed in terms of the standardized fourth central moment.
For γ = η

σ4 , it can be obtained as:

Var(D) = 1
nA

{
γAσ4

A −
(

nA − 3
nA − 1

)
σ4

A

}
+ 1

nB

{
γBσ4

B −
(

nB − 3
nB − 1

)
σ4

B

}

= σ4
A

{
γA

nA
−

[
nA − 3

nA(nA − 1)

]}
+ σ4

B

{
γB

nB
−

[
nB − 3

nB(nB − 1)

]}
, (2.3)

where nA and nB defines the sample sizes of independent populations A and B, respec-
tively. This expression does not depend on any distributional assumptions, so the values
of parameters are unknown and must be estimated from sample data. Herbert et al. [20]
used the estimator G proposed by Bonett [8] to estimate population kurtosis coefficient.
It is defined as:

G = (nA + nB)

{∑ (
yi(B) − m′

(B)
)4

+
∑ (

yi(A) − m′
(A)

)4
}

{∑ (
yi(B) − m(B)

)2
+

∑ (
yi(A) − m(A)

)2
}2 (2.4)

where m is the sample mean, and m′ is the trimmed mean with trimmed proportion
0.5/

√
(n − 4) . yi(A) and yi(B) is the observed values of independent populations A and

B with sample sizes nA and nB , respectively. When the estimator G is used to esti-
mate the kurtosis coefficient, the sampling variance of variance differences for independent
populations is obtained as follows:

V̂ar(D) = S4
A

{
G

nA
− nA − 3

nA(nA − 1)

}
+ S4

B

{
G

nB
− nB − 3

nB(nB − 1)

}
(2.5)

When the observations are normally distributed, variance differences are also nearly
normal [2,20]. Also, it may be reasonable to generate variance difference confidence inter-
vals by assuming an approximate normal distribution. Thus, the confidence interval for
the difference of variances of two independent populations can be expressed as:
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P

(
D − z1−α/2

√
S4

A

{
G

nA
− nA−3

nA(nA−1)

}
+ S4

B

{
G

nB
− nB−3

nB(nB−1)

}
≤ σ2

A − σ2
B ≤ D

+z1−α/2

√
S4

A

{
G

nA
− nA−3

nA(nA−1)

}
+ S4

B

{
G

nB
− nB−3

nB(nB−1)

})
= 1 − α (2.6)

where z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution [10].

3. The robust estimators of the variance
In this section, we consider variance estimators based on binary distance, median binary

distance and MAD. Also, it is included simulation results for the distributions of these
estimators.

The estimator Q2
n for a random sample Y1, Y2, ..., Yn with model distribution F can be

expressed as [1]:

Q2
n = (dn)2 ×

(
2.2219(|yi − yj |)(g)

)2
, (3.1)

where i < j; i = 1, 2, ..., n; j = 1, 2, ..., n; g =
(

h
2

)
and h = [n

2 ] + 1. Also, [.] expression

indicates the largest integer function. Thus, Q2
n is the square of the g-th order statistic of

the
(

n
2

)
interpoint distance [1].

The estimator S2
n, which is an appropriate estimator for asymmetric distributions, can

be expressed as:

S2
n = (cn)2 × (1.1926medi (medj |yi − yj |))2, i = 1, 2, ..., n; j = 1, 2, ..., n (3.2)

where med is the sample median [25]. Comedian is a robust estimator for population
variance [19].

COM (Y, Y ) = MAD2(Y ). (3.3)

It can be defined as MAD2(Y ) = COM = (bn)2 × (1.4826medi (|yi − medjyj |))2. It is
known that the comedian is used as a robust estimator for the covariance. When X=Y
for the independent random samples Xi and Yi, i=1,2,...,n , it is a robust estimator for
variance.

The values for constants dn, cn and bn are given by Croux ve Rousseeuw [16]. The
constants dn, cn and bn are unbiasing factor so that they become an unbiased estimator
of standard deviation for the Normal distribution.

A simulation study was conducted in MATLAB R-2018b to determine of distributions
of estimators Q2

n, S2
n, and COM under 10,000 replications, α = 0.05, and sample sizes

n = 10, 20, 50, 100. Random samples were generated from a normal distribution. Shapiro-
Wilk goodness of fit test was used to determine whether estimators complied with Gamma
or Weibull distributions. stats::swGOFT function was used for this purpose. Also, it was
obtained the average p-values for each sample. According to simulation results; it is seen
that histograms of distribution of estimators resemble Gamma and Weibull distributions
in various situations. However, it is essential to use the results of goodness of fit test to
identify the distribution. These results are as in Table 1.
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Table 1. Average p-values for the Shapiro-Wilk goodness of fit test for robust
estimators

p-values
Estimator Sample size(n) Gamma Weibull

10 0.3055 0.1726
Q2

n 20 0.3137 0.1710
50 0.3110 0.1701
100 0.3110 0.1700
10 0.4452 0.0107

S2
n 20 0.4047 0.0100

50 0.4062 0.0101
100 0.4060 0.0101
10 0.5299 0.0487

COM 20 0.5045 0.0423
50 0.5000 0.0429
100 0.5000 0.0430

Table 1 shows the average p-values for 10,000 replications. When Table 1 is examined, it
is seen that all estimators conform to the Gamma distribution for α = 0.05(p−value > α).
S2

n and COM estimators do not conform to the Weibull distribution (p−value < α). Also,
the average p-values based on Gamma distribution for the estimator Q2

n were higher than
those of the Weibull distribution. Therefore, it was obtained that the estimators conform
to the Gamma distribution.

4. Confidence intervals for the difference of variances of two independent
populations

The proposed confidence intervals and their bootstrap versions for the difference of
variances of two independent populations are defined in the following sections.

4.1. Proposed confidence intervals
While the sample standard deviation had the highest efficiency in the normal distribu-

tion, the efficiency in the skewed distribution was very poor. In such cases, it is known
that the variance, the square of the standard deviation, is not a robust estimator. Since
population variance was studied in this study, the squares of the scale estimators were
calculated. Because, the scale estimators are robust estimators for population standard
deviation with certain unbiased coefficients. It is known in the literature that they are effi-
ciency estimators, although these estimators are biased estimators for population variance
[1]. We propose robust confidence intervals based on estimators

(
Q2

n1 − Q2
n2

)
,

(
S2

n1 − S2
n2

)
and (COM1 − COM2) for the variance difference of independent populations.

Section 3 showed that sampling distributions of estimators Q2
n, S2

n, and COM conform
to the Gamma distribution. Thus, the estimators are distributed as the difference between
two independent Gamma random variables with parameters (α, β) which have McKay
Type II distributions with parameters a = α − 0.5, b = β2, and c = 0. Consider a random
sample Y1, Y2, ..., Yn of size n, then the McKay Type II probability density function is
defined as [20]:

fY (y) =
(
1 − c2)a+0.5|y|a√

π2aba+1Γ(a + 0.5)
e−yc/bKα

( |y|
b

)∣∣∣∣∣ y ̸= 0, (4.1)
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fY (y) =
(
1 − c2)a+0.5Γ(a)√

π2bΓ(a + 0.5)

∣∣∣∣∣ y = 0. (4.2)

where Kα is the modified Bessel function of the second kind of order α [20]. The McKay
Type II distribution is very nearly normal, even when sample size is very small.

Thus, we propose the confidence interval based on estimator
(
Q2

n1 − Q2
n2

)
with constant

dn as follows:

P

(
(dn)2 (

Q2
n1 − Q2

n2

)
− zα/2(dn)2

√
Var

(
Q2

n1 − Q2
n2

)
≤ σ2

1 − σ2
2

≤ (dn)2 (
Q2

n1 − Q2
n2

)
+ zα/2(dn)2

√
Var

(
Q2

n1 − Q2
n2

))
= 1 − α(4.3)

where (
Q2

n1 − Q2
n2

)
=

{
2.22192

((
|y1i − y1j |(g)

)2
−

(
|y2i − y2j |(g)

)2
)}

, (4.4)

and zα/2 is the (1 − α/2)th quantile of the standard normal distribution. dn is unbiasing
factor.

Similarly, confidence intervals for the estimators
(
S2

n1 − S2
n2

)
and (COM1 − COM2)

with constants cn and bn are as:

P

(
(cn)2 (

S2
n1 − S2

n2

)
− zα/2(cn)2

√
Var

(
S2

n1 − S2
n2

)
≤ σ2

1 − σ2
2

≤ (cn)2 (
S2

n1 − S2
n2

)
+ zα/2(cn)2

√
Var

(
S2

n1 − S2
n2

))
= 1 − α, (4.5)

and

P

(
(bn)2 (COM1 − COM2) − zα/2(bn)2

√
Var (COM1 − COM2) ≤ σ2

1 − σ2
2

≤ (bn)2 (COM1 − COM2) + zα/2(bn)2
√

Var (COM1 − COM2)
)

= 1 − α, (4.6)

where

(
S2

n1 − S2
n2

)
=

{
1, 19262

((
med1i(med1j |y1i − y1j |)2

)
−

(
med2i(med2j |y2i − y2j |)2

))}
(4.7)

and
(COM1 − COM2) =

{
1, 48262

(
(med1i (|y1i − med1jy1j |))2 − (med2i (|y2i − med2jy2j |))2

)}
.

(4.8)
Analytical expressions for V̂ar(Q2

n1 −Q2
n2), V̂ar(S2

n1 −S2
n2) and V̂ar(COM1 −COM2) are

not available in the literature, and are difficult to calculate. Thus, the estimated variances
were obtained using Monte Carlo simulation or bootstrap methods [4, 12].

If the difference estimator that is obtained in the ith replication of the T repeated
simulation with sample data of size n is Di =

(
Q2

n1 − Q2
n2

)
, i = 1, 2, ..., T , the estimated

variance with Monte Carlo simulation for V ar(Q2
n1 − Q2

n2) can be expressed as:

V̂ar
(
Q2

n1 − Q2
n2

)
=

T∑
i=1

(
Di − D̄

)2

T − 1
(4.9)

where the D̄ is the mean of the differences Di =
(
Q2

n1 − Q2
n2

)
, i = 1, 2, ..., T .
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Bootstrapping has been applied widely in statistics when analytical derivations of the
distribution of an estimator are intractable, and it can be found to generate distributions
close to the underlying true distributions. If analytical expressions for some parameter
estimators or statistical properties of these estimators are not available, estimated values of
these estimators can be obtained by bootstrapping [6,29]. Variance may also be estimated
with the bootstrap method [17].

Bootstrap samples of size n are generated by simple random sampling with replacement,
and obtained the estimated variance for

(
Q2

n1 − Q2
n2

)
. Thus, the bootstrap estimator for

variance of
(
Q2

n1 − Q2
n2

)
is as:

V̂ar
(
Q2

n1 − Q2
n2

)
=

B∑
i=1

(
Di − D̄

)2

B − 1
(4.10)

where B and Di, i=1,2,..., B are the bootstrap replication and the estimated values(
Q2

n1 − Q2
n2

)
, respectively.

Similarly, estimated variances for V̂ar(S2
n1 −S2

n2) and V̂ar(COM1 −COM2) are obtained
by Monte Carlo and bootstrap methods.

Table 2. Variance estimation values for the robust estimators

Simulation method
Variance estimation Sample size (n) Monte Carlo Bootstrap

10 0.7066 0.7195
V̂ar(Q2

n1 − Q2
n2) 20 0.1081 0.0998

50 0.0465 0.0460
100 0.0320 0.0300
10 2.4812 2.4569

V̂ar(S2
n1 − S2

n2) 20 2.0625 2.0045
50 1.2695 1.2598
100 0.8991 0.8001
10 1.4974 1.4550

V̂ar(COM1 − COM2) 20 0.7570 0.7571
50 0.5391 0.5299
100 0.2658 0.2514

Table 2 shows estimated variances for V̂ar(Q2
n1 −Q2

n2), V̂ar(S2
n1 −S2

n2) and V̂ar(COM1 −
COM2) where the populations were assumed to be normal distributed, based on 10,000
replications by Monte Carlo simulation and bootstrap. The two methods yield similar
results for all sample sizes.

4.2. Bootstrap percentile confidence interval
The bootstrap percentile confidence interval is based on the percentile of the distribution

of bootstrap replications, which includes the percentile and adjusted percentile intervals.
Here, we only consider percentile type confidence intervals because they are compatible
with the transformations [6]. Theoretically, this method has better coverage probability
than the bootstrap-t method [18]. The lower and upper limits of the confidence interval
are obtained as follows:

1. Calculate estimators
(
Q2

n1 − Q2
n2

)
,

(
S2

n1 − S2
n2

)
, and (COM1 − COM2) based on

random samples {x1, x2, ..., xn1} and {y1, y2, ..., yn2} for sizes n1 and n2 .
2. Obtain bootstrap samples x∗b =

{
x∗b

1 , x∗b
2 , ..., x∗b

n1

}
and y∗b =

{
y∗b

1 , y∗b
2 , ..., y∗b

n2

}
of

sample sizes n1 and n2 with simple random sampling under replacement.
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3. Calculate
(
Q2∗b

n1 − Q2∗b

n2

)
,

(
S2∗b

n1 − S2∗b

n2

)
, and

(
COM∗b

1 − COM∗b
2

)
based on boot-

strap samples.
4. Repeat steps (2) to (3) 1000 times (B).
5. Sort the estimators

(
Q2∗b

n1 − Q2∗b

n2

)
,

(
S2∗b

n1 − S2∗b

n2

)
, and

(
COM∗b

1 − COM∗b
2

)
in as-

cending order.
6. The lower and upper values of the bootstrap confidence interval based on

(
Q2∗b

n1 − Q2∗b

n2

)
are the (α/2)th and (1 − α/2)th quantiles of the estimator,

(
Q2∗b

n1 − Q2∗b

n2

)
[α/2 ]

and(
Q2∗b

n1 − Q2∗b

n2

)
[1−α/2 ]

, respectively.

7. The lower and upper values of the bootstrap confidence interval based on
(
S2∗b

n1 − S2∗b

n2

)
are

(
S2∗b

n1 − S2∗b

n2

)
[α/2 ]

and
(
S2∗b

n1 − S2∗b

n2

)
[1−α/2 ]

.
8. Similarly, the lower and upper limits of the bootstrap confidence interval based on(

COM∗b
1 − COM∗b

2

)
are

(
COM∗b

1 − COM∗b
2

)
[α/2 ]

and
(
COM∗b

1 − COM∗b
2

)
[1−α/2 ]

,
respectively.

5. Simulation study
Performances of the proposed confidence intervals, bootstrap percentile confidence in-

tervals, and Herbert confidence interval for variance difference of independent populations
were compared with a simulation study in MATLAB R-2018b, since theoretical compari-
son was not possible. The most common 95% and 90% confidence levels (α = 0.05, 0.10)
was used, and confidence intervals were compared in terms of CP and AW.

If the data are from a symmetric distribution, CP will be exactly same or close to
(1 − α) = 0.95. Therefore, CP is a useful criterion to evaluate the confidence interval. On
the other hand, smaller AW implies a better confidence interval. In particular, smaller
AW indicates the more appropriate method when CP is the same.

We used Monte Carlo simulation to obtain V̂ar(Q2
n1 − Q2

n2), V̂ar(S2
n1 − S2

n2), and
V̂ar(COM1 − COM2). Tables 3-6 summarize CP and AW results for variance differences
of two independent populations.

The simulation process was as follows: - We used sample sizes n = 10, 20, 50, and 100,
- Type I errors α = 0.05 and α = 0.10, - Simulation study is 10,000 replications, - Ran-
dom samples were generated from symmetric and skewed distributions: N(0,1); N(10,1);
N(10,3); Gamma (1,1); Gamma (3,1); Weibull (1, 0.5); Weibull (1,2); Weibull (1,3); Beta
(1,1); Beta (2,2); Beta (3,1); Beta (5,1); Chi-square (1); Chi-square (5); Rayleigh (3);
Rayleigh (5); Student-t (3), Student-t (10); Uniform (0,1); Uniform (2,4).

6. Results
Figure 1 shows the distributions of robust estimators for the variance difference of

independent populations. A simulation study with 10,000 replications was performed to
determine the distributions of estimators. We used the Shapiro-Wilk goodness of fit test to
determine whether the estimator distributions were normal under α = 0.05. The p-values
of the estimators

(
Q2

n1 − Q2
n2

)
,

(
S2

n1 − S2
n2

)
, and (COM1 − COM2) were as 0.0945, 0.0857,

and 0.0647 respectively. Thus, the distributions of the robust estimators were confirmed
to normal (p − values > α).

Table 3 compares the values of CP and AW of the all confidence intervals for nor-
mally distributed samples. The values of CPs of confidence interval are close to nominal
confidence levels even for small sample sizes. Thus, the performance of proposed confi-
dence intervals are comparable to Herbert confidence interval. The AWs of confidence
intervals reduced as sample size increased for the both type I error levels. The estimator
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Figure 1. Empirical distributions of robust estimators for variance difference
between independent populations

(
Q2

n1 − Q2
n2

)
has the narrowest widths for similar CPs. Thus, the confidence interval based

on
(
Q2

n1 − Q2
n2

)
produced better results for normal populations (Table 3).

Table 4 shows the values of CP and AW for the bootstrap percentile and Herbert
confidence intervals under normal distribution when the difference of population variance
equals to zero.

The CPs of bootstrap percentile confidence interval are closer to nominal confidence lev-
els than those of the Herbert confidence interval. Similar to the previous case, the AWs of
confidence intervals reduced as sample size increased. AWs based on bootstrap percentiles
were much lower than those of the Herbert confidence intervals when the difference of
population variance was zero (Table 4).

Table 5 shows the values of CP and AW under Gamma, Weibull, Beta, Chi-squared,
Rayleigh, Student-t, Uniform distributions, and n = 10, 20, 50, 100 when the population
variance difference is zero. The CPs of confidence intervals for all robust estimators are
very close to nominal confidence levels, but not for the Herbert confidence interval, for
all cases considered. The AWs of confidence interval based on the estimator

(
Q2

n1 − Q2
n2

)
are narrower than those of the other confidence intervals. Thus, bootstrap percentile
confidence interval based on the estimator

(
Q2

n1 − Q2
n2

)
has the best results for skewed

populations.
Table 6 shows how increased difference between population variances affected CP. As

expected, CPs were lower when compared to the case where the difference of variances was
zero. Herbert confidence interval does not perform well for skewed distributions. It is seen
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Table 3. Coverage probability (CP) and average width (AW) of confidence in-
tervals for normal distributions

CP (AW)
Distribution Type I error n

(
Q2

n1 − Q2
n2

) (
S2

n1 − S2
n2

)
(COM1 − COM2) Herbert CI

10 0.9444 (1.9285) 0.9422 (3.2890) 0.9401 (4.5082) 0.9510 (2.5677)
α = 0.05 20 0.9479 (1.6134) 0.9447 (2.5619) 0.9425 (3.0446) 0.9510 (1.7712)

50 0.9483 (1.1518) 0.9480 (1.6513) 0.9445 (1.8833) 0.9515 (1.1107)
100 0.9489 (0.8247) 0.9493 (1.0443) 0.9489 (1.2946) 0.9515 (0.8847)

N(0,1) 10 0.9054 (1.6011) 0.8995 (2.8531) 0.9000 (3.7944) 0.9099 (2.1521)
α = 0.10 20 0.9061 (1.3392) 0.9004 (2.1506) 0.8984 (2.5753) 0.9098 (1.4899)

50 0.9069 (0.9071) 0.8997 (1.3982) 0.9010 (1.5816) 0.9099 (0.9296)
100 0.9069 (0.6278) 0.9016 (0.9594) 0.9016 (1.0898) 0.9096 (0.6581)
10 0.9446 (1.9129) 0.9424 (3.1544) 0.9418 (4.9157) 0.9506 (2.5593)

α = 0.05 20 0.9465 (1.6064 ) 0.9464 (2.5768) 0.9453 (3.5741) 0.9506 (1.7726)
50 0.9495 (1.1027) 0.9490 (1.4853) 0.9450 (1.9914) 0.9506 (1.1100)
100 0.9505 (0.7381) 0.9501 (1.0665) 0.9489 (1.3967) 0.9510 (0.7830)

N(10,1) 10 0.9018 (1.8132) 0.9020 (2.8854) 0.9035 (4.8606) 0.9097 (2.1563)
α = 0.10 20 0.9025 (1.3808) 0.9037 (2.2170) 0.9057 (3.2108) 0.9097 (1.4863)

50 0.8994 (0.9782) 0.9026 (1.4041) 0.9027 (1.7716) 0.9095 (0.9322)
100 0.9011 (0.6965) 0.9015 (0.8991) 0.9094 (1.1979) 0.9098 (0.6571)
10 0.9441 (17.3853) 0.9414 (28.6852) 0.9399 (41.4839) 0.9515 (23.2479)

α = 0.05 20 0.9479 (14.3232) 0.9454 (20.3212) 0.9441 (27.3287) 0.9520 (15.9532)
50 0.9482 (9.2258) 0.9470 (12.9875) 0.9470 (17.0630) 0.9520 (9.9790)
100 0.9497 (6.4420) 0.9486 (9.1380) 0.9492 (11.6996) 0.9520 (7.0582)

N(10,3) 10 0.9058 (14.4646) 0.9008 (23.9410) 0.9007 (34.7127) 0.9089 (19.4067)
α = 0.10 20 0.9042 (11.9871) 0.9026 (16.9650) 0.9009 (22.9343) 0.9088 (13.3763)

50 0.8987 (8.0601) 0.9020 (10.9457) 0.9001 (14.3242) 0.9090 (8.3885)
100 0.9065 (5.2713) 0.9020 (7.6458) 0.9007 (9.8672) 0.9090 (5.9318)

Table 4. Coverage probability (CP) and average width (AW) of Bootstrap per-
centile confidence intervals for normal distributions

CP (AW)
Distribution Type I error n

(
Q2

n1 − Q2
n2

) (
S2

n1 − S2
n2

)
(COM1 − COM2) Herbert CI

10 0.9433 (1.8788) 0.9377 (3.2449) 0.9451 (5.2786) 0.8930 (2.0381)
α = 0.05 20 0.9573 (1.4048) 0.9385 (2.5289) 0.9442 (3.6056) 0.8640 (1.4688)

50 0.9379 (1.0037) 0.9485 (1.5611) 0.9436 (2.1159) 0.8951 (1.0361)
100 0.9572 (0.7012) 0.9443 (1.0277) 0.9456 (1.3558) 0.8968 (0.7434)

N(0,1) 10 0.8937 (1.5952) 0.8908 (2.7532) 0.8636 (4.3471) 0.8421 (1.7958)
α = 0.10 20 0.9092 (1.1363) 0.8942 (2.0997) 0.8688 (2.9584) 0.8157 (1.2911)

50 0.8891 (0.8750) 0.9036 (1.3264) 0.9008 (1.7859) 0.8535 (0.9062)
100 0.8969 (0.6043) 0.9039 (0.9039) 0.9030 (1.1956) 0.8548 (0.6606)
10 0.9481 (1.7429) 0.9453 (3.0383) 0.9440 (4.8908) 0.8819 (2.0112)

α = 0.05 20 0.9516 (1.3971) 0.9441 (2.4865) 0.9432 (3.5446) 0.8571 (1.4410)
50 0.9534 (1.0003) 0.9480 (1.4669) 0.9530 (1.9843) 0.8877 (1.0008)
100 0.9559 (0.6118) 0.9505 (1.0455) 0.9529 (1.3761) 0.9079 (0.7532)

N(10,1) 10 0.8971 (1.7271) 0.8928 (2.8567) 0.8928 (4.4839) 0.8146 (1.7557)
α = 0.10 20 0.8982 (1.3712) 0.9039 (2.2072) 0.8962 (3.1277) 0.8375 (1.3769)

50 0.8952 (0.8609) 0.9057 (1.3006) 0.9022 (1.7502) 0.8397 (0.8908)
100 0.9017 (0.5804) 0.9053 (0.8737) 0.9023 (1.1505) 0.8538 (0.6520)
10 0.9466 (17.3101) 0.9470 (28.5836) 0.9432 (40.3177) 0.8559 (17.3453)

α = 0.05 20 0.9458 (13.0787) 0.9415 (21.2026) 0.9426 (27.3048) 0.8613 (13.2294)
50 0.9455 (7.1509) 0.9488 (12.0339) 0.9532 (16.9924) 0.8893 (8.9892)
100 0.9524 (5.3821) 0.9491 (9.0995) 0.9543 (11.5801) 0.8987 (6.7049)

N(10,3) 10 0.8940 (13.8750) 0.8908 (22.5881) 0.8900 (33.3747) 0.7725 (14.4333)
α = 0.10 20 0.8976 (11.1245) 0.8981 (16.8917) 0.8985 (22.1774) 0.8020 (11.3278)

50 0.8980 (8.1678) 0.9064 (10.6366) 0.9057 (14.2444) 0.8492 (8.2544)
100 0.8975 (5.1445) 0.9059 (7.6031) 0.9057 (9.7335) 0.8557 (5.9128)

that the AWs of confidence intervals based on estimator
(
Q2

n1 − Q2
n2

)
are the narrowest,

but the CPs of confidence intervals based on estimator (COM1 − COM2) are more closer
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Table 5. Coverage probability (CP) and average width (AW) of bootstrap per-
centile confidence intervals for some non-normal distributions and α = 0.05

CP (AW)
Distribution of both population n

(
Q2

n1 − Q2
n2

) (
S2

n1 − S2
n2

)
(COM1 − COM2) Herbert CI

Gamma (3,1) 10 0.9407 (5.0482) 0.9414 (8.6089) 0.9408 (12.0548) 0.9164 (10.4039)
20 0.9466 (4.0243) 0.9442 (6.2027) 0.9436 (8.1122) 0.9172 (7.2370)
50 0.9482 (2.7860) 0.9449 (4.0077) 0.9460 (4.8912) 0.9159 (4.6116)
100 0.9493 (2.0532) 0.9453 (2.8416) 0.9471 (3.4143) 0.9164 (3.2816)

Weibull (1,2) 10 0.9441 (0.3866) 0.9418 (0.6674) 0.9418 (0.9760) 0.9154 (0.6108)
20 0.9451 (0.3099) 0.9491 (0.4820) 0.9428 (0.6689) 0.9126 (0.4142)
50 0.9467 (0.2208) 0.9472 (0.3086) 0.9467 (0.4121) 0.9164 (0.2566)
100 0.9486 (0.1595) 0.9501 (0.2170) 0.9527 (0.2868) 0.9182 (0.1802)

Beta (3,1) 10 0.9416 (0.0636) 0.9382 (0.1166) 0.9392 (0.1717) 0.9140 (0.0876)
20 0.9443 (0.0513) 0.9470 (0.0885) 0.9434 (0.1210) 0.9187 (0.0639)
50 0.9494 (0.0358) 0.9476 (0.0600) 0.9485 (0.0751) 0.9183 (0.0416)
100 0.9505 (0.0269) 0.9490 (0.0443) 0.9484 (0.0542) 0.9157 (0.0298)

Beta (2, 2) 10 0.9476 (0.0833) 0.9451 (0.1537) 0.9415 (0.2471) 0.9106 (0.1103)
20 0.9514 (0.0674) 0.9516 (0.1103) 0.9431 (0.1766) 0.9125 (0.0717)
50 0.9495 (0.0465) 0.9468 (0.0682) 0.9473 (0.1123) 0.9151 (0.0431)
100 0.9494 (0.0338) 0.9502 (0.0471) 0.9483 (0.0816) 0.9150 (0.0300)

Chi-squared (1) 10 0.9437 (2.5056) 0.9427 (3.7187) 0.9415 (5.0694) 0.9173 (10.6621)
20 0.9408 (1.55549 0.9417 (2.2545) 0.9409 (2.9274) 0.9142 (8.1081)
50 0.9413 (0.9182) 0.9399 (1.2183) 0.9393 (1.5298) 0.9194 (5.3431)
100 0.9476 (0.6272) 0.9453 (0.8056) 0.9443 (0.9975) 0.9190 (3.9023)

Rayleigh (3) 10 0.9453 (6.9394) 0.9427 (12.1430) 0.9403 (17.9107) 0.9150 (11.0672)
20 0.9442 (5.5309) 0.9430 (8.5767) 0.9442 (11.8982) 0.9199 (7.4779)
50 0.9518 (3.9274) 0.9496 (5.5097) 0.9491 (7.3994) 0.9161 (4.6091)
100 0.9506 (2.9465) 0.9490 (3.9649) 0.9462 (5.2175) 0.9184 (3.2358)

Student-t (3) 10 0.9419 (4.3296) 0.9414 (6.2949) 0.9454 (7.8396) 0.9181 (13.6772)
20 0.9437 (3.2928) 0.9428 (4.1713) 0.9427 (4.7374) 0.9135 (13.0315)
50 0.9458 (2.3343) 0.9462 (2.6055) 0.9450 (2.7566) 0.9135 (10.3312)
100 0.9484 (1.6538) 0.9482 (1.7981) 0.9462 (1.8615) 0.9194 (7.3724)

Uniform (0,1) 10 0.9496 (0.1211) 0.9499 (0.2432) 0.9446 (0.4151) 0.9168 (0.1676)
20 0.9525 (0.0896) 0.9493 (0.1797) 0.9481 (0.3171) 0.9116 (0.1052)
50 0.9501 (0.0544) 0.9482 (0.1085) 0.9479 (0.2052) 0.9140 (0.0616)
100 0.9518 (0.0356) 0.9509 (0.0745) 0.9500 (0.1493) 0.9141 (0.0424)

to nominal confidence level compared to that of others when the difference between the
variances is not zero.

7. Real Data Examples
7.1. Example I

Hemoglobin data were obtained from 170 persons, including 85 healthy and 85 coronary
artery patients, from the Cardiology Department of Bitlis State Hospital, as shown in
Figure 2 [5].

The Kolmogorov-Smirnov (KS) goodness of fit test for normality showed that the data
has a normal distribution (disease group: KS test statistic = 0.1450, p-value = 0.0505;
control group: KS test statistic = 0.0878, p-value = 0.5013).

Table 7 shows some descriptive statistics, 95% confidence intervals and their’s AWs for
Example I. The width of confidence interval based on estimator

(
Q2

n1 − Q2
n2

)
is narrower

than that of the other intervals, which is consistent with the simulation outcomes.

7.2. Example II
We considered the study of honey as a cough remedy for children who were ill with

an upper respiratory tract infection [24]. Parents were instructed to give their child liq-
uid medicine prior to bedtime. Unknown to the parents, some were provided with dex-
tromethorphan (DM), an over the counter cough medicine, while others were provided a
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Table 6. Coverage probability (CP) and average width (AW) of bootstrap per-
centile confidence intervals for distributions with unequal variances and α = 0.05

CP (AW)
Distribution of both population n

(
Q2

n1 − Q2
n2

) (
S2

n1 − S2
n2

)
(COM1 − COM2) Herbert CI

Gamma (3,1) and Gamma (1,1) 10 0.5959 (3.4504) 0.8451 (6.1793) 0.9263 (9.6799) 0.7313 (4.9087)
20 0.6966 (2.8426) 0.9115 (4.8809) 0.9509 (6.6891) 0.7937 (4.0660)
50 0.7790 (1.9914) 0.9181 (3.0238) 0.9390 (3.8004) 0.8569 (3.0646)
100 0.7959 (1.3902) 0.9043 (2.0221) 0.9231 (2.4614) 0.8733 (2.3472)

Weibull (1,3) and Weibull (1,0.5) 10 0.3954 (8.8729) 0.4515 (12.5464) 0.4884 (17.8421) 0.3507 (41.8777)
20 0.4108 (2.9456) 0.4662 (4.8458) 0.4619 (6.5059) 0.4544 (44.8977)
50 0.4100 (1.3670) 0.4503 (1.6654) 0.5008 (2.2583) 0.3942 (41.0439)
100 0.4100 (0.8680) 0.4710 (0.9243) 0.5000 (1.2743) 0.4611 (36.1003)

Beta (5,1) and Beta (1,1) 10 0.6595 (0.0890) 0.8668 (0.1644) 0.8783 (0.2716) 0.8657 (0.1031)
20 0.7932 (0.0749) 0.8957 (0.1427) 0.8906 (0.2293) 0.8900 (0.0684)
50 0.7381 (0.0494) 0.8820 (0.0914) 0.8900 (0.1580) 0.8816 (0.0437)
100 0.7545 (0.0319) 0.8962 (0.0597) 0.8942 (0.1124) 0.8969 (0.0315)

Chi-squared (1) and Chi-squared (5) 10 0.5363 (11.2544) 0.8209 (19.8830) 0.9136 (30.9610) 0.6936 (15.5072)
20 0.5635 (8.3347) 0.8590 (14.2904) 0.9225 (19.4034) 0.7662 (13.5317)
50 0.6255 (6.2044) 0.8931 (9.4598) 0.9276 (11.8353) 0.8264 (9.8399)
100 0.6207 (4.4948) 0.8829 (6.6234) 0.9211 (7.9865) 0.8627 (7.7075)

Rayleigh (3) and Rayleigh (5) 10 0.6725 (13.4485) 0.8968 (23.6476) 0.9014 (37.3312) 0.7693 (15.0666)
20 0.7488 (11.0432) 0.9325 (18.5358) 0.9087 (26.5315) 0.8255 (11.9156)
50 0.8407 (8.4380) 0.9328 (12.4924) 0.9487 (17.0241) 0.8722 (8.4660)
100 0.8433 (5.8667) 0.9358 (8.2907) 0.9435 (11.1386) 0.8809 (6.1577)

Student-t (3) and Student-t (10) 10 0.4571 (3.5489) 0.6809 (5.8039) 0.8027 (8.6065) 0.5632 (5.6865)
20 0.4314 (2.7049) 0.6394 (4.0373) 0.8183 (5.1798) 0.6247 (5.5038)
50 0.4592 (1.8747) 0.6802 (2.3601) 0.8286 (2.7592) 0.6656 (4.4714)
100 0.4551 (1.2905) 0.7842 (1.5077) 0.8424 (1.7133) 0.7128 (3.6506)

Uniform (0,1) and Uniform (2,4) 10 0.6853 (0.3668) 0.9292 (0.6535) 0.9470 (1.0977) 0.8382 (0.3525)
20 0.7590 (0.2954) 0.9303 (0.5667) 0.9402 (0.9278) 0.8700 (0.2465)
50 0.7601 (0.1941) 0.9419 (0.3599) 0.9419 (0.6367) 0.8931 (0.1634)
100 0.7678 (0.1233) 0.9482 (0.2314) 0.9462 (0.4473) 0.9100 (0.1181)

Table 7. Descriptive statistics and confidence intervals for hemoglobin

Descriptive statistics Group I Group II
Sample size (n) 85 85

Mean 13.55 13.62
Variance 3.87 2.31
Median 14 13.5
Kurtosis 2.48 2.43
Skewness 0.52 0.06

Q2
n 2.13 1.71

S2
n 2.14 1.66

COM 1.63 1.93
Method 95% confidence interval Width(

Q2
n1 − Q2

n2

)
[0, 2.10] 2.10(

S2
n1 − S2

n2

)
[-1.15, 3.71] 4.86

(COM1 − COM2) [-2.80, 4.23] 7.03
Herbert confidence interval [0.44, 2.60] 2.16

similar dose of honey. Parents then rated their child’s cough symptoms and an improve-
ment in total cough symptoms score was determined for each child.

The KS test confirmed the Figure 3 that these data were not normal distributed
(honey: KS test statistic = 0.1316, p-value=0.0061; DM: KS test statistic = 0.0977;
p-value=0.0086).
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Figure 2. Histograms and Q-Q plots of coronary artery disease

Table 8. Descriptive statistics and confidence intervals for dosage

Descriptive statistics Group I Group II
Sample size (n) 35 35

Mean 10.71 8.33
Variance 8.15 10.60
Median 11 9
Kurtosis 2.80 1.98
Skewness -0.20 0.08

Q2
n 2.02 4.05

S2
n 2.38 3.57

COM 2.99 2.99
Method 95% confidence interval Width(

Q2
n1 − Q2

n2

)
[0, 10.14] 10.14(

S2
n1 − S2

n2

)
[-11.37, 7.11] 18.48

(COM1 − COM2) [-18.41, 5.90] 24.31
Herbert confidence interval [-7.63, 17.23] 24.86

Table 7 shows that width of confidence interval based on estimator
(
Q2

n1 − Q2
n2

)
is

smaller than that of the others, and the Herbert confidence interval has the largest width
for skewed population, which is consistent with the simulation results.
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Figure 3. Histograms and Q-Q plots of Honey and DM dosages

8. Conclusion
Although making interpretation of variance differences in randomized and clinical trials

is an important issue, just a few statistical methods deal with the variance differences. We
proposed confidence intervals for the difference of variances of two independent populations
based on three robust estimators. These intervals and their bootstrap percentile versions
were compared with Herbert confidence intervals in terms of CP and AW.

The simulation results showed that all proposed confidence intervals had higher CPs
than the Herbert confidence interval under normal distribution. Also, confidence interval
based on estimator

(
Q2

n1 − Q2
n2

)
had the smaller AWs than the other confidence intervals.

On the other hand, AWs of confidence intervals based on estimators
(
S2

n1 − S2
n2

)
and

(COM1 − COM2) are as narrow as those of the Herbert confidence interval.
When the populations were normal distributed, bootstrap percentile confidence intervals

had narrower AWs than classical confidence intervals. Higher CPs were obtained wtih
variance difference which is zero. CPs decreased with the increase in variance differences
as in Herbert confidence interval.

The CPs of proposed confidence intervals were higher than those of the Herbert con-
fidence interval when the populations were skewed distributed. Herbert’s bootstrap per-
centile confidence interval had less than nominal level of coverage. The AWs of confidence
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interval based on estimator (COM1 − COM2) were similar to AW of the Herbert confi-
dence interval, but AWs for estimator

(
Q2

n1 − Q2
n2

)
were narrower than those of the other

intervals.
CPs were lower in the case of the variance which is not zero. In this case, CPs of

confidence interval based on estimator (COM1 − COM2) were closer to the nominal level
than those of the others. However, the estimator

(
Q2

n1 − Q2
n2

)
performed better in terms

of AWs. Consequently, we recommend bootstrap percentile confidence interval based on
estimator

(
Q2

n1 − Q2
n2

)
for the difference of variances of two independent populations.

Two real data sets were analysed to illustrate the findings of the study and the simulation
results were verified.
Acknowledgment. The authors are grateful to the reviewers for their suggestions and
valuable comments on the paper.
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