
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 1

Code Clone Detection with Convolutional Neural Networks
Araştırma Makalesi/Research Article

 Harun DİŞLİ, Ayşe TOSUN

Faculty of Informatics and Computer Engineering, Istanbul Technical University, Istanbul, Turkey

disli15@itu.edu.tr, tosunay@itu.edu.tr
(Geliş/Received:18.03.2019; Kabul/Accepted:25.10.2019)

DOI: 10.17671/gazibtd.541476

Abstract— Similar or identical code portions which are generated by copying and reusing code portions within the
source code are named as code clones. While so many works have been conducted to detect these clones, they generally
use string comparison techniques and very few of them take advantage of popular learning based approaches, such as
deep learning. This paper proposes a new approach based on a popular and successful image classification technique
named as convolutional neural network. It simply tokenizes each candidate clone pair in order to generate image files.
Then, convolutional neural network is used to classify these image data with labels “clone” and “not clone”. In order to
train and test the network, clone and not clone pairs are chosen from a public database including six million methods.
As a result, the approach gives 99% accuracy, effectively detects clones and not clones with 2-5% false alarms rates at
method granularity.

Keywords— code clone detection, deep learning, convolutional neural network

Konvolüsyonel Sinir Ağları İle Kod Klonlarının Tespiti

Özet— Yazılım geliştirirken kopyalama ve yeniden kullanma yoluyla oluşturulan benzer veya aynı kod parçaları, kod
klonları olarak adlandırılır. Bu klonları tespit etmek için pek çok çalışma yapılmış olsa da, çalışmalar genellikle katar
karşılaştırma tekniklerini kullanılmakta ve çok azı popüler araştırma alanlarından olan derin öğrenmeden
faydalanmaktadır. Bu makale, konvolüsyonel sinir ağı olarak adlandırılan, popüler ve başarılı görüntü sınıflandırma
yöntemine dayanan yeni bir yaklaşım önermektedir. Bu yöntem, görüntü dosyalarını oluşturmak için her aday klon
çiftini sembollere ayırır. Daha sonra, konvolüsyonel sinir ağı bu görüntü verilerini “klon” veya “klon değil” etiketleriyle
sınıflandırmak için kullanılır. Ağı eğitmek ve test etmek için altı milyon java metodu içeren bir veri tabanından
örneklerler seçilerek kullanılmıştır. Sonuç olarak, bu yaklaşım metot bazındaki klonları % 95'lik bir doğrulukla etkili
bir şekilde tespit etmektedir.

Anahtar Kelimeler— kod klon tespiti, derin öğrenme, konvolüsyonel sinir ağı

1. INTRODUCTION

Copying and reusing a code fragment with or without
minor modification is known as code cloning [1]. Code
clones generally occur as a result of copy-paste operations
by programmers [2]. When a code piece has residual
bugs, it is highly possible that the same problem also
exists in the other copies [2]. Accordingly, when an
update is required in a code piece which has multiple
copies in the source code, the developer should check the
other copies to avoid unexpected crashes in the system.
There are four different clone types, which are Type-1,

Type-2, Type-3 and Type-4. Type-1 clones can be
identical or they may contain little modification on
whitespace and comments [3]. Type-2 clones allow
changing variables, type or identifiers. Type-3 clones
extend this with adding, removing or changing some
statements [3,4]. Type-4 clone perform same operation
with different syntactic variants [4]. In a software system
that contains high number of clones and developed by a
large group of programmers, the maintenance cost may be
seriously high because of these duplicated code portions
[5]. Detecting code clones in a software system is,
therefore, crucial to reduce both significant maintenance

https://orcid.org/0000-0003-2852-4343
mailto:disli15@itu.edu.tr
mailto:tosunay@itu.edu.tr
https://orcid.org/0000-0003-1859-7872

2 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020

costs and the risks of potential failures associated with the
clone operations.

There have been several studies on code clone detection
employing different approaches to identify cloned code
pieces in large scale software applications. Some of the
approaches proposed in the studies perform text-based
techniques [6-8], while others use token-based techniques
[9-12], semantic or tree-based techniques [13,14]. Text-
based techniques treat source code as strings consisting of
words and compare strings among each other to identify
their similarities [15]. The other approaches transform the
source code into tokens, or graphical models before
applying an algorithm to detect cloned pieces. To build
the code clone detection model, algorithms such as suffix
tree [10,16], dotplot/scatter plot [17], hash-value
comparison [13,14] and Euclidean distance [18] have
been tried. Recently, studies show that deep learning
techniques such as RNN (recurrent neural network)
[19,20] and LSTM (long short-term memory network)
[21] are used for modeling source codes. One particular
field that requires modeling the source code is code clone
detection. Studies on clone detection using deep learning
techniques, such as DNN (deep neural network) [22]
report that at least 98% of Type-1 and Type-2 clones can
be predicted.

It was stated that there are mostly Type-3 clones in source
code [23]. However, this clone type has the lowest
prediction performances with Type-4 clone type: Even
with deep learning, CClearner [22] has reached a
maximum detection rate of 28% in weakly Type-3 and
Type-4 clones. For that reason, further investigation is
necessary in code clone detection, specifically for
detecting all types of code clones with high accuracy.

This paper proposes a token-based technique using
convolutional neural network (CNN) on code clone
detection by converting source code into the form of
image data. To implement this approach, we used
candidate clone pair methods extracted from
BigCloneBench dataset [25], and tokenized these
methods. Number of occurrences of every token counted
for both methods separately and saved as frequency
matrices. Later, these two matrices merged and saved as
an image data. Lastly, CNN is trained using these images
that represent clone pairs. Since the merged matrix
appears very similar to image data, we use it as if it is an
image. Also, we preferred CNN because it assumes the
inputs are images and it provides encoding features to the
architecture. This helps reduce the number of parameters
and make more efficient implementation [26]. Empirical
analysis on three different train-test splits used with CNN
shows that our approach has good performance on
detecting code clones especially complicated clone types.

The rest of the paper is organized as follow. Section 2
presents brief background information about code clone
detection and related works. Section 3 expresses the
proposed clone detection technique. Section 4 and 5 show
our experimental results and comparison with similar

works. Lastly, section 6 summarizes and concludes this
paper.

2. BACKGROUND INFORMATION

2.1. Code Clone Definitions

Code clone definitions and clone types are explained as
follows:

Code Fragment: Any grouping of code lines in any
granularity such as function definition, begin_end block,
or sequence of statements named as code fragment(CF).
A CF is recognized by its file name and begin_end line
numbers in the original code base. It is signified as a triple
(CF.FileName, CF.BeginLine, CF.EndLine) [4]. In this
work, the fragments are equal to methods (functions).

Code Clone: If two fragments are similar or identical
they are called as code clone. In another words, if two
fragments are code clone, it should be that f(CF1) =
f(CF2) where f is the similarity function. Code clone may
be among two or more code fragments. While a clone pair
is formed by two similar code fragments (CF1, CF2),
clone group or clone class is formed by many similar
fragments [4].

Clone Types: Clone types between fragments can be
grouped as two main kinds which are based on the
similarity of their program text and similarity of their
functionality (independent of their text). [4]. The textual
(Types 1 to 3) and functional (Type-4) clone types are
provided in the following:

Type-1: Two fragments are Type-1 clone if they are
identical except for variations in whitespace, layout and
comments [4]. In Figure 1.a, whitespace is the only
difference between two methods.

Type-2: If two fragments are varied with only identifiers,
literals, types, whitespace, layout and comments, they are
Type-2 clones [4]. Figure 1.b is an example of Type-2
clone. Both methods copy given files in same way, but
variable and parameter names are different. Regarding
our results and previous researches [3,4], Type-1 and
Type-2 clones are simplest types to detect.

Type-3: If a fragment can be obtained from another with
little modifications such as changed, added or removed
statements, these two fragments are Type-3 clone [4].
Figure 1.c shows an example of Type-3 clone. Added line
3 and modified line 4 in second method are variations
between two methods.

Type-4: Two or more code fragments may perform the
same computation by implementing different syntactic
variants. These types of fragments are known as Type-4
clone [4]. In Figure 1.d, both methods perform same
operation in different ways.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 3

2.2. Related Work on Code Clone Detection

Code clone detection approaches may be separated into
five main categories regarding the analysis to transform
source code: textual, lexical, syntactic, semantic and
hybrid [4] as shown in Figure 2.

Textual approaches take each line and use string matching
algorithms. These techniques use raw source code and
apply little or no transformation to source code. While
they manage to detect Type-1 clone, they hardly detect
complicated types [4,22]. Ducasse et al. [15] use text
based clone detection approach. The detection is based on
construction of dot plots whose axes are source code
entities. If hash values of the entities on two axes are
equal, then there is a dot at corresponding coordinate.

Lexical approaches are also known as token-based
approaches. They remove white spaces and comments,
transform source code to a sequence of tokens using
lexical analysis techniques and then search for duplicated
subsequences. After locating duplicate subsequences,
corresponding original source code portions returned as
code clone. One of the efficient token based approaches is
CCFinder [10]. It removes all white spaces between
tokens, transforms tokens based on some transformation
rules. Then, it searches for same transformed token

sequences. Detected sequences are marked as duplicate.
Another lexical approach is Dup. by Baker [9] that
utilizes p-string and p-matching. After removing white
spaces and comments, identifiers such as variable, method
and class are renamed. Then, each line of codes is hashed
for comparison. Using suffix-tree algorithm, duplicated
code portions are located. These techniques are more
successful detecting complicated clone types [4].

Syntactic approaches can be identified with two sub
categories. Tree matching approaches (tree-based
techniques) works creating an AST tree for each code
fragment and finding similar subtrees. Variable names,
literal values and other tokens may be abstracted in tree to
find more complicated clone types. Since tree matching
approaches focus the syntactic structure of the source
code rather than their statements, they can detect near-
miss clones [4,22]. CloneDr by Baxter et al [13] is an
example for tree matching approaches. First, it transforms
the source code into parse tree. Later, subtrees are hashed
into buckets. These hashed subtrees are compared in order
to identify clone portions.

Metric-based approaches collect a number of metrics for
each code fragments. These metrics may be number of
statements, number of function calls, number of input
variable. Rather than comparing code, this technique

(a)

(b)

(c)

(d)

Figure 1. Clone Types. Type-1 clones (a), Type-2 clones (b), Type-3 clones (c) and Type-4 clones (d),

public String stringOfUrl(String addr) throws IOException {
 ByteArrayOutputStream output = new ByteArrayOutputStream();
 URL url = new URL(addr);
 IOUtils.copy(url.openStream(), output);
 return output.toString();
}

public String stringOfUrl(String addr) throws IOException {
 ByteArrayOutputStream output = new ByteArrayOutputStream();
 URL url = new URL(addr);
 IOUtils.copy(url.openStream(), output);

 return output.toString();
}

public static void copyFile(String src, String target) throws IOException {
 FileChannel ic = new FileInputStream(src).getChannel();
 FileChannel oc = new FileOutputStream(target).getChannel();
 ic.transferTo(0, ic.size(), oc);
 ic.close();
 oc.close();
}

public void copyFile(File in, File out) throws Exception {
 FileChannel sourceChannel = new FileInputStream(in).getChannel();
 FileChannel destinationChannel = new ileOutputStream(out).getChannel();
 sourceChannel.transferTo(0, sourceChannel.size(), destinationChannel);
 sourceChannel.close();
 destinationChannel.close();
}

public String streamToString(InputStream stream) throws IOException {
 ByteArrayOutputStream output = new ByteArrayOutputStream();
 IOUtils.copy(stream, output);
 return output.toString();
}

public String stringOfUrl(String addr) throws IOException {
 ByteArrayOutputStream output = new ByteArrayOutputStream();
 URL url = new URL(addr);
 IOUtils.copy(url.openStream(), output);
 return output.toString();
}

public static final String getMD5Hash(byte[] data, int offset, int length) throws NoSuchAlgorithmException {
 MessageDigest md5 = MessageDigest.getInstance("MD5");
 md5.update(data);
 return generateHash(md5.digest());
}

public String getHash(String key, boolean base64) throws Exception {
 MessageDigest md = MessageDigest.getInstance("SHA");
 md.update(key.getBytes());
 if (base64) return new String(new Base64().encode(md.digest()), "UTF8");
 else return new String(md.digest(), "UTF8");
}

4 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020

compares metric vectors to identify code clones [4,22].
Davey et al. [27] generates futures for code blocks using
metrics and train a neural network to determine duplicated
code blocks.

Semantic based approaches using semantic program
analysis represent the software as Program Dependency
Graph or Control Flow Graph. Expression and statements
transformed as nodes while control and data dependencies
transformed as edge in the graph. After this
transformation, code clone detection is turned identifying
isomorphic subgraphs [4]. Komondoor and Horwitz’s tool
[28] detects clones using Program Dependency Graph.
Hybrid approaches use combination of other four
techniques to locate the code clones.

There are also similar works that implemented deep
learning. These works may benefit from any clone
detection approach. White et al. [29] introduced learning-
based detection technique which relies on language model
that is a probability distribution over sentences in a
language. Recurrent neural network and recursive neural
network are used to map each term in a fragment to an
embedding and to encode this embedding to characterize
fragments.

Another tool that uses deep learning is CCLearner [22].
CCLearner divides tokens into eight categories such as
reserved words, operators and markers. It calculates
similarity score for each category and obtains frequency
vectors with length eight. Obtained vectors are used to
train deep neural network. It performs analysis on
1626544 samples taken from dataset BigCloneBench and
took 100%, 98%, 98% and 89% recalls for T1, T2, VST3
and ST3 respectively. However, CCLearner performs
28% recall for MT3 and 1% for WST3/4 because it does
not include MT3 and WST3/4 clone types in their training
set. In addition, CCLearner calculates the overall
precision based on 385 randomly selected samples and
didn’t report false positive rate of their approach. Since
Type-3 clone is the most common clone type, we want to
develop a method that detects all clone types separately.
We applied deep learning like CCLearner, but specifically
we thought CNN would be the best fit. We also reported
false positive rate in addition to recall and precision. We
evaluated our work using the same dataset but with

different number of samples. In addition, we utilized
tokens frequencies as feature vector without
categorization.

3. PROPOSED APPROACH

In this section, we defined BigCloneBench benchmark
[25] and CNN. Also, we described our clone detection
technique including data preprocessing, how we
constructed CNN architecture with its initialization
parameters and training and test set used to evaluate our
proposed technique.

3.1. Dataset

BigCloneBench is a collection of over six million
validated clones in the large Java inter-project repository
IJaDataset-2.0. BigCloneBench was built by mining
IJaDataset for clones of particular functionalities. It
contains both inter-project and intra-project clones of the
four primary clone types [25]. The dataset contains
almost 2.5 million Java classes with more than 22 million
methods. Using these classes and their methods,
Svajlenko et al. [25] created comparison tables which
contain clone and not clone samples with their types.

In BigCloneBench, there are six extended clone types:
T1(Type-1), T2(Type-2), VST3(Very Strong Type-3),
ST3(Strong Type-3), MT3(Moderately Type-3) and
WT3/4(Weak Type 3 or 4). Svajlenko et al. [25] actually
reclassified Type-3 and Type-4 clones based on their
similarity ratio. If similarity ratio between two clone
candidates more than 0,9, they are labeled as WST3. If
the similarity ratio between 0,7 and 0,9, they are ST3.
When the ratio is lower than 0,7 and higher than 0,5, they
become MT3. If the similarity is lower than 0,5, they are
WST3/4. Table 1 shows the distribution of clones based
on their types. While there are more than six millions of
WT3/4, there are only 2083 VST3 clones. In addition to
the clones, Table 1 shows the number of false clone pairs
(method pairs that are not clones of each other).

Table 1. Number of clones
Type Similarity(s) Rule Number %
T1 - 16185 0,24
T2 - 3787 0,06
VST3 0,9 <= s <= 1 2083 0,03
ST3 0,7 <= s < 0,9 10031 0,15
MT3 0,5 <= s < 0,7 55106 0,85
WT3/4 0 <= s < 0,5 6158975 94,63
FALSE CLONE - 262465 4,03

3.2. Tokenization and Input Features

A method pair to be compared is selected and converted
to a sequence of tokens, similar to an image data in order
to obtain sensible input for CNN. To achieve this, each
method pair as method1 and method2 is transformed into
tokens with a lexical analyzer tool called ANTLR [30].
Then each token is represented as a unique ID offered by

Figure 2. Code Clone Detection Approaches

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 5

the tool. Table 2 shows the list of tokens used in a source
method, and their corresponding token numbers.

Two sample methods and their tranformation steps are
illustrated in Figure 3. First, these two methods are
seperated into their tokens. (c) and (d) are token
sequences of the first and second methods, respectively.
Later, these tokens are replaced with their corresponding
unique IDs as shown in (e) and (f). Then token ID
sequences obtained for the two methods are merged into a
single vector. During the tokenization, each method is

illustrated as a token array of size 66 such that the first 66
tokens of a method is represented. We set this number by
analysing the average, minimum and maximum number
of tokens each method contains. We have found that there
are on average 66 tokens in a single method in the
BigCloneBench dataset. The final feature set of a method
pair, hence, corresponds to a token array of size 132. This
token array is later saved as an image in jpeg format.

Table 2. Tokens and corresponding unique IDs

ABSTRACT 1 INTERFACE 28 StringLiteral 55 SUB 82

ASSERT 2 LONG 29 NullLiteral 56 MUL 83

BOOLEAN 3 NATIVE 30 LPAREN 57 DIV 84

BREAK 4 NEW 31 RPAREN 58 BITAND 85

BYTE 5 PACKAGE 32 LBRACE 59 BITOR 86

CASE 6 PRIVATE 33 RBRACE 60 CARET 87

CATCH 7 PROTECTED 34 LBRACK 61 MOD 88

CHAR 8 PUBLIC 35 RBRACK 62 ARROW 89

CLASS 9 RETURN 36 SEMI 63 COLONCOLON 90

CONST 10 SHORT 37 COMMA 64 ADD_ASSIGN 91

CONTINUE 11 STATIC 38 DOT 65 SUB_ASSIGN 92

DEFAULT 12 STRICTFP 39 ASSIGN 66 MUL_ASSIGN 93

DO 13 SUPER 40 GT 67 DIV_ASSIGN 94

DOUBLE 14 SWITCH 41 LT 68 AND_ASSIGN 95

ELSE 15 SYNCHRONIZED 42 BANG 69 OR_ASSIGN 96

ENUM 16 THIS 43 TILDE 70 XOR_ASSIGN 97

EXTEBDS 17 THROW 44 QUESTION 71 MOD_ASSIGN 98

FINAL 18 THROWS 45 COLON 72 LSHIFT_ASSIGN 99

FINALLY 19 TRANSIENT 46 EQUAL 73 RSHIFT_ASSIGN 100

FLOAT 20 TRY 47 LE 74 URSHIFT_ASSIGN 101

FOR 21 VOID 48 GE 75 Identifier 102

IF 22 VOLATILE 49 NOTEQUAL 76 AT 103

GOTO 23 WHILE 50 AND 77 ELLIPSIS 104

IMPLEMENTS 24 IntegerLiteral 51 OR 78 WS 105

IMPORT 25 FloatingPointLiteral 52 INC 79 COMMENT 106

INSTANCEOF 26 BooleanLiteral 53 DEC 80 LINE_COMMENT 107

INT 27 CharacterLiteral 54 ADD 81

6 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020

3.3. Training and Test Set Construction

In this work, we tried several methodologies to construct
the training data. First, we used real data ratios. Each type
has different number of samples in BigCloneBench. For
instance, while 94,63% of all data are in the type of
WT3/4, only 0,03% of the data are VST3 as shown in
Table 1. Keeping the same ratios, we constructed our data
with a total of 50000 instances. The first row of Table 3
shows the distributions of instances from different clone
types in the training data.

Our second methodology was micro sampling, i.e.
undersampling the classes based on the minority class
ratio. VST3 has the minimum number of samples which
is 2083. Thus, we built our training data choosing 2000
samples for each type, and hence, the total number of
instances is 14000 (see Table 4).

Our third methodology takes random samples for each
clone type and forms the training data. Regardless of the
clone type ratios in the dataset, we randomly picked
instances from the main dataset into the training set, and
ended up having 25000 method pairs. The Table 5 shows
this third methodology’s training set.

(a) (b)

(c)

(d)

(e) (f)

Figure 3. Preprocessing on methods. Two java method copy (a) and cloneFile (b), their tokenized form (c) and (d),
unique ID representations according to the list of tokens in Table 2 (e) and (f).

static void copy(String src, String dest) throws IOException {
 File ifp = new File(src);
 File ofp = new File(dest);
 if (ifp.exists() == false) {
 throw new IOException("file '" + src + "' does not exist");
 }
 FileInputStream fis = new FileInputStream(ifp);
 FileOutputStream fos = new FileOutputStream(ofp);
 byte[] b = new byte[1024];
 int readBytes;
 while ((readBytes = fis.read(b)) > 0) fos.write(b, 0, readBytes);
 fis.close();
 fos.cloes();
}

private static final void cloneFile(File origin, File target)
 throws IOException {

 FileChannel srcChannel = null;
 FileChannel destChannel = null;
 try {
 srcChannel = new FileInputStream(origin).getChannel();
 destChannel = new FileOutputStream(target).getChannel();
 destChannel.transferFrom(srcChannel, 0, srcChannel.size());
 } finally {
 if (srcChannel != null) srcChannel.close();
 if (destChannel != null) destChannel.close();
 }
}

STATIC VOID Identifier LPAREN Identifier Identifier COMMA Identifier Identifier RPAREN THROWS Identifier LBRACE
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI
 IF LPAREN Identifier DOT Identifier LPAREN RPAREN EQUAL BooleanLiteral RPAREN LBRACE
 THROW NEW Identifier LPAREN StringLiteral ADD Identifier ADD StringLiteral RPAREN SEMI
 RBRACE
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI
 BYTE LBRACK RBRACK Identifier ASSIGN NEW BYTE LBRACK IntegerLiteral RBRACK SEMI
 INT Identifier SEMI
 WHILE LPAREN LPAREN Identifier ASSIGN Identifier DOT Identifier LPAREN Identifier RPAREN RPAREN GT IntegerLiteral RPAREN
 Identifier DOT Identifier LPAREN Identifier COMMA IntegerLiteral COMMA Identifier RPAREN SEMI
 Identifier DOT Identifier LPAREN RPAREN SEMI
 Identifier DOT Identifier LPAREN RPAREN SEMI
RBRACE

PRIVATE STATIC FINAL VOID Identifier LPAREN Identifier Identifier COMMA Identifier Identifier RPAREN THROWS Identifier LBRACE
 Identifier Identifier ASSIGN NullLiteral SEMI
 Identifier Identifier ASSIGN NullLiteral SEMI
 TRY LBRACE
 Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN DOT Identifier LPAREN RPAREN SEMI
 Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN DOT Identifier LPAREN RPAREN SEMI
 Identifier DOT Identifier LPAREN Identifier COMMA IntegerLiteral COMMA Identifier DOT Identifier LPAREN RPAREN
RPAREN SEMI
 RBRACE FINALLY LBRACE
 IF LPAREN Identifier NOTEQUAL NullLiteral RPAREN Identifier DOT Identifier LPAREN RPAREN SEMI
 IF LPAREN Identifier NOTEQUAL NullLiteral RPAREN Identifier DOT Identifier LPAREN RPAREN SEMI
 RBRACE
RBRACE

38 48 102 57 102 102 64 102 102 58 45 102 59
 102 102 66 31 102 57 102 58 63
 102 102 66 31 102 57 102 58 63
 22 57 102 65 102 57 58 73 53 58 59
 44 31 102 57 55 81 102 81 55 58 63
 60
 102 102 66 31 102 57 102 58 63
 102 102 66 31 102 57 102 58 63
 5 61 62 102 66 31 5 61 51 62 63
 27 102 63
 50 57 57 102 66 102 65 102 57 102 58 58 67 51 58
 102 65 102 57 102 64 51 64 102 58 63
 102 65 102 57 58 63
 102 65 102 57 58 63
60

33 38 18 48 102 57 102 102 64 102 102 58 45 102 59
 102 102 66 56 63
 102 102 66 56 63
 47 59
 102 66 31 102 57 102 58 65 102 57 58 63
 102 66 31 102 57 102 58 65 102 57 58 63
 102 65 102 57 102 64 51 64 102 65 102 57
58 58 63
 60 19 59
 22 57 102 76 56 58 102 65 102 57 58 63
 22 57 102 76 56 58 102 65 102 57 58 63
 60
60

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 7

To be more realistic, we constructed five different test
data for each training based on real ratios. Each test has
25 T1, 6 T2, 3 VST3, 15 ST3, 85 MT3, 9463 WT3/4 and
403 not clone instances. Table 3, Table 4 and Table 5
show the test set distributions in addition to their training
sets. The instances in the training set are not included into
these test sets to avoid sampling bias.

3.4. Algorithm Selection

In this study, we employed Convolutional Neural
Network (CNN) as the algorithm of our code clone
detection model. CNN is one of the most popular and
successful algorithms for image classification [26, 31,
32]. While it is similar to a typical neural network, the
difference between CNN and a neural network is that
CNN mostly takes images as input data. This helps
encoding certain image properties to architecture and
more efficient calculations can be made reducing amount
of parameters [26]. Also CNN can analyze images in 3D
(width, height and depth). CNN consists of layers
applying different operations. Some layers of CNN with
their operations are described below.

Alternative deep learning methods are also available, such
as Recurrent Neural Networks (RNN), and its variations,
i.e., Long Short-Term Memory (LSTM). These networks
have been employed in different software engineering
problems, such as classification of security vulnerabilities
[33] However, such RNN models require time-dependent
and sequential data. In our study, the code fragments, i.e.,

method pairs, do not represent a sequential development:
two selected methods are developed independently, and
the similarity between them is later predicted via the
trained model Therefore, an RNN-style model is not
suitable for our study. Deep neural networks could have
been an option for our problem, but as mentioned before
[26], CNN gives more efficient training cycles with the
convolution and pooling layers. Furthermore, CNN
preserves spatial relantionship between pixels in an image
[34, 35]. This resembles with the representation of a
method such that the relationship between the tokens used
in a method should be captured by the selected model. We
represent a method as a sequence of tokens, and need a
model that could capture more informative features
through the relationship between the tokens. Hence, we
decided that CNN is a suitable fit for the clone detection
problem.

3.4.1. Comvolution Layer

Convolution layer is one of the most significant layers
that whole architecture called the same name. It can be
interpreted as set of filters. Each neuron(filter) takes input
images and dot product with weight matrix [26]. When an
input image has shape W1*H1*D1 and with K filters
(F*F*D1), it produces W2*H2*D2 where

W2=(W1−F)/S+1 (S is stride size)
H2=(H1−F)/S+1
D2=K

Table 3. Number of samples for real data ratios

 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone
Train 124 29 16 77 423 47314 47983 2016
Test#1 25 6 3 15 85 9463 9597 403
Test#2 25 6 3 15 85 9463 9597 403
Test#3 25 6 3 15 85 9463 9597 403
Test#4 25 6 3 15 85 9463 9597 403
Test#5 25 6 3 15 85 9463 9597 403
All Test 125 30 15 75 425 47315 47985 2015

Table 4. Number of samples for micro sampling

 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone
Train 2000 2000 2000 2000 2000 2000 12000 2000
Test#1 25 6 3 15 85 9463 9597 403
Test#2 25 6 3 15 85 9463 9597 403
Test#3 25 6 3 15 85 9463 9597 403
Test#4 25 6 3 15 85 9463 9597 403
Test#5 25 6 3 15 85 9463 9597 403
All Test 125 30 15 75 425 47315 47985 2015

Table 5. Number of samples for random ratio

 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone
Train 3063 737 419 1858 6915 12642 25634 24366
Test#1 25 6 3 15 85 9463 9597 403
Test#2 25 6 3 15 85 9463 9597 403
Test#3 25 6 3 15 85 9463 9597 403
Test#4 25 6 3 15 85 9463 9597 403
Test#5 25 6 3 15 85 9463 9597 403
All Test 125 30 15 75 425 47315 47985 2015

8 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020

3.4.2. Pooling Layer

Pooling layer is a down sampling operation. It makes the
operation more manageable reducing parameter numbers
and helps to control over fitting. It can be max pooling
(taking the maximum of pixels in a region) or average
pooling (taking mean of pixel in a region) [26]. When an
input image has shape W1*H1*D1 and with filters size
F*F*D1, it produces W2*H2*D2 where

 W2=(W1−F)/S+1 (S is stride size)
H2=(H1−F)/S+1
D2=D1

3.4.3. RELU Layer

It applies elementwise RELU (rectified linear unit) which
is an activation function. It leaves data size unchanged
[26].

3.4.4. Fully Connected Layer

It is an ordinary neural network that used for
classification [26]. It generates scores for each class. If
ten classes exist, the output should be 1*1*10.

Figure 4. Illustration of CNN architecture

3.5. CNN Architecture

We used Lenet [36] architecture that has two
convolutional layers. Every convolution is followed by a
pooling layer. The first convolution has 20 filters with
size 5*5 and stride 1, second convolution has 50 filters
with size 5*5 and stride 1. Each pooling layer is max
pooling with kernel size 2*2 and stride 2. After the
second pooling layer, we have two fully connected layers.
The first one consists of 50 hidden layers and 500 output
layers and second one has 50 hidden layers with 2 two
outputs. Also, we have a RELU between this two fully
connected layers. Lastly, the final layer connected to a
softmax to calculate loss. As a shorthand notation
C(20,5,1) -> P(2,2) -> C(50,5,1) -> P(2,2) -> FC(50,10) -
> R() -> FC(50,2) where C(n,f,s) indicates a convolution
layer with n filter, f*f spatial size, s stride; R indicates

RELU; P(f,d) indicates pooling with f*f spatial size; s
stride and FC(h,o) indicates fully connected layer with h
hidden, o output nodes. Figure 4. shows the illustration of
the model.

We also tried several different architecture modifying
Lenet [36]. When we increased the kernel size in a
convolution layer accuracy decreased to 93% and when
we reduced the kernel size, accuracy decreased to 91,5%.
When we added and removed one convolution layer with
pooling, accuracy rates were 91% and 87%, respectively.
Additionally, the result of inreasing the stride size by 1
was 92% accuracy.

3.6. Initialization and Optimization of Parameters

We applied parameter tuning for initialization and
optimization in the CNN. All of the fully connected and
convolution layers’ weights are initialized with Xavier
initialization [37]. Xavier initilizaiton sets weights of
layer to values chosen from random uniform distribution.
We also used Adam momentum update [38] with
momentum 0,9 and learning rate 0,01. Adam dynamically
changes the learning rate and it provides efficient
computation with little memory requirements. Batch size
was 64.

3.7. Performance Evaluation

We use recall, precision, false positive rate and accuracy
as our performance metrics in this work. Since our dataset
consists of two labels which are “clone” and “not clone”,
we defined our metrics for both clone and not clone
samples.

Recall (R), measures how many of clones are detected
and how many of not clones are detected.

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Clones Truly Predicted

Total Number of Clones
 (1)

𝑅𝑅𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Not Clones Truly Predicted

Total Number of Not Clones
 (2)

Precision (P), measures how many of detected clones are
actually clone and how many of detected not clones are
actually not clone.

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Clones Truly Predicted
Total Number of Predicted Clones

 (3)

𝑃𝑃𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Not Clones Truly Predicted
Total Number of Predicted Not Clones

 (4)

False Alarm Rate (F), measures how many of the actual
not clones are predicted as clone, and how many of the
actual clones are predicted as not clone.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 9

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Clones Falsely Predicted

Total Number of Not Clones
 (5)

𝐹𝐹𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of NotClones Falsely Predicted

Total Number of Clones
(6)

Accuracy (A), is an overall measure to compute how
many of samples are truly classified.

 𝐴𝐴 =
Number of Truly Predicted Samples

Total Number of Samples
 (7)

4. RESULTS

We performed the experiments on three different training
sets as described in Section 3. For each of the
experiments, we computed the performance metrics, and
reported these in Tables 6-12 except Table 9. Table 9
reports the performance of CCLearner to compare our
findings with the recent approach. Tables 6, 7 and 8 report
recall rates with respect to clone types, and the overall
recall for each experiment. In addition, Tables 10, 11 and
12 show precision, false alarm rate and accuracy for each
experiment.

 In the experiment using real data ratios, we got 100%
recall and 100% precision for the clone samples, as
reported in Table 6 and Table 10 respectively. The recall
and precision for not clone samples are slightly lower,

96% and 89% respectively. The reason is that we kept the
real ratio of clone types in the first methodology, and
hence, didn’t provide sufficient not clone samples in
training data. In the other two trials, we achieved more
promising results. We got 99% accuracy for micro
sampling and randomly selected samples. Table 7 and
Table 8 show recall for each clone type and overall recall.
Also, Table 11 and Table 12 show precision, false alarm
rate and accuracy for these two experiments. Precision
also reached above 80% for not clone samples. This
shows that the sampling in the training set has worked
well in predicting both clone and not-clone classes
successfully. While randomly selected training set has
similar recall and precision values for not clone samples,
micro sampling reduces the false alarm rates for the clone
samples.

The precision and recall values with micro sampling
strategy are 83% and 97% on not-clone samples. The
recall indicates the truly predicted clone/not-clone
samples, and it is more important to predict the class
accurately. The precision, on the other hand, indicates the
amount of false predictions the model gives. Thus, a
tradeoff between the two is important to obtain effective
predictions. The change in recall and precision rates on a
single test set is illustrated in Figure 5 with varying
thresholds. It is seen that, as the model achieves higher
recall rates, its precision slightly decreases.

Table 6. Recall for real data ratio (%)
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone
Test#1 100 100 100 100 98 100 100 96
Test#2 100 100 100 100 99 99 99 97
Test#3 100 100 100 100 96 100 100 95
Test#4 100 100 100 100 99 99 99 96
Test#5 100 100 100 100 98 100 100 95
Overall 100 100 100 100 98 100 100 96

Table 7. Recall for micro sampling (%)
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone
Test#1 100 100 100 100 95 99 99 97
Test#2 100 100 100 100 100 99 99 98
Test#3 100 100 100 100 98 99 99 97
Test#4 100 100 100 100 99 99 99 95
Test#5 100 100 100 100 99 99 99 96
Overall 100 100 100 100 98 99 99 97

Table 8. Recall for random data ratio (%)
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone
Test#1 100 100 100 100 100 99 99 100
Test#2 100 100 100 100 99 99 99 100
Test#3 100 100 100 100 99 99 99 100
Test#4 100 100 100 100 96 99 99 100
Test#5 100 100 100 100 100 99 99 100
Overall 100 100 100 100 99 99 99 100

Table 9. Recall for CClearner (%)
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone
CCLearner 100 98 98 89 28 1 - -

10 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020

Figure 5. The distribution of precision versus recall on
Test#3 with varying thresholds for prediction.

5. INTERPRETATIONS

According to the results, our model has a remarkable
success on code clone detection. It has great recall and
precision values for both ‘clone’ and ‘not clone’ samples.
Token sequence representation of method pairs reduces
false alarms compared to frequency based representations.

For each experiment, we selected 10000 test samples, but
we observed the success of different examples by
repeating selecting test samples five times. The execution

time of the CNN model, including training and test
phases, is about 20 minutes. In addition to this, the time
required for tokenization and preparing input features is
approximately 35 minutes. The total execution time for
the approach we have applied is less than an hour and we
think this time period is reasonable for applying a deep
learning approach. Considering that our feature vector
resembles an image, we observe that CNN is a good
algorithm to detect clone.

When we look at the distribution according to clone types,
we see that the sample numbers are very different from
each other. Although the WT3/4 dominates the dataset,
the model gives very successful results in all clone types.
We think CNN has the ability to overcome different clone
types. Since micro sampling experiment took better and
more reliable results, we compared these results with
CCLearner [22]. Table 9 and Table 13 show recall,
precision, false alarm rate and accuracy results for
CCLearner. Some values are missing (represented as -)
since they were not reported by Li et al. [22]. While our
work and CCLearner have almost equal recall for T1, T2
and VST3 clone types, our results show significantly
better results on more sophisticated clone types. For ST3,
MT3 and WT3/4, we have 100%, 98% and 99% recall
values respectively. However, CCLearner took only 89%,
28% and 1% for these clone types. This is because their
training data does not include MT3 and WT3/4 types and

Table 10. Precision-false alarm rate-accuracy for real data ratio (%)
 Precision False Alarm Rate Accuracy Clone Not Clone Clone Not Clone
Test#1 100 92 4 0 99
Test#2 100 89 3 1 99
Test#3 100 90 5 0 99
Test#4 100 87 4 1 99
Test#5 100 89 5 0 99
Overall 100 89 4 0 99

Table 11. Precision-false alarm rate-accuracy for micro sampling (%)
 Precision False Alarm Rate Accuracy Clone Not Clone Clone Not Clone
Test#1 100 85 3 1 99
Test#2 100 84 2 1 99
Test#3 100 81 3 1 99
Test#4 100 82 5 1 99
Test#5 100 83 4 1 99
Overall 100 83 3 1 99

Table 12. Precision-false alarm rate-accuracy for random data ratio (%)
 Precision False Alarm Rate Accuracy Clone Not Clone Clone Not Clone
Test#1 100 84 0 1 99
Test#2 100 88 0 1 99
Test#3 100 85 0 1 99
Test#4 100 84 0 1 99
Test#5 100 88 0 1 99
Overall 100 86 0 1 99

Table 13. Precision-false alarm rate-accuracy for CCLearner (%)
 Precision False Alarm Rate Accuracy Clone Not Clone Clone Not Clone
CCLearner 93 - - - -

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 11

CCLearner algorithm tries to detect these complicated
clone types without learning them. We also have better
precision on detecting clones. We cannot compare our
results with respect to false alarm rate, accuracy and not
clone precision since they were not reported by
CCLearner.

Copy-paste operations can be done in source code in
various ways. For example, the code of two methods can
be combined to create a larger single method or a larger
method can be divided into two different methods. These
cases should also be identified as clone. However, in
order to make this determination, it is necessary to create
a dataset which takes into account the relations of the
methods with each other. If we could create a database
that consists of interrelated methods, models like RNN
would also be successful [39]. Instead of method
granularity, a statement-based model could be built, and
the clone detection model could be trained by combining
statements in an incremental fashion. Unfortunately, we
could not perform such a detailed analysis as our dataset
restricts us to construct method pairs for prediction. As a
future we plan to analyze code pieces as statements.

6. CONCLUSION

In this work, we propose a clone detection technique
which combines tokenization and deep learning practices.
The model has good ability to classify java methods as
‘clone’ and ‘not clone’. We took three different sets to
train the model and five test sets at each training set.
Using these data we trained and tested our CNN. We
reported the results comparing the similar approach and
saw that our approach has considerable amount of
contribution. Compared to prior work, different types of
clones (Type 3 and 4) are successfully detected with a
recall rate between 98-100% and false positive rate
between 2-5%.

In the future, our work can be improved by taking several
steps in model construction and dataset. One of them
could be varying the dataset size, since we only used a
small portion of the whole dataset. By increasing the
dataset size, the model could learn the minority clone
types better although the majority is still dominated by the
MT3 and WT3/4 clone types. A sampling technique
would essentially be necessary to keep the balance
between different clone types in training set, and
therefore, we applied the micro-sampling technique and
obtained more successful false alarm rates. The test set
should always reflect the real scenario, as in practice
when the model is used to predict whether a method pair
is clone, this pair is most likely be a MT3 or WT3/4 clone
type.

Second, different CNN architecture may be constructed
with different layers and initialization parameters. Our
CNN model is currently completing training and
prediction along with dataset construction less than an
hour. We think this is reasonable, but improvements and

scalability works can be done. Further, other machine
learning methods may be tried instead of CNN.

Another work can be done on feature selection. It is
possible to combine CNN and text mining approaches.
Acı and Çırak [40] applied both CNN and Word2Vec [24]
in order to categorize news articles. Instead of token ID
sequences, it may be possible to extract tokenized vectors
based on word embeddings so that the place of each token
and its relation to the prior and next tokens can be
considered. Nevertheless, it is challenging to construct
equal sized token lists because of a wide variety of
method size. Our future research direction is to combine
CNN with text mining approaches such as topic
modelling and word embeddings to identify related
tokens, and analyze their impact on code clone detection.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A Mutation / Injection-based
Automatic Framework for Evaluating Code Clone Detection
Tools”, 4th International Workshop on Mutation Analysis
(MUTATION) in 2nd International Conference on Software
Testing, Verification, and Validation Workshops. Denver,
Colorado: IEEE Computer Society, 157–166, 1-4 April 2009.

[2] A. Sheneamer and J. Kalita, “Article: A survey of software clone
detection techniques,” International Journal of Computer
Applications, 137 (10), 1–21, 2016

[3] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsushita,
“KClone: a proposed approach to fast precise code clone
detection”, 3rd International Workshop on Software Clones
(IWSC), 2009

[4] C. K. Roy, J. R. Cordy, and R. Koschke. “Comparison and
Evaluation of Code Clone Detection Techniques and Tools: A
Qualitative Approach”, Sci. Comput. Program., 74(7), 470–495,
2009.

[5] B. Lague, E. M. Merlo, J. Mayrand, J. Hudepohl, “Assessing the
Benefits of Incorporating Function Clone Detection in a
Development Process”, IEEE International Conference on
Software Maintenance (ICSM), 314-321, Oct. 1997.

[6] J. Johnson, “Visualizing textual redundancy in legacy source”,
Conference of the Centre for advanced Studies on
Collaborative research (CASCON), 171-183, 1994.

[7] S. Ducasse, M. Rieger, S. Demeyer, “A language independent
approach for detecting duplicated code”, 15th International
Conference on Software Maintenance (ICSM), 109-118, 1999.

[8] C.K. Roy, J.R. Cordy, “An empirical study of function clones in
open source software systems”, 15th Working Conference on
Reverse Engineering (WCRE), 81-90, 2008.

[9] B. Baker, “A program for identifying duplicated code”, 24th
Symposium on the Interface, Computing Science and
Statistics, 49-57, 1992.

[10] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source
code”, IEEE Transactions on Software Engineering, 28(7), 654-
670, 2002.

12 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020

[11] Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: Finding copy-

paste and related bugs in large-scale software code”, IEEE
Transactions on Software Engineering, 32(3), 176-192, 2006.

[12] T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, S.
Kawaguchi, H. Iida, “SHINOBI: A real-time code clone detection
tool for software maintenance”, Technical Report: NAIST-IS-
TR2007011, Graduate School of Information Science, Nara
Institute of Science and Technology, 2008.

[13] I. Baxter, A. Yahin, L. Moura, M. Anna, “Clone detection using
abstract syntax trees”, 14th International Conference on
Software Maintenance (ICSM), 368-377, 1998.

[14] L. Jiang, G. Misherghi, Z. Su, S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones”, 29th
International Conference on Software Engineering (ICSE),
96-105, 2007.

[15] S. Ducasse, M. Rieger, S. Demeyer, “A language independent
approach for detecting duplicated code”, 15th International
Conference on Software Maintenance (ICSM), 109-118, 2009.

[16] B. Baker, “On finding duplication and near-duplication in large
software systems”, 2nd Working Conference on Reverse
Engineering, 86-95, 1995.

[17] R. Wettel, R. Marinescu, “Archeology of code duplication:
Recovering duplication chains from small duplication fragments”,
7th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 8, 2005.

[18] K. Kontogiannis, “Evaluation experiments on the detection of
programming patterns using software metrics”, 3rd Working
Conference on Reverse Engineering, 44-54, 1997.

[19] M. White, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk,
“Toward deep learning software repositories”, IEEE/ACM 12th
Working Conference on Mining Software Repositories
(MSR), 334–345, 2015.

[20] B. Can, “LSTM Ağları ile Türkçe Kök Bulma”, Bilişim
Teknolojileri Dergisi, 12(3), 183-193, 2019.

[21] H.K. Dam, T. Tran, T. Pham, “A deep language model for
software code”, arXiv preprint:1608.02715, 2016.

[22] L. Li, H. Feng, W. Zhuang, N. Meng, B. Ryder, “CCLearner: A
Deep Learning-Based Clone Detection Approach”, International
Conference on Software Maintenance and Evolution
(ICSME), 249–260, 2017.

[23] C.K. Roy, J.R. Cordy, “Near-miss function clones in open source
software: an empirical study”, Journal of Software: Evolution and
Process, 22(3), 165–189, 2010.

[24] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean,
“Distributed Representations of Words and Phrases and their
Compositionality”, 26th International Conference on Neural
Information Processing Systems, Nevada, A.B.D., 3111-3119,
2013.

[25] J. Svajlenko, J.F. Islam, I. Keivanloo, C.K. Roy, M.M. Mia,
"Towards a Big Data Curated Benchmark of Inter-Project Code
Clones", Early Research Achievements track of the 30th
International Conference on Software Maintenance and
Evolution (ICSME) Victoria, Canada, 2014.

[26] Internet: F. Li, J. Johnson and S. Yeung, “Convolutional Neural
Networks for Visual Recognation class in Stanford University,
2018, http://cs231n.github.io/convolutional-networks/

[27] N. Davey, P. Barson, S. Field, R. Frank, “The development of a
software clone detector”, International Journal of Applied
Software Technology, 1(3/4), 219-236, 1995.

[28] R. Komondoor, S. Horwitz, “Using slicing to identify duplication
in source code”, 8th International Symposium on Static
Analysis (SAS), 40-56, 2001.

[29] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” 31st
IEEE/ACM International Conference on Automated Software
Engineering, 2016

[30] Internet: ANTLR, http://www.antlr.org

[31] A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet
classification with deep convolutional neural networks”,
International Conference on Neural Information Processing
Systems (NIPS), 1106–1114, 2012

[32] K. Simonyan, A. Zisserman, “Very deep convolutional networks
for large-scale image recognition”, International Conference on
Learning Representations, 2014.

[33] S.E. Sahin, A. Tosun, “A Conceptual Replication on Predicting
the Severity of Software Vulnerabilities”, International
Conference on Evaluation and Assessment in Software
Engineering (EASE), Copenhagen, 2019.

[34] J. Rokui, “Autoassociative Signature Authentication Based on
Recurrent Neural Network”, Artificial Intelligence and Soft
Computing, Editors: L. Rutkowski, R. Scherer, M. Korytkowski,
W. Pedrycz, R. Tadeusiewicz, J.M. Zurada, Springer, 88-96,
2018.

[35] S. Agarwal, H.S. Sikchi, S. Rooj, S. Bhattacharya, A. Routray,
“Illumination-Invariant Face Recognition by Fusing Thermal and
Visual Images via Gradient Transfer”, Advances in Computer
Vision, Editors: K. Arai and S. Kapoor, 658-670, 2020.

[36] Internet: Y. LeCun, “Lenet, convolutional neural networks,”
2015, Available: http: //yann.lecun.com/exdb/lenet/

[37] Y. Bengio, X. Glorot, “Understanding the difficulty of training
deep feedforward neural networks”, 13th International
Conference on Artificial Intelligence and Statistics
(AISTATS), 249– 256, May 2010.

[38] D. Kingma and J. Ba. “Adam: A method for stochastic
optimization”, International Conference on Learning
Representations, 2015.

[39] M. Kızrak, B. Bolat “Derin Öğrenme ile Kalabalık Analizi
Üzerine Detaylı Bir Araştırma”, Bilişim Teknolojileri Dergisi,
11(3), 263-286, 2018.

[40] C. Acı, A. Çırak, “Türkçe Haber Metinlerinin Konvolüsyonel
Sinir Ağları ve Word2Vec Kullanılarak Sınıflandırılması”,
Bilişim Teknolojileri Dergisi, 12(3), 219-228, 2019.

http://cs231n.github.io/convolutional-networks/

