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Abstract— Similar or identical code portions which are generated by copying and reusing code portions within the 
source code are named as code clones. While so many works have been conducted to detect these clones, they generally 
use string comparison techniques and very few of them take advantage of popular learning based approaches, such as 
deep learning. This paper proposes a new approach based on a popular and successful image classification technique 
named as convolutional neural network. It simply tokenizes each candidate clone pair in order to generate image files. 
Then, convolutional neural network is used to classify these image data with labels “clone” and “not clone”.  In order to 
train and test the network, clone and not clone pairs are chosen from a public database including six million methods. 
As a result, the approach gives 99% accuracy, effectively detects clones and not clones with 2-5% false alarms rates at 
method granularity. 
 

Keywords— code clone detection, deep learning, convolutional neural network 
 

 

Konvolüsyonel Sinir Ağları İle Kod Klonlarının Tespiti 
 

Özet— Yazılım geliştirirken kopyalama ve yeniden kullanma yoluyla oluşturulan benzer veya aynı kod parçaları, kod 
klonları olarak adlandırılır. Bu klonları tespit etmek için pek çok çalışma yapılmış olsa da, çalışmalar genellikle katar 
karşılaştırma tekniklerini kullanılmakta ve çok azı popüler araştırma alanlarından olan derin öğrenmeden 
faydalanmaktadır. Bu makale, konvolüsyonel sinir ağı olarak adlandırılan, popüler ve başarılı görüntü sınıflandırma 
yöntemine dayanan yeni bir yaklaşım önermektedir. Bu yöntem, görüntü dosyalarını oluşturmak için her aday klon 
çiftini sembollere ayırır. Daha sonra, konvolüsyonel sinir ağı bu görüntü verilerini “klon” veya “klon değil” etiketleriyle 
sınıflandırmak için kullanılır. Ağı eğitmek ve test etmek için altı milyon java metodu içeren bir veri tabanından 
örneklerler seçilerek kullanılmıştır.  Sonuç olarak, bu yaklaşım metot bazındaki klonları % 95'lik bir doğrulukla etkili 
bir şekilde tespit etmektedir. 

 
Anahtar Kelimeler— kod klon tespiti, derin öğrenme, konvolüsyonel sinir ağı 

 

1. INTRODUCTION 

Copying and reusing a code fragment with or without 
minor modification is known as code cloning [1]. Code 
clones generally occur as a result of copy-paste operations 
by programmers [2]. When a code piece has residual 
bugs, it is highly possible that the same problem also 
exists in the other copies [2]. Accordingly, when an 
update is required in a code piece which has multiple 
copies in the source code, the developer should check the 
other copies to avoid unexpected crashes in the system. 
There are four different clone types, which are Type-1, 

Type-2, Type-3 and Type-4. Type-1 clones can be 
identical or they may contain little modification on 
whitespace and comments [3]. Type-2 clones allow 
changing variables, type or identifiers. Type-3 clones 
extend this with adding, removing or changing some 
statements [3,4]. Type-4 clone perform same operation 
with different syntactic variants [4]. In a software system 
that contains high number of clones and developed by a 
large group of programmers, the maintenance cost may be 
seriously high because of these duplicated code portions 
[5]. Detecting code clones in a software system is, 
therefore, crucial to reduce both significant maintenance 

https://orcid.org/0000-0003-2852-4343
mailto:disli15@itu.edu.tr
mailto:tosunay@itu.edu.tr
https://orcid.org/0000-0003-1859-7872


2  BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 1, OCAK 2020 

 
costs and the risks of potential failures associated with the 
clone operations. 

There have been several studies on code clone detection 
employing different approaches to identify cloned code 
pieces in large scale software applications. Some of the 
approaches proposed in the studies perform text-based 
techniques [6-8], while others use token-based techniques 
[9-12], semantic or tree-based techniques [13,14]. Text-
based techniques treat source code as strings consisting of 
words and compare strings among each other to identify 
their similarities [15]. The other approaches transform the 
source code into tokens, or graphical models before 
applying an algorithm to detect cloned pieces. To build 
the code clone detection model, algorithms such as suffix 
tree [10,16], dotplot/scatter plot [17], hash-value 
comparison [13,14] and Euclidean distance [18] have 
been tried. Recently, studies show that deep learning 
techniques such as RNN (recurrent neural network) 
[19,20] and LSTM (long short-term memory network) 
[21] are used for modeling source codes. One particular 
field that requires modeling the source code is code clone 
detection. Studies on clone detection using deep learning 
techniques, such as DNN (deep neural network) [22] 
report that at least 98% of Type-1 and Type-2 clones can 
be predicted. 

It was stated that there are mostly Type-3 clones in source 
code [23]. However, this clone type has the lowest 
prediction performances with Type-4 clone type: Even 
with deep learning, CClearner [22] has reached a 
maximum detection rate of 28% in weakly Type-3 and 
Type-4 clones. For that reason, further investigation is 
necessary in code clone detection, specifically for 
detecting all types of code clones with high accuracy. 

This paper proposes a token-based technique using 
convolutional neural network (CNN) on code clone 
detection by converting source code into the form of 
image data. To implement this approach, we used 
candidate clone pair methods extracted from 
BigCloneBench dataset [25], and tokenized these 
methods. Number of occurrences of every token counted 
for both methods separately and saved as frequency 
matrices. Later, these two matrices merged and saved as 
an image data. Lastly, CNN is trained using these images 
that represent clone pairs. Since the merged matrix 
appears very similar to image data, we use it as if it is an 
image. Also, we preferred CNN because it assumes the 
inputs are images and it provides encoding features to the 
architecture. This helps reduce the number of parameters 
and make more efficient implementation [26]. Empirical 
analysis on three different train-test splits used with CNN 
shows that our approach has good performance on 
detecting code clones especially complicated clone types. 

The rest of the paper is organized as follow. Section 2 
presents brief background information about code clone 
detection and related works. Section 3 expresses the 
proposed clone detection technique. Section 4 and 5 show 
our experimental results and comparison with similar 

works. Lastly, section 6 summarizes and concludes this 
paper. 

2. BACKGROUND INFORMATION 

2.1. Code Clone Definitions  

Code clone definitions and clone types are explained as 
follows: 

Code Fragment: Any grouping of code lines in any 
granularity such as function definition, begin_end block, 
or sequence of statements named as code fragment(CF). 
A CF is recognized by its file name and begin_end line 
numbers in the original code base. It is signified as a triple 
(CF.FileName, CF.BeginLine, CF.EndLine) [4]. In this 
work, the fragments are equal to methods (functions).  

Code Clone: If two fragments are similar or identical 
they are called as code clone. In another words, if two 
fragments are code clone, it should be that f(CF1) = 
f(CF2) where f is the similarity function. Code clone may 
be among two or more code fragments. While a clone pair 
is formed by two similar code fragments (CF1, CF2), 
clone group or clone class is formed by many similar 
fragments [4].   

Clone Types: Clone types between fragments can be 
grouped as two main kinds which are based on the 
similarity of their program text and similarity of their 
functionality (independent of their text). [4]. The textual 
(Types 1 to 3) and functional (Type-4) clone types are 
provided in the following: 

Type-1: Two fragments are Type-1 clone if they are 
identical except for variations in whitespace, layout and 
comments [4]. In Figure 1.a, whitespace is the only 
difference between two methods. 

Type-2: If two fragments are varied with only identifiers, 
literals, types, whitespace, layout and comments, they are 
Type-2 clones [4]. Figure 1.b is an example of Type-2 
clone. Both methods copy given files in same way, but 
variable and parameter names are different.  Regarding 
our results and previous researches [3,4], Type-1 and 
Type-2 clones are simplest types to detect. 

Type-3: If a fragment can be obtained from another with 
little modifications such as changed, added or removed 
statements, these two fragments are Type-3 clone [4]. 
Figure 1.c shows an example of Type-3 clone. Added line 
3 and modified line 4 in second method are variations 
between two methods. 

Type-4: Two or more code fragments may perform the 
same computation by implementing different syntactic 
variants. These types of fragments are known as Type-4 
clone [4]. In Figure 1.d, both methods perform same 
operation in different ways. 
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2.2. Related Work on Code Clone Detection  

Code clone detection approaches may be separated into 
five main categories regarding the analysis to transform 
source code: textual, lexical, syntactic, semantic and 
hybrid [4] as shown in Figure 2. 

Textual approaches take each line and use string matching 
algorithms. These techniques use raw source code and 
apply little or no transformation to source code. While 
they manage to detect Type-1 clone, they hardly detect 
complicated types [4,22]. Ducasse et al. [15] use text 
based clone detection approach. The detection is based on 
construction of dot plots whose axes are source code 
entities. If hash values of the entities on two axes are 
equal, then there is a dot at corresponding coordinate.  

Lexical approaches are also known as token-based 
approaches. They remove white spaces and comments, 
transform source code to a sequence of tokens using 
lexical analysis techniques and then search for duplicated 
subsequences. After locating duplicate subsequences, 
corresponding original source code portions returned as 
code clone. One of the efficient token based approaches is 
CCFinder [10]. It removes all white spaces between 
tokens, transforms tokens based on some transformation 
rules. Then, it searches for same transformed token 

sequences. Detected sequences are marked as duplicate. 
Another lexical approach is Dup. by Baker [9] that 
utilizes p-string and p-matching. After removing white 
spaces and comments, identifiers such as variable, method 
and class are renamed. Then, each line of codes is hashed 
for comparison. Using suffix-tree algorithm, duplicated 
code portions are located. These techniques are more 
successful detecting complicated clone types [4]. 

Syntactic approaches can be identified with two sub 
categories. Tree matching approaches (tree-based 
techniques) works creating an AST tree for each code 
fragment and finding similar subtrees. Variable names, 
literal values and other tokens may be abstracted in tree to 
find more complicated clone types. Since tree matching 
approaches focus the syntactic structure of the source 
code rather than their statements, they can detect near-
miss clones [4,22]. CloneDr by Baxter et al [13] is an 
example for tree matching approaches. First, it transforms 
the source code into parse tree. Later, subtrees are hashed 
into buckets. These hashed subtrees are compared in order 
to identify clone portions.    

Metric-based approaches collect a number of metrics for 
each code fragments. These metrics may be number of 
statements, number of function calls, number of input 
variable.  Rather than comparing code, this technique 
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Figure 1.  Clone Types. Type-1 clones (a), Type-2 clones (b), Type-3 clones (c) and Type-4 clones (d),   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

public String stringOfUrl(String addr) throws IOException {                   
       ByteArrayOutputStream output = new ByteArrayOutputStream(); 
       URL url = new URL(addr); 
       IOUtils.copy(url.openStream(), output); 
       return output.toString(); 
} 
 

public String stringOfUrl(String addr) throws IOException {                   
       ByteArrayOutputStream output = new ByteArrayOutputStream(); 
       URL url = new URL(addr); 
       IOUtils.copy(url.openStream(), output); 
 
       return output.toString(); 
} 
 

 

public static void copyFile(String src, String target) throws IOException { 
      FileChannel ic = new FileInputStream(src).getChannel(); 
      FileChannel oc = new FileOutputStream(target).getChannel(); 
      ic.transferTo(0, ic.size(), oc); 
      ic.close(); 
      oc.close(); 
} 
 

public void copyFile(File in, File out) throws Exception { 
       FileChannel sourceChannel = new FileInputStream(in).getChannel(); 
       FileChannel destinationChannel = new ileOutputStream(out).getChannel(); 
       sourceChannel.transferTo(0, sourceChannel.size(), destinationChannel); 
       sourceChannel.close(); 
       destinationChannel.close(); 
} 
 

public String streamToString(InputStream stream) throws IOException { 
       ByteArrayOutputStream output = new ByteArrayOutputStream(); 
       IOUtils.copy(stream, output); 
       return output.toString(); 
} 
 
  

public String stringOfUrl(String addr) throws IOException {                   
       ByteArrayOutputStream output = new ByteArrayOutputStream(); 
       URL url = new URL(addr); 
       IOUtils.copy(url.openStream(), output); 
       return output.toString(); 
} 
 

 

public static final String getMD5Hash(byte[] data, int offset, int length) throws NoSuchAlgorithmException { 
       MessageDigest md5 = MessageDigest.getInstance("MD5"); 
       md5.update(data); 
       return generateHash(md5.digest()); 
} 
 
public String getHash(String key, boolean base64) throws Exception { 
       MessageDigest md = MessageDigest.getInstance("SHA"); 
       md.update(key.getBytes()); 
       if (base64) return new String(new Base64().encode(md.digest()), "UTF8"); 
       else return new String(md.digest(), "UTF8"); 
} 
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compares metric vectors to identify code clones [4,22]. 
Davey et al. [27] generates futures for code blocks using 
metrics and train a neural network to determine duplicated 
code blocks.  

 
Semantic based approaches using semantic program 
analysis represent the software as Program Dependency 
Graph or Control Flow Graph. Expression and statements 
transformed as nodes while control and data dependencies 
transformed as edge in the graph. After this 
transformation, code clone detection is turned identifying 
isomorphic subgraphs [4]. Komondoor and Horwitz’s tool 
[28] detects clones using Program Dependency Graph. 
Hybrid approaches use combination of other four 
techniques to locate the code clones.  

There are also similar works that implemented deep 
learning. These works may benefit from any clone 
detection approach. White et al. [29] introduced learning-
based detection technique which relies on language model 
that is a probability distribution over sentences in a 
language. Recurrent neural network and recursive neural 
network are used to map each term in a fragment to an 
embedding and to encode this embedding to characterize 
fragments. 

Another tool that uses deep learning is CCLearner [22]. 
CCLearner divides tokens into eight categories such as 
reserved words, operators and markers. It calculates 
similarity score for each category and obtains frequency 
vectors with length eight. Obtained vectors are used to 
train deep neural network. It performs analysis on 
1626544 samples taken from dataset BigCloneBench and 
took 100%, 98%, 98% and 89% recalls for T1, T2, VST3 
and ST3 respectively. However, CCLearner performs 
28% recall for MT3 and 1% for WST3/4 because it does 
not include MT3 and WST3/4 clone types in their training 
set. In addition, CCLearner calculates the overall 
precision based on 385 randomly selected samples and 
didn’t report false positive rate of their approach. Since 
Type-3 clone is the most common clone type, we want to 
develop a method that detects all clone types separately. 
We applied deep learning like CCLearner, but specifically 
we thought CNN would be the best fit. We also reported 
false positive rate in addition to recall and precision. We 
evaluated our work using the same dataset but with 

different number of samples. In addition, we utilized 
tokens frequencies as feature vector without 
categorization. 

3. PROPOSED APPROACH 

In this section, we defined BigCloneBench benchmark 
[25] and CNN.  Also, we described our clone detection 
technique including data preprocessing, how we 
constructed CNN architecture with its initialization 
parameters and training and test set used to evaluate our 
proposed technique. 

3.1. Dataset  

BigCloneBench is a collection of over six million 
validated clones in the large Java inter-project repository 
IJaDataset-2.0.  BigCloneBench was built by mining 
IJaDataset for clones of particular functionalities. It 
contains both inter-project and intra-project clones of the 
four primary clone types [25]. The dataset contains 
almost 2.5 million Java classes with more than 22 million 
methods. Using these classes and their methods, 
Svajlenko et al. [25] created comparison tables which 
contain clone and not clone samples with their types. 

In BigCloneBench, there are six extended clone types: 
T1(Type-1), T2(Type-2), VST3(Very Strong Type-3), 
ST3(Strong Type-3), MT3(Moderately Type-3) and 
WT3/4(Weak Type 3 or 4). Svajlenko et al. [25] actually 
reclassified Type-3 and Type-4 clones based on their 
similarity ratio. If similarity ratio between two clone 
candidates more than 0,9, they are labeled as WST3. If 
the similarity ratio between 0,7 and 0,9, they are ST3. 
When the ratio is lower than 0,7 and higher than 0,5, they 
become MT3. If the similarity is lower than 0,5, they are 
WST3/4. Table 1 shows the distribution of clones based 
on their types. While there are more than six millions of 
WT3/4, there are only 2083 VST3 clones. In addition to 
the clones, Table 1 shows the number of false clone pairs 
(method pairs that are not clones of each other). 

Table 1. Number of clones 
Type Similarity(s) Rule Number % 
T1 - 16185 0,24 
T2 - 3787 0,06 
VST3 0,9 <= s <= 1 2083 0,03 
ST3 0,7 <= s < 0,9 10031 0,15 
MT3 0,5 <= s < 0,7 55106 0,85 
WT3/4 0 <= s < 0,5 6158975 94,63 
FALSE CLONE - 262465 4,03 

3.2. Tokenization and Input Features  

A method pair to be compared is selected and converted 
to a sequence of tokens, similar to an image data in order 
to obtain sensible input for CNN. To achieve this, each 
method pair as method1 and method2 is transformed into 
tokens with a lexical analyzer tool called ANTLR [30]. 
Then each token is represented as a unique ID offered by 

 

Figure 2. Code Clone Detection Approaches 
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the tool. Table 2 shows the list of tokens used in a source 
method, and their corresponding token numbers. 

Two sample methods and their tranformation steps are 
illustrated in Figure 3. First, these two methods are 
seperated into their tokens. (c) and (d) are token 
sequences of the first and second methods, respectively. 
Later, these tokens are replaced with their corresponding 
unique IDs as shown in (e) and (f). Then token ID 
sequences obtained for the two methods are merged into a 
single vector. During the tokenization, each method is 

illustrated as a token array of size 66 such that the first 66 
tokens of a method is represented. We set this number by 
analysing the average, minimum and maximum number 
of tokens each method contains. We have found that there 
are on average 66 tokens in a single method in the 
BigCloneBench dataset. The final feature set of a method 
pair, hence, corresponds to a token array of size 132. This 
token array is later saved as an image in jpeg format.  

 

 
Table 2. Tokens and corresponding unique IDs 

ABSTRACT 1 INTERFACE 28 StringLiteral 55 SUB 82 

ASSERT 2 LONG 29 NullLiteral 56 MUL 83 

BOOLEAN 3 NATIVE 30 LPAREN 57 DIV 84 

BREAK 4 NEW 31 RPAREN 58 BITAND 85 

BYTE 5 PACKAGE 32 LBRACE 59 BITOR 86 

CASE 6 PRIVATE 33 RBRACE 60 CARET 87 

CATCH 7 PROTECTED 34 LBRACK 61 MOD 88 

CHAR 8 PUBLIC 35 RBRACK 62 ARROW 89 

CLASS 9 RETURN 36 SEMI 63 COLONCOLON 90 

CONST 10 SHORT 37 COMMA 64 ADD_ASSIGN 91 

CONTINUE 11 STATIC 38 DOT 65 SUB_ASSIGN 92 

DEFAULT 12 STRICTFP 39 ASSIGN 66 MUL_ASSIGN 93 

DO 13 SUPER 40 GT 67 DIV_ASSIGN 94 

DOUBLE 14 SWITCH 41 LT 68 AND_ASSIGN 95 

ELSE 15 SYNCHRONIZED 42 BANG 69 OR_ASSIGN 96 

ENUM 16 THIS 43 TILDE 70 XOR_ASSIGN 97 

EXTEBDS 17 THROW 44 QUESTION 71 MOD_ASSIGN 98 

FINAL 18 THROWS 45 COLON 72 LSHIFT_ASSIGN 99 

FINALLY 19 TRANSIENT 46 EQUAL 73 RSHIFT_ASSIGN 100 

FLOAT 20 TRY 47 LE 74 URSHIFT_ASSIGN 101 

FOR 21 VOID 48 GE 75 Identifier 102 

IF 22 VOLATILE 49 NOTEQUAL 76 AT 103 

GOTO 23 WHILE 50 AND 77 ELLIPSIS 104 

IMPLEMENTS 24 IntegerLiteral 51 OR 78 WS 105 

IMPORT 25 FloatingPointLiteral 52 INC 79 COMMENT 106 

INSTANCEOF 26 BooleanLiteral 53 DEC 80 LINE_COMMENT 107 

INT 27 CharacterLiteral 54 ADD 81   
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3.3. Training and Test Set Construction 

In this work, we tried several methodologies to construct 
the training data. First, we used real data ratios. Each type 
has different number of samples in BigCloneBench. For 
instance, while 94,63% of all data are in the type of 
WT3/4, only 0,03% of the data are VST3 as shown in 
Table 1. Keeping the same ratios, we constructed our data 
with a total of 50000 instances. The first row of Table 3 
shows the distributions of instances from different clone 
types in the training data. 

Our second methodology was micro sampling, i.e. 
undersampling the classes based on the minority class 
ratio. VST3 has the minimum number of samples which 
is 2083. Thus, we built our training data choosing 2000 
samples for each type, and hence, the total number of 
instances is 14000 (see Table 4).  

Our third methodology takes random samples for each 
clone type and forms the training data. Regardless of the 
clone type ratios in the dataset, we randomly picked 
instances from the main dataset into the training set, and 
ended up having 25000 method pairs. The Table 5 shows 
this third methodology’s training set.  

                  
(a)                      (b) 

 

        
(c) 

 
(d) 

    

               
(e)           (f) 

Figure 3.  Preprocessing on methods. Two java method copy (a) and cloneFile (b), their tokenized form (c) and (d), 
unique ID representations according to the list of tokens in Table 2 (e) and (f). 

 

static void copy(String src, String dest) throws IOException { 
       File ifp = new File(src); 
       File ofp = new File(dest); 
       if (ifp.exists() == false) { 
              throw new IOException("file '" + src + "' does not exist"); 
       } 
       FileInputStream fis = new FileInputStream(ifp); 
       FileOutputStream fos = new FileOutputStream(ofp); 
       byte[] b = new byte[1024]; 
       int readBytes; 
       while ((readBytes = fis.read(b)) > 0) fos.write(b, 0, readBytes); 
       fis.close(); 
       fos.cloes(); 
} 

 

private static final void cloneFile(File origin, File target) 
  throws IOException { 

       FileChannel srcChannel = null; 
       FileChannel destChannel = null; 
       try { 
              srcChannel = new FileInputStream(origin).getChannel(); 
              destChannel = new FileOutputStream(target).getChannel(); 
              destChannel.transferFrom(srcChannel, 0, srcChannel.size()); 
       } finally { 
              if (srcChannel != null) srcChannel.close(); 
              if (destChannel != null) destChannel.close(); 
       } 
} 

STATIC VOID Identifier LPAREN Identifier Identifier COMMA Identifier Identifier RPAREN THROWS Identifier LBRACE  
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI  
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI  
 IF LPAREN Identifier DOT Identifier LPAREN RPAREN EQUAL BooleanLiteral RPAREN LBRACE  
  THROW NEW Identifier LPAREN StringLiteral ADD Identifier ADD StringLiteral RPAREN SEMI  
 RBRACE  
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI  
 Identifier Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN SEMI  
 BYTE LBRACK RBRACK Identifier ASSIGN NEW BYTE LBRACK IntegerLiteral RBRACK SEMI  
 INT Identifier SEMI  
 WHILE LPAREN LPAREN Identifier ASSIGN Identifier DOT Identifier LPAREN Identifier RPAREN RPAREN GT IntegerLiteral RPAREN  
  Identifier DOT Identifier LPAREN Identifier COMMA IntegerLiteral COMMA Identifier RPAREN SEMI  
 Identifier DOT Identifier LPAREN RPAREN SEMI  
 Identifier DOT Identifier LPAREN RPAREN SEMI  
RBRACE 

 

PRIVATE STATIC FINAL VOID Identifier LPAREN Identifier Identifier COMMA Identifier Identifier RPAREN THROWS Identifier LBRACE  
 Identifier Identifier ASSIGN NullLiteral SEMI  
 Identifier Identifier ASSIGN NullLiteral SEMI  
 TRY LBRACE  
  Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN DOT Identifier LPAREN RPAREN SEMI  
  Identifier ASSIGN NEW Identifier LPAREN Identifier RPAREN DOT Identifier LPAREN RPAREN SEMI  
  Identifier DOT Identifier LPAREN Identifier COMMA IntegerLiteral COMMA Identifier DOT Identifier LPAREN RPAREN 
RPAREN SEMI  
 RBRACE FINALLY LBRACE  
  IF LPAREN Identifier NOTEQUAL NullLiteral RPAREN Identifier DOT Identifier LPAREN RPAREN SEMI  
  IF LPAREN Identifier NOTEQUAL NullLiteral RPAREN Identifier DOT Identifier LPAREN RPAREN SEMI  
 RBRACE  
RBRACE 

38 48 102 57 102 102 64 102 102 58 45 102 59  
 102 102 66 31 102 57 102 58 63  
 102 102 66 31 102 57 102 58 63  
 22 57 102 65 102 57 58 73 53 58 59  
  44 31 102 57 55 81 102 81 55 58 63  
 60  
 102 102 66 31 102 57 102 58 63  
 102 102 66 31 102 57 102 58 63  
 5 61 62 102 66 31 5 61 51 62 63  
 27 102 63  
 50 57 57 102 66 102 65 102 57 102 58 58 67 51 58  
  102 65 102 57 102 64 51 64 102 58 63  
 102 65 102 57 58 63  
 102 65 102 57 58 63  
60 

 

33 38 18 48 102 57 102 102 64 102 102 58 45 102 59  
 102 102 66 56 63  
 102 102 66 56 63  
 47 59  
  102 66 31 102 57 102 58 65 102 57 58 63  
  102 66 31 102 57 102 58 65 102 57 58 63  
  102 65 102 57 102 64 51 64 102 65 102 57 
58 58 63  
 60 19 59  
  22 57 102 76 56 58 102 65 102 57 58 63  
  22 57 102 76 56 58 102 65 102 57 58 63  
 60  
60 
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To be more realistic, we constructed five different test 
data for each training based on real ratios. Each test has 
25 T1, 6 T2, 3 VST3, 15 ST3, 85 MT3, 9463 WT3/4 and 
403 not clone instances. Table 3, Table 4 and Table 5 
show the test set distributions in addition to their training 
sets. The instances in the training set are not included into 
these test sets to avoid sampling bias. 

3.4. Algorithm Selection 

In this study, we employed Convolutional Neural 
Network (CNN) as the algorithm of our code clone 
detection model. CNN is one of the most popular and 
successful algorithms for image classification [26, 31, 
32]. While it is similar to a typical neural network, the 
difference between CNN and a neural network is that 
CNN mostly takes images as input data. This helps 
encoding certain image properties to architecture and 
more efficient calculations can be made reducing amount 
of parameters [26]. Also CNN can analyze images in 3D 
(width, height and depth). CNN consists of layers 
applying different operations. Some layers of CNN with 
their operations are described below.  
 
Alternative deep learning methods are also available, such 
as Recurrent Neural Networks (RNN), and its variations, 
i.e., Long Short-Term Memory (LSTM). These networks 
have been employed in different software engineering 
problems, such as classification of security vulnerabilities 
[33] However, such RNN models require time-dependent 
and sequential data. In our study, the code fragments, i.e., 

method pairs, do not represent a sequential development: 
two selected methods are developed independently, and 
the similarity between them is later predicted via the 
trained model Therefore, an RNN-style model is not 
suitable for our study. Deep neural networks could have 
been an option for our problem, but as mentioned before 
[26], CNN gives more efficient training cycles with the 
convolution and pooling layers. Furthermore, CNN 
preserves spatial relantionship between pixels in an image 
[34, 35]. This resembles with the representation of a 
method such that the relationship between the tokens used 
in a method should be captured by the selected model. We 
represent a method as a sequence of tokens, and need a 
model that could capture more informative features 
through the relationship between the tokens. Hence, we 
decided that CNN is a suitable fit for the clone detection 
problem.  

3.4.1. Comvolution Layer 

Convolution layer is one of the most significant layers 
that whole architecture called the same name. It can be 
interpreted as set of filters. Each neuron(filter) takes input 
images and dot product with weight matrix [26]. When an 
input image has shape W1*H1*D1 and with K filters 
(F*F*D1), it produces W2*H2*D2 where 

W2=(W1−F)/S+1 (S is stride size)  
H2=(H1−F)/S+1  
D2=K 

 
Table 3.  Number of samples for real data ratios 

 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone 
Train 124 29 16 77 423 47314 47983 2016 
Test#1 25 6 3 15 85 9463 9597 403 
Test#2 25 6 3 15 85 9463 9597 403 
Test#3 25 6 3 15 85 9463 9597 403 
Test#4 25 6 3 15 85 9463 9597 403 
Test#5 25 6 3 15 85 9463 9597 403 
All Test 125 30 15 75 425 47315 47985 2015 

 
Table 4. Number of samples for micro sampling  

 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone 
Train 2000 2000 2000 2000 2000 2000 12000 2000 
Test#1 25 6 3 15 85 9463 9597 403 
Test#2 25 6 3 15 85 9463 9597 403 
Test#3 25 6 3 15 85 9463 9597 403 
Test#4 25 6 3 15 85 9463 9597 403 
Test#5 25 6 3 15 85 9463 9597 403 
All Test 125 30 15 75 425 47315 47985 2015 

 
Table 5. Number of samples for random ratio 

 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone 
Train 3063 737 419 1858 6915 12642 25634 24366 
Test#1 25 6 3 15 85 9463 9597 403 
Test#2 25 6 3 15 85 9463 9597 403 
Test#3 25 6 3 15 85 9463 9597 403 
Test#4 25 6 3 15 85 9463 9597 403 
Test#5 25 6 3 15 85 9463 9597 403 
All Test 125 30 15 75 425 47315 47985 2015 
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3.4.2. Pooling Layer  

Pooling layer is a down sampling operation. It makes the 
operation more manageable reducing parameter numbers 
and helps to control over fitting. It can be max pooling 
(taking the maximum of pixels in a region) or average 
pooling (taking mean of pixel in a region) [26]. When an 
input image has shape W1*H1*D1 and with filters size 
F*F*D1, it produces W2*H2*D2 where 

  W2=(W1−F)/S+1 (S is stride size)  
H2=(H1−F)/S+1  
D2=D1 

3.4.3. RELU Layer  

It applies elementwise RELU (rectified linear unit) which 
is an activation function. It leaves data size unchanged 
[26]. 

3.4.4. Fully Connected Layer  

It is an ordinary neural network that used for 
classification [26]. It generates scores for each class. If 
ten classes exist, the output should be 1*1*10. 

 
Figure 4.  Illustration of CNN architecture 

3.5. CNN Architecture  

We used Lenet [36] architecture that has two 
convolutional layers. Every convolution is followed by a 
pooling layer. The first convolution has 20 filters with 
size 5*5 and stride 1, second convolution has 50 filters 
with size 5*5 and stride 1.  Each pooling layer is max 
pooling with kernel size 2*2 and stride 2. After the 
second pooling layer, we have two fully connected layers. 
The first one consists of 50 hidden layers and 500 output 
layers and second one has 50 hidden layers with 2 two 
outputs. Also, we have a RELU between this two fully 
connected layers. Lastly, the final layer connected to a 
softmax to calculate loss. As a shorthand notation 
C(20,5,1) -> P(2,2) -> C(50,5,1) -> P(2,2) -> FC(50,10) -
> R() -> FC(50,2) where C(n,f,s) indicates a convolution 
layer with n filter, f*f spatial size, s stride; R indicates 

RELU; P(f,d) indicates pooling with f*f spatial size; s 
stride and FC(h,o) indicates fully connected layer with h 
hidden, o output nodes. Figure 4. shows the illustration of 
the model. 

We also tried several different architecture modifying 
Lenet [36]. When we increased the kernel size in a 
convolution layer accuracy decreased to 93% and when 
we reduced the kernel size, accuracy decreased to 91,5%.  
When we added and removed one convolution layer with 
pooling, accuracy rates were 91% and 87%, respectively.  
Additionally, the result of inreasing the stride size by 1 
was 92% accuracy. 

3.6. Initialization and Optimization of Parameters  

We applied parameter tuning for initialization and 
optimization in the CNN. All of the fully connected and 
convolution layers’ weights are initialized with Xavier 
initialization [37]. Xavier initilizaiton sets weights of 
layer to values chosen from random uniform distribution. 
We also used Adam momentum update [38] with 
momentum 0,9 and learning rate 0,01. Adam dynamically 
changes the learning rate and it provides efficient 
computation with little memory requirements. Batch size 
was 64. 

3.7. Performance Evaluation 

We use recall, precision, false positive rate and accuracy 
as our performance metrics in this work. Since our dataset 
consists of two labels which are “clone” and “not clone”, 
we defined our metrics for both clone and not clone 
samples. 

Recall (R), measures how many of clones are detected 
and how many of not clones are detected. 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Clones Truly Predicted 

Total Number  of Clones
              (1) 

𝑅𝑅𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =
Number of Not Clones Truly Predicted

Total Number of Not Clones
 (2) 

Precision (P), measures how many of detected clones are 
actually clone and how many of detected not clones are 
actually not clone. 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Clones Truly Predicted
Total Number of Predicted Clones

                (3) 

𝑃𝑃𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Not Clones Truly Predicted
Total Number of Predicted Not Clones

  (4) 

False Alarm Rate (F), measures how many of the actual 
not clones are predicted as clone, and how many of the 
actual clones are predicted as not clone. 
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𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of Clones Falsely Predicted

Total Number of Not Clones
             (5) 

𝐹𝐹𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
Number of NotClones Falsely Predicted

Total Number of Clones
(6) 

Accuracy (A), is an overall measure to compute how 
many of samples are truly classified. 

   𝐴𝐴 =
Number of Truly Predicted Samples  

Total Number of Samples
              (7) 

4. RESULTS  

We performed the experiments on three different training 
sets as described in Section 3. For each of the 
experiments, we computed the performance metrics, and 
reported these in Tables 6-12 except Table 9. Table 9 
reports the performance of CCLearner to compare our 
findings with the recent approach. Tables 6, 7 and 8 report 
recall rates with respect to clone types, and the overall 
recall for each experiment. In addition, Tables 10, 11 and 
12 show precision, false alarm rate and accuracy for each 
experiment.  

 In the experiment using real data ratios, we got 100% 
recall and 100% precision for the clone samples, as 
reported in Table 6 and Table 10 respectively. The recall 
and precision for not clone samples are slightly lower, 

96% and 89% respectively. The reason is that we kept the 
real ratio of clone types in the first methodology, and 
hence, didn’t provide sufficient not clone samples in 
training data. In the other two trials, we achieved more 
promising results. We got 99% accuracy for micro 
sampling and randomly selected samples. Table 7 and 
Table 8 show recall for each clone type and overall recall. 
Also, Table 11 and Table 12 show precision, false alarm 
rate and accuracy for these two experiments.  Precision 
also reached above 80% for not clone samples. This 
shows that the sampling in the training set has worked 
well in predicting both clone and not-clone classes 
successfully. While randomly selected training set has 
similar recall and precision values for not clone samples, 
micro sampling reduces the false alarm rates for the clone 
samples.  

The precision and recall values with micro sampling 
strategy are 83% and 97% on not-clone samples. The 
recall indicates the truly predicted clone/not-clone 
samples, and it is more important to predict the class 
accurately. The precision, on the other hand, indicates the 
amount of false predictions the model gives. Thus, a 
tradeoff between the two is important to obtain effective 
predictions. The change in recall and precision rates on a 
single test set is illustrated in Figure 5 with varying 
thresholds. It is seen that, as the model achieves higher 
recall rates, its precision slightly decreases.  

 
 

Table 6.  Recall for real data ratio (%) 
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone 
Test#1 100 100 100 100 98 100 100 96 
Test#2 100 100 100 100 99 99 99 97 
Test#3 100 100 100 100 96 100 100 95 
Test#4 100 100 100 100 99 99 99 96 
Test#5 100 100 100 100 98 100 100 95 
Overall 100 100 100 100 98 100 100 96 

 
 

Table 7. Recall for micro sampling (%) 
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone 
Test#1 100 100 100 100 95 99 99 97 
Test#2 100 100 100 100 100 99 99 98 
Test#3 100 100 100 100 98 99 99 97 
Test#4 100 100 100 100 99 99 99 95 
Test#5 100 100 100 100 99 99 99 96 
Overall 100 100 100 100 98 99 99 97 

 
 

Table 8. Recall for random data ratio (%) 
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone 
Test#1 100 100 100 100 100 99 99 100 
Test#2 100 100 100 100 99 99 99 100 
Test#3 100 100 100 100 99 99 99 100 
Test#4 100 100 100 100 96 99 99 100 
Test#5 100 100 100 100 100 99 99 100 
Overall 100 100 100 100 99 99 99 100 

 
 

Table 9. Recall for CClearner (%) 
 T1 T2 VST3 ST3 MT3 WT3/4 All Clone Not Clone 
CCLearner 100 98 98 89 28 1 - - 
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Figure 5. The distribution of precision versus recall on 
Test#3 with varying thresholds for prediction. 

5. INTERPRETATIONS 

According to the results, our model has a remarkable 
success on code clone detection. It has great recall and 
precision values for both ‘clone’ and ‘not clone’ samples. 
Token sequence representation of method pairs reduces 
false alarms compared to frequency based representations.   

For each experiment, we selected 10000 test samples, but 
we observed the success of different examples by 
repeating selecting test samples five times. The execution 

time of the CNN model, including training and test 
phases, is about 20 minutes. In addition to this, the time 
required for tokenization and preparing input features is 
approximately 35 minutes.  The total execution time for 
the approach we have applied is less than an hour and we 
think this time period is reasonable for applying a deep 
learning approach. Considering that our feature vector 
resembles an image, we observe that CNN is a good 
algorithm to detect clone. 

When we look at the distribution according to clone types, 
we see that the sample numbers are very different from 
each other. Although the WT3/4 dominates the dataset, 
the model gives very successful results in all clone types. 
We think CNN has the ability to overcome different clone 
types. Since micro sampling experiment took better and 
more reliable results, we compared these results with 
CCLearner [22]. Table 9 and Table 13 show recall, 
precision, false alarm rate and accuracy results for 
CCLearner. Some values are missing (represented as -) 
since they were not reported by Li et al. [22]. While our 
work and CCLearner have almost equal recall for T1, T2 
and VST3 clone types, our results show significantly 
better results on more sophisticated clone types. For ST3, 
MT3 and WT3/4, we have 100%, 98% and 99% recall 
values respectively. However, CCLearner took only 89%, 
28% and 1% for these clone types. This is because their 
training data does not include MT3 and WT3/4 types and 

Table 10. Precision-false alarm rate-accuracy for real data ratio (%) 
 Precision False Alarm Rate Accuracy  Clone Not Clone Clone Not Clone 
Test#1 100 92 4 0 99 
Test#2 100 89 3 1 99 
Test#3 100 90 5 0 99 
Test#4 100 87 4 1 99 
Test#5 100 89 5 0 99 
Overall 100 89 4 0 99 

 
 

Table 11. Precision-false alarm rate-accuracy for micro sampling (%) 
 Precision False Alarm Rate Accuracy  Clone Not Clone Clone Not Clone 
Test#1 100 85 3 1 99 
Test#2 100 84 2 1 99 
Test#3 100 81 3 1 99 
Test#4 100 82 5 1 99 
Test#5 100 83 4 1 99 
Overall 100 83 3 1 99 

 
 

Table 12. Precision-false alarm rate-accuracy for random data ratio (%) 
 Precision False Alarm Rate Accuracy  Clone Not Clone Clone Not Clone 
Test#1 100 84 0 1 99 
Test#2 100 88 0 1 99 
Test#3 100 85 0 1 99 
Test#4 100 84 0 1 99 
Test#5 100 88 0 1 99 
Overall 100 86 0 1 99 

 
 

Table 13. Precision-false alarm rate-accuracy for CCLearner (%) 
 Precision False Alarm Rate Accuracy  Clone Not Clone Clone Not Clone 
CCLearner 93 - - - - 
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CCLearner algorithm tries to detect these complicated 
clone types without learning them. We also have better 
precision on detecting clones. We cannot compare our 
results with respect to false alarm rate, accuracy and not 
clone precision since they were not reported by 
CCLearner.  

Copy-paste operations can be done in source code in 
various ways. For example, the code of two methods can 
be combined to create a larger single method or a larger 
method can be divided into two different methods. These 
cases should also be identified as clone. However, in 
order to make this determination, it is necessary to create 
a dataset which takes into account the relations of the 
methods with each other. If we could create a database 
that consists of interrelated methods, models like RNN 
would also be successful [39]. Instead of method 
granularity, a statement-based model could be built, and 
the clone detection model could be trained by combining 
statements in an incremental fashion. Unfortunately, we 
could not perform such a detailed analysis as our dataset 
restricts us to construct method pairs for prediction. As a 
future we plan to analyze code pieces as statements. 

6. CONCLUSION 

In this work, we propose a clone detection technique 
which combines tokenization and deep learning practices. 
The model has good ability to classify java methods as 
‘clone’ and ‘not clone’.  We took three different sets to 
train the model and five test sets at each training set. 
Using these data we trained and tested our CNN. We 
reported the results comparing the similar approach and 
saw that our approach has considerable amount of 
contribution. Compared to prior work, different types of 
clones (Type 3 and 4) are successfully detected with a 
recall rate between 98-100% and false positive rate 
between 2-5%. 

In the future, our work can be improved by taking several 
steps in model construction and dataset. One of them 
could be varying the dataset size, since we only used a 
small portion of the whole dataset. By increasing the 
dataset size, the model could learn the minority clone 
types better although the majority is still dominated by the 
MT3 and WT3/4 clone types. A sampling technique 
would essentially be necessary to keep the balance 
between different clone types in training set, and 
therefore, we applied the micro-sampling technique and 
obtained more successful false alarm rates. The test set 
should always reflect the real scenario, as in practice 
when the model is used to predict whether a method pair 
is clone, this pair is most likely be a MT3 or WT3/4 clone 
type.  

Second, different CNN architecture may be constructed 
with different layers and initialization parameters. Our 
CNN model is currently completing training and 
prediction along with dataset construction less than an 
hour. We think this is reasonable, but improvements and 

scalability works can be done. Further, other machine 
learning methods may be tried instead of CNN. 

Another work can be done on feature selection. It is 
possible to combine CNN and text mining approaches. 
Acı and Çırak [40] applied both CNN and Word2Vec [24] 
in order to categorize news articles. Instead of token ID 
sequences, it may be possible to extract tokenized vectors 
based on word embeddings so that the place of each token 
and its relation to the prior and next tokens can be 
considered. Nevertheless, it is challenging to construct 
equal sized token lists because of a wide variety of 
method size. Our future research direction is to combine 
CNN with text mining approaches such as topic 
modelling and word embeddings to identify related 
tokens, and analyze their impact on code clone detection.  
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