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Abstract
We consider several fundamental properties of grand variable exponent Lebesgue spaces. Moreover, we
discuss Ergodic theorems in these spaces whenever the exponent is invariant under the transformation.
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1. Introduction

In 1992, Iwaniec and Sbordone [14] introduced grand Lebesgue spaces L?) (), (1 < p < o), on bounded sets
Q c R? with applications to differential equations. A generalized version L)Y () appeared in Greco et al. [13].
These spaces has been intensively investigated recently due to several applications, see [2, 5, 9, 11, 15, 18]. Also the
solutions of some nonlinear differential equations were studied in these spaces, see [10, 13]. The variable exponent
Lebesgue spaces (or generalized Lebesgue spaces) LP() appeared in literature for the first time in 1931 with an
article written by Orlicz [17]. Kovacik and Rékosnik [16] introduced the variable exponent Lebesgue space LPO(R?)
and Sobolev space W*?()(R?) in higher dimensions Euclidean spaces. The spaces LP(-)(R?) and L?(R?) have many
common properties such as Banach space, reflexivity, separability, uniform convexity, Holder inequalities and
embeddings. A crucial difference between LP()(R%) and L?(R?) is that the variable exponent Lebesgue space is
not invariant under translation in general, see [6, Lemma 2.3] and [16, Example 2.9]. For more information, we
refer [3, 7, 8]. Moreover, the space LP() (Q) was studied by [1], where Q2 is a probability space. The grand variable
exponent Lebesgue space LP(-):¥ () was introduced and studied by Kokilashvili and Meskhi [15]. In this work, they
established the boundedness of maximal and Calderon operators in these spaces. Moreover, the space LP()-? (Q) is
not reflexive, separable, rearrangement invariant and translation invariant.

In this study, we give some basic properties of L)Y (), and consider Birkhoff’s Ergodic Theorem in the
context of a certain subspace of the grand variable exponent Lebesgue space LP()-? (Q2). So, we have more general
results in sense to Gorka [12] in these spaces.

2. Notations and Preliminaries

Definition 2.1. Assume that (2, X, 1) is a probability space, that is, ¥ is a o-algebra and p is a measure on ¥
satisfying (Q) = 1. Let p(.) : @ — [1, 00) be a measurable function (variable exponent) such that

1 <p~ =essinfp (z) < esssupp (z) = p* < 0.
z€Q z€Q
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The variable exponent Lebesgue space LP()(1) is defined as the set of all measurable functions f on Q2 such that
2p()(Af) < oo for some A > 0, equipped with the Luxemburg norm

1510, =t > 000, (£) <1},

where o, f |f(x)” @) qy (z) . The space LP()(Q) is a Banach space with respect to ||. [,(.)- Moreover, the norm

[[-ll,,(, coincides w1th the usual Lebesgue norm |||, whenever p(.) = p is a constant function. Let p* < co. Then
f € L0)(Q) if and only if 2p()(f) < o0, see [16].

Definition 2.2. Let § > 0. The grand variable exponent Lebesgue spaces LP()-? (Q) is the class of all measurable
functions for which

]
[fllpy,e = sap er=== |[fll,)—c < o0
0<e<p~

When p(.) = p is a constant function, these spaces coincide with the grand Lebesgue spaces LP)¥ (Q).

It is easy to see that we have
PO s [POO sy PO s I 0<e<p —1 (2.1)

due to || < oo, see [4, 15, 18].

Remark 2.1. Let C§°(€2) be the space of smooth functions with compact support in 2. It is well known that C§°(€2) is
not dense in LP()-? (Q0), i.e., the closure of C§°(£2) with respect to the ||.|| »(.),0 horm does not coincide with the space

LP0)? (Q). Now, we denote [LP() (Q)] as the closure of C§°(92) in LP()-? (Q). Hence this closure is obtained as

p().0
_0
{f e L0 (Q) - limer=== [ fll,)-- = 0}

, see [4, 13, 15]. Moreover, we have

C2(Q) PO (Q) ¢ [LPO (Q)} and [LPO (Q)} = 0 (9).

p(.),0 p(.),0

Definition 2.3. Let (G, X, ;1) be a measure space. A measurable function T : G — G is called a measure-preserving
transformation if

forallA e X.

3. Main Results

In the following theorem, we obtain more general result than [12, Theorem 3.1] since LP() (Q) C [LP0) (Q)]
P2 (Q).

p(.),0 <

Theorem 3.1. Let (2, X, 1) be a probability space and T : Q@ — Q a measure preserving transformation. Moreover, if p(.) is
T-invariant, i.e., p(T(.)) = p(.), then
(i) The limit

n—1
fav(x) = nh_fr;O% Z f (Tj (x)
j=0

exists for all f € LP()0 (Q) and almost each point x € Q, and f,, € LP1)-0(Q).
(ii) For every f € LP()-9 (Q), we have

Jao(®) = fau (T(2)), (3.1)

/ Javdp = / fdp. (3.2)
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(iii) For all f € [LPO) (Q)] ., we get

p(.),0

n—1
lim || fy — % S ror| = (3.3)
=0

n—
p(.),0

Proof. By (2.1), the existence of limit f,,(x) for almost every point in €2 follows from the standard Birkhoof’s
Theorem, see [12]. By Fatou’s Lemma and the definition of the norm .||, , 5, we have

p(z)—e
. . 1 n—1 )
/Ifav(a:)l”() Tdp = /nlgr;OEZf(TJ(fﬂ)) du
Q Q J=0
= p(z)—e
< / lim (Z ]f(TJ(x))|) du
n—oo \ N 4
Q 3=0
e p(z)—e
. . - 7
< liminf (HZOU(T (x))|) dp
p(fv
< a5 @)

JOQ

forany ¢ € (0,p~ — 1). Here, we used convexity and Jensen inequality in last step. Moreover, since 7' is a measure
preserving map and p(.) is T-invariant, we get

/ FE@)P " dp = / FEE)PT = [ 1P d
Q

It follows that

[ 1@l dp < [ 7@ d < o (34)
Q Q
Thus, we obtain
2]
|fa'u|| = sup gpm ¢ fav _
| p(.),0 0cecp -1 | Hp(.) €
%]
< sup e ||l < o0
O<e<p——1

and f,, € LP)Y (Q). This completes (i). By the Ergodic Theorem in the classical Lebesgue spaces (see [12]), we
have (3.1) and (3.2) immediately. In order to prove (3.3), we assume that f € C§°(Q2). Thus, f € L>(2) and

p(x)—e

1
nh_>m Sav(x EZ = 0,a.e.

||fav||L°°(Q)

IN

11l oo 02)

forany € € (0,p~ — 1) . Therefore, we have

T)—¢ T)—¢€
n—1 p(x) n—1 p@)

faol) = = S F (T9(x) TP Zuf o] s
§=0

" (Hf”Loo(G) + 1)1’ S LI(Q).

IN

IN
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Hence, by Lebesgue dominated convergence theorem (see [7]), we have (3.3) and provided f € C§°(2). Since

C§°(€) is dense in [LP) (Q)]

()0 with respect to the norm ||.||p(')}9, forany f € [Lp(') (Q)}p(') ,and n > 0 thereis a

g € C§°(9) such that

1f = 9llpy0 < (3.5)
By the previous step, there is an ny such that
1 n—1
Yav — ﬁ Z: go T] < n (36)
=0 p()—<
forn > ngand e € (0,p~ — 1). Hence, we have
1 n—1
oo — — TI < 3.7
Jar = — ZO go n (3.7)
7= p(.),0

by (3.6) and the definition of the norm ||.|| p(),0° This follows from (3.4), (3.5) and (3.7) that

n—1 n—1
1 . 1 .
_ ] _ _ J
f(w n Z f oT S Hfa,v g(pr(.)’Q + Yav n Z go T
j=0 p(.),@ J=0 1)(-)79
1 n—1
= — TJ
+~ z_; (f—g)o
J= p(.),0
1 n—1
< 2||f _ng(,),e + {|9av — n ZQOTJ
=0 p().0
no,on
< 5 + 5 = n.
That is the desired result. O
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