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Abstract
We consider several fundamental properties of grand variable exponent Lebesgue spaces. Moreover, we
discuss Ergodic theorems in these spaces whenever the exponent is invariant under the transformation.
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1. Introduction

In 1992, Iwaniec and Sbordone [14] introduced grand Lebesgue spaces Lp) (Ω), (1 < p <∞), on bounded sets
Ω ⊂ Rd with applications to differential equations. A generalized version Lp),θ (Ω) appeared in Greco et al. [13].
These spaces has been intensively investigated recently due to several applications, see [2, 5, 9, 11, 15, 18]. Also the
solutions of some nonlinear differential equations were studied in these spaces, see [10, 13]. The variable exponent
Lebesgue spaces (or generalized Lebesgue spaces) Lp(.) appeared in literature for the first time in 1931 with an
article written by Orlicz [17]. Kováčik and Rákosník [16] introduced the variable exponent Lebesgue space Lp(.)(Rd)
and Sobolev space W k,p(.)(Rd) in higher dimensions Euclidean spaces. The spaces Lp(.)(Rd) and Lp(Rd) have many
common properties such as Banach space, reflexivity, separability, uniform convexity, Hölder inequalities and
embeddings. A crucial difference between Lp(.)(Rd) and Lp(Rd) is that the variable exponent Lebesgue space is
not invariant under translation in general, see [6, Lemma 2.3] and [16, Example 2.9]. For more information, we
refer [3, 7, 8]. Moreover, the space Lp(.) (Ω) was studied by [1], where Ω is a probability space. The grand variable
exponent Lebesgue space Lp(.),θ (Ω) was introduced and studied by Kokilashvili and Meskhi [15]. In this work, they
established the boundedness of maximal and Calderon operators in these spaces. Moreover, the space Lp(.),θ (Ω) is
not reflexive, separable, rearrangement invariant and translation invariant.

In this study, we give some basic properties of Lp(.),θ (Ω) , and consider Birkhoff’s Ergodic Theorem in the
context of a certain subspace of the grand variable exponent Lebesgue space Lp(.),θ (Ω). So, we have more general
results in sense to Gorka [12] in these spaces.

2. Notations and Preliminaries
Definition 2.1. Assume that (Ω,Σ, µ) is a probability space, that is, Σ is a σ-algebra and µ is a measure on Σ
satisfying µ(Ω) = 1. Let p (.) : Ω −→ [1,∞) be a measurable function (variable exponent) such that

1 ≤ p− = essinf
x∈Ω

p (x) ≤ esssup
x∈Ω

p (x) = p+ <∞.
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The variable exponent Lebesgue space Lp(.)(Ω) is defined as the set of all measurable functions f on Ω such that
%p(.)(λf) <∞ for some λ > 0, equipped with the Luxemburg norm

‖f‖p(.) = inf

{
λ > 0 : %p(.)

(
f

λ

)
≤ 1

}
,

where %p(.)(f) =
∫
Ω

|f(x)|p(x)
dµ (x) . The space Lp(.)(Ω) is a Banach space with respect to ‖.‖p(.). Moreover, the norm

‖.‖p(.) coincides with the usual Lebesgue norm ‖.‖p whenever p(.) = p is a constant function. Let p+ <∞. Then
f ∈ Lp(.)(Ω) if and only if %p(.)(f) <∞, see [16].

Definition 2.2. Let θ > 0. The grand variable exponent Lebesgue spaces Lp(.),θ (Ω) is the class of all measurable
functions for which

‖f‖p(.),θ = sup
0<ε<p−−1

ε
θ

p−−ε ‖f‖p(.)−ε <∞.

When p(.) = p is a constant function, these spaces coincide with the grand Lebesgue spaces Lp),θ (Ω).

It is easy to see that we have

Lp(.) ↪→ Lp(.),θ ↪→ Lp(.)−ε ↪→ L1, 0 < ε < p− − 1 (2.1)

due to |Ω| <∞, see [4, 15, 18].

Remark 2.1. Let C∞0 (Ω) be the space of smooth functions with compact support in Ω. It is well known that C∞0 (Ω) is
not dense in Lp(.),θ (Ω), i.e., the closure of C∞0 (Ω) with respect to the ‖.‖p(.),θ norm does not coincide with the space
Lp(.),θ (Ω). Now, we denote

[
Lp(.) (Ω)

]
p(.),θ

as the closure of C∞0 (Ω) in Lp(.),θ (Ω). Hence this closure is obtained as{
f ∈ Lp(.),θ (Ω) : lim

ε→0
ε

θ

p−−ε ‖f‖p(.)−ε = 0
}

, see [4, 13, 15]. Moreover, we have

C∞0 (Ω) ⊂ Lp(.) (Ω) ⊂
[
Lp(.) (Ω)

]
p(.),θ

and
[
Lp(.) (Ω)

]
p(.),θ

= C∞0 (Ω).

Definition 2.3. Let (G,Σ, µ) be a measure space. A measurable function T : G −→ G is called a measure-preserving
transformation if

µ
(
T−1(A)

)
= µ (A)

for all A ∈ Σ.

3. Main Results
In the following theorem, we obtain more general result than [12, Theorem 3.1] sinceLp(.) (Ω) ⊂

[
Lp(.) (Ω)

]
p(.),θ

⊂
Lp(.),θ (Ω).

Theorem 3.1. Let (Ω,Σ, µ) be a probability space and T : Ω −→ Ω a measure preserving transformation. Moreover, if p(.) is
T -invariant, i.e., p(T (.)) = p(.), then

(i) The limit

fav(x) = lim
n→∞

1

n

n−1∑
j=0

f
(
T j(x)

)
exists for all f ∈ Lp(.),θ (Ω) and almost each point x ∈ Ω, and fav ∈ Lp(.),θ (Ω).

(ii) For every f ∈ Lp(.),θ (Ω), we have
fav(x) = fav (T (x)) , (3.1)∫

Ω

favdµ =

∫
Ω

fdµ. (3.2)
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(iii) For all f ∈
[
Lp(.) (Ω)

]
p(.),θ

, we get

lim
n→∞

∥∥∥∥∥∥fav − 1

n

n−1∑
j=0

f ◦ T j
∥∥∥∥∥∥
p(.),θ

= 0. (3.3)

Proof. By (2.1), the existence of limit fav(x) for almost every point in Ω follows from the standard Birkhoof’s
Theorem, see [12]. By Fatou’s Lemma and the definition of the norm ‖.‖p(.),θ, we have

∫
Ω

|fav(x)|p(x)−ε
dµ =

∫
Ω

∣∣∣∣∣∣ lim
n→∞

1

n

n−1∑
j=0

f
(
T j(x)

)∣∣∣∣∣∣
p(x)−ε

dµ

≤
∫
Ω

lim
n→∞

 1

n

n−1∑
j=0

∣∣f (T j(x)
)∣∣p(x)−ε

dµ

≤ lim inf
n→∞

∫
Ω

 1

n

n−1∑
j=0

∣∣f (T j(x)
)∣∣p(x)−ε

dµ

≤ lim inf
n→∞

1

n

n−1∑
j=0

∫
Ω

∣∣f (T j(x)
)∣∣p(x)−ε

dµ

for any ε ∈ (0, p− − 1) . Here, we used convexity and Jensen inequality in last step. Moreover, since T is a measure
preserving map and p(.) is T -invariant, we get∫

Ω

|f(T (x))|p(x)−ε
dµ =

∫
Ω

|f(T (x))|p(T (x))−ε
dµ =

∫
Ω

|f(x)|p(x)−ε
dµ.

It follows that ∫
Ω

|fav(x)|p(x)−ε
dµ ≤

∫
Ω

|f(x)|p(x)−ε
dµ <∞. (3.4)

Thus, we obtain

‖fav‖p(.),θ = sup
0<ε<p−−1

ε
θ

p−−ε ‖fav‖p(.)−ε

≤ sup
0<ε<p−−1

ε
θ

p−−ε ‖f‖p(.)−ε <∞

and fav ∈ Lp(.),θ (Ω) . This completes (i). By the Ergodic Theorem in the classical Lebesgue spaces (see [12]), we
have (3.1) and (3.2) immediately. In order to prove (3.3), we assume that f ∈ C∞0 (Ω). Thus, f ∈ L∞(Ω) and

lim
n→∞

∣∣∣∣∣∣fav(x)− 1

n

n−1∑
j=0

f
(
T j(x)

)∣∣∣∣∣∣
p(x)−ε

= 0, a.e.

‖fav‖L∞(Ω) ≤ ‖f‖L∞(Ω)

for any ε ∈ (0, p− − 1) . Therefore, we have∣∣∣∣∣∣fav(x)− 1

n

n−1∑
j=0

f
(
T j(x)

)∣∣∣∣∣∣
p(x)−ε

≤

∣∣∣∣∣∣‖f‖L∞(Ω) +
1

n

n−1∑
j=0

∥∥f (T j)∥∥
L∞(Ω)

∣∣∣∣∣∣
p(x)−ε

≤ 2p
+
(
‖f‖L∞(G) + 1

)p+−ε
∈ L1(Ω).
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Hence, by Lebesgue dominated convergence theorem (see [7]), we have (3.3) and provided f ∈ C∞0 (Ω). Since
C∞0 (Ω) is dense in

[
Lp(.) (Ω)

]
p(.),θ

with respect to the norm ‖.‖p(.),θ, for any f ∈
[
Lp(.) (Ω)

]
p(.),θ

and η > 0 there is a
g ∈ C∞0 (Ω) such that

‖f − g‖p(.),θ < η. (3.5)

By the previous step, there is an n0 such that∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥
p(.)−ε

< η (3.6)

for n ≥ n0 and ε ∈ (0, p− − 1). Hence, we have∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥
p(.),θ

< η (3.7)

by (3.6) and the definition of the norm ‖.‖p(.),θ. This follows from (3.4), (3.5) and (3.7) that∥∥∥∥∥∥fav − 1

n

n−1∑
j=0

f ◦ T j
∥∥∥∥∥∥
p(.),θ

≤ ‖fav − gav‖p(.),θ +

∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥
p(.),θ

+

∥∥∥∥∥∥ 1

n

n−1∑
j=0

(f − g) ◦ T j
∥∥∥∥∥∥
p(.),θ

≤ 2 ‖f − g‖p(.),θ +

∥∥∥∥∥∥gav − 1

n

n−1∑
j=0

g ◦ T j
∥∥∥∥∥∥
p(.),θ

<
η

2
+
η

2
= η.

That is the desired result.
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