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Abstract
The aim of this paper is to generalize the notion of z-ideals to arbitrary noncommutative
rings. A left (right) ideal I of a ring R is called a left (right) z-ideal if Ma ⊆ I, for
each a ∈ I, where Ma is the intersection of all maximal ideals containing a. For every
two left ideals I and J of a ring R, we call I a left zJ -ideal if Ma ∩ J ⊆ I, for every
a ∈ I, whenever J * I and I is a zJ -ideal, we say that I is a left relative z-ideal. We
characterize the structure of them in right duo rings. It is proved that a duo ring R is von
Neumann regular ring if and only if every ideal of R is a z-ideal. Also, every one sided
ideal of a semisimple right duo ring is a z-ideal. We have shown that if I is a left zJ -ideal
of a p-right duo ring, then every minimal prime ideal of I is a left zJ -ideal. Moreover, if
every proper ideal of a p-right duo ring R is a left relative z-ideal, then every ideal of R
is a z-ideal.
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1. Introduction
Throughout this article all rings are associative with identity. The notion of z-ideals

which are both algebraic and topological objects was first introduced in [6] by Kohls.
These ideals play a fundamental role in studying the ideal structure of C(X), the ring
of real-valued continuous functions on a completely regular Hausdorff space X, see [6].
Although in [6], he defined these ideals topologically, in terms of zero-sets, he showed that
they can be characterized algebraically. Gillman and Jerison in [4], have proved it to be
a powerful tool in the study of both algebraic properties of function rings and topological
properties of Tychonoff spaces.

It was Mason [11], who initiated the study of z-ideals in arbitrary commutative rings
with identity. An ideal I of a commutative ring R is called a z-ideal (z◦-ideal) if for
each a ∈ I, the intersection of all maximal ideals (minimal prime ideals) containing a
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is contained in I. A. Rezaei Aliabad and R. Mohamadian in [12], characterized the
z-ideals and z◦-ideals of formal power series ring on a commutative ring. They showed
that if R is a commutative ring, then an ideal I of formal power series ring R[[x]] is a
z-ideal if and only if I = (J, x), where J is a z-ideal of R. Also, they characterized a
relation between the set of z◦-ideals of R[[x]] and the set of z◦-ideals of R.

Let I and J be two ideals of a commutative ring R. I is said to be a zJ -ideal if
Ma ∩ J ⊆ I, for every a ∈ I, where Ma is the intersection of all maximal ideals containing
a. Whenever J * I and I is a zJ -ideal, we say that I is a relative z-ideal. This special kind
of z-ideals introduced and investigated by F. Azarpanah and A. Taherifar in [2]. They
have shown that for any ideal J in C(X), the sum of every two zJ -ideals is a zJ -ideal if and
only if X is an F -space, where the F -space is a space for which every finitely generated
ideal of C(X) is principal. A space X is called P -space if every prime ideal in C(X) is a
z-ideal. It is in [2] shown that every principal ideal in C(X) is a relative z-ideal if and
only if X is a P -space. Also, they characterized the space X for which the sum of every
two relative z-ideals of C(X) is a relative z-ideal. If I is an ideal of a semisimple ring and
Ann(I) ̸= 0, A. R. Aliabad and F. Azarpanah and A. Taherifar in [1], have shown that I
is a relative z-ideal and the converse is also true for each finitely generated ideal in C(X).

These ideals are also studied further by others in commutative rings. In the following, we
present a generalization of z-ideals to noncommutative rings and investigate the structure
of them in right duo rings, which are rings in which every right ideal is a two-sided ideal.
In fact, we generalize the results in [1] to right duo rings. This paper is organized as
follows:
In the second section, we study some properties of ideals in right duo rings. In the third
section, we shall generalize the concept of z-ideal to noncommutative rings and we study
their structure in right duo rings. We show that every z-ideal of a right duo ring is
semiprime. Mason in [10], showed that if I is a z-ideal of a semisimple commutative ring,
then every minimal prime ideal of I is also a z-ideal. In a right duo ring, we consider
sufficient conditions that every minimal prime ideal of a z-ideal is also a z-ideal. We will
show that every ideal of von Neumann right duo rings is a z-ideal. Also, if every left ideal
of a right duo ring R is a z-ideal, then R is a von Neumann ring. Furthermore, every left
ideal of a semisimple right duo ring is a z-ideal.

In the fourth section, we generalize left relative z-ideals to noncommutative rings. We
define the concept of p-right duo rings to obtain equivalent condition to minimal prime
ideals of an ideal, and then study left relative z-ideals of their rings. We will present
sufficient conditions in order that if every proper ideal of a ring R is a left relative z-ideal,
then every ideal of R is a z-ideal.

Let us close this section by mentioning some symbols. Let R be a ring and I an ideal
of R. The set of all prime ideals of R is denoted by Spec(R). Also, Min(I) is the set of
all minimal prime ideals containing I, for each ideal I of R, and the Jacobson radical of
R is denoted by rad(R).

2. Some properties of structure of right duo rings
Recall that a ring R is called a right duo ring if each right ideal of R is a two sided ideal.

We can similarly define the notion of a left duo ring. A ring R is said to be a duo ring if
R is a right and left duo ring. Commutative rings and division rings are clearly duo ring.
Furthermore, any valuation ring arising from a Krull valuation of a division ring is always
duo ring, see [8, Exercise 19.9]. It is easily seen that any finite direct product of a right
duo ring is a right duo ring. Proposition 1.1 of [3] says that any homomorphic image of a
right duo ring is a right duo ring, and so is any factor ring of it. Gerg Marks in Proposition
5 of [9] shows that any power series ring of a right self injective von Neumann right duo
ring is a right duo ring. In particular, the power series ring of a division ring is a right



Generalization of z-ideals in right duo rings 1425

duo ring. Further a von Neumann ring which any idempotent element of it is central, is a
right duo ring, by [5, Theorem 2.5]. It follows immediately from [3, Proposition 1.1] that
for every ideal I of a right (left) duo ring R, R

I
is also a right (left) duo ring.

It is well known that in every right duo ring R, RxR = xR, for all x ∈ R, and so
Rx ⊆ RxR = xR, see [3]. The following results will be needed in this paper.

Lemma 2.1 ([3]). Let R be a right duo ring and x ∈ R. Then
(1) RxR = xR.
(2) Rx ⊆ xR.

We know that a ring R is called a Dedekind-finite ring if whenever x, y ∈ R and xy = 1,
then yx = 1. Now, we assume that R is a right duo ring and ab = 1, for some a, b ∈ R.
Then there exists an element r ∈ R such that ab = br, by Lemma 2.1. Hence, we have
a = a.1 = a(ab) = a(br) = (ab)r = 1.r = r, and so 1 = ba. Therefore, every right duo ring
is Dedekind-finite, see [8, Theorem 3.2].

It is well known that if P is a prime ideal of a right duo ring and xy ∈ P , then x ∈ P or
y ∈ P , because xy ∈ P implies that xRy ⊆ xyR ⊆ P , by Lemma 2.1. Since P is a prime
ideal, we have x ∈ P or y ∈ P . Therefore, we have the following Lemma:

Lemma 2.2. Let R be a right duo ring and P be a proper ideal of R. Then the following
statements are equivalent:

(1) P is a prime ideal.
(2) For every x, y ∈ R, if xy ∈ P then x ∈ P or y ∈ P .

Therefore, if P is a prime ideal of R and xn ∈ P , for some x ∈ R and n ∈ N, then x ∈ P .

Let R be a ring and I be an ideal of R. We denote by
√

I the subset
{r ∈ R | ∃n ∈ N , rn ∈ I}

of R. It is easily seen from Lemma 2.1 that if P is a prime ideal of a right duo ring R,
then

√
P = P .

Lemma 2.3. Let R be a right duo ring and I and J be ideals of R. Then
√

I +
√

J ⊆
√

I + J.

Proof. Let a ∈
√

I and b ∈
√

J . Then there exist n, m ∈ N such that am ∈ I and bn ∈ J .
Now, we claim that (a + b)m+n ∈ I + J . In fact, (a + b)m+n is the sum of 2m+n elements
of the form f = c1c2 · · · cm+n where each ci = a or b. If at least m of these cis are a, then
there exists a′ ∈ R such that f = ama′, by Lemma 2.1, and so f ∈ I, because am ∈ I. If
the number of the ci = a is smaller than m, then at least n of them are b, and hence there
exists b′ ∈ R such that f = bnb′, by Lemma 2.1. Thus f ∈ J , because bn ∈ J . Therefore
(a + b)n+m ∈ I + J . �

Proposition 2.4. Let R be a right duo ring and I be an ideal of R. Then
√

I is an ideal
of R.

Proof. Clearly, 0 ∈
√

I. If a, b ∈
√

I, then a + b ∈
√

I, by Lemma 2.3. Now, assume
that a ∈

√
I and r ∈ R. Hence there exists n ∈ N such that an ∈ I, and so there exists

an element r′ ∈ R such that (ra)n = anr′ ∈ I, by Lemma 2.1. Therefore ra ∈
√

I and
similarly we show that ar ∈

√
I. �

Let R be a ring and a ∈ R. The intersection of all maximal ideals of R containing a
will be denoted by Ma. We set Ma = R when a is a unit.

Lemma 2.5. Let R be a right duo ring and a, b ∈ R. Then Mab = Ma ∩Mb. In particular,
if a ∈ R we conclude that Man = Ma, for every n ∈ N.
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Proof. Clearly, for every x ∈ Ma we have Mx ⊆ Ma. Thus Mab ⊆ Ma and Mab ⊆ Mb,
and so Mab ⊆ Ma ∩ Mb, for each a, b ∈ R. Conversely, let x ∈ Ma ∩ Mb. We show that
every maximal ideal containing ab is also containing x. Assume that N is a maximal
ideal of R such that ab ∈ N . Then a ∈ N or b ∈ N , by Lemma 2.2. If a ∈ N, then
x ∈ Ma ∩ Mb ⊆ Ma ⊆ N . If b ∈ N , then x ∈ Mb ⊆ N . Therefore x ∈ N . Thus
Ma ∩ Mb ⊆ Mab, and consequently Mab = Ma ∩ Mb. �

3. Generalization of z-ideals in a right duo ring
The z-ideals are studied further in commutative rings. These ideals are useful concept

in studying the ideal structure of the ring C(X) of continuous real-valued functions on
a topological space X. In the following, we shall present a generalization of z-ideals to
noncommutative rings.
Definition 3.1. A left (right) ideal I of a ring R is called a left (right) z-ideal if Ma ⊆ I,
for all a ∈ I.

In the following we show that every one sided z-ideal is an ideal.
Proposition 3.2. Let R be a ring and I be a left (right) z-ideal of R. Then I is an ideal
of R.
Proof. Let I be a left z-ideal of R and a ∈ I. If N is a maximal ideal of R containing
a, then ar ∈ N for every r ∈ R. Thus Mar ⊆ Ma. On the other hand, since I is a left
z-ideal, we have Ma ⊆ I. Therefore, ar ∈ Mar ⊆ Ma ⊆ I, and so ar ∈ I. Hence I is an
ideal. �

Here in after a left (right) z-ideal of a ring is called a z-ideal, by Proposition 3.2.
Example 3.3. Every intersection of maximal ideals of a ring R is a z-ideal. In fact, every
intersection of z-ideals is a z-ideal.
Lemma 3.4. Let R be a ring and I be a left (right) ideal of R. Then the following
statements are equivalent:

(1) I is a z-ideal.
(2) For every a ∈ R and b ∈ I, if Ma ⊆ Mb then a ∈ I.

Proof. 1 ⇒ 2. Let a ∈ R and b ∈ I. Since I is a z-ideal and b ∈ I, we have Mb ⊆ I.
Hence, if Ma ⊆ Mb, then a ∈ Ma ⊆ Mb ⊆ I, and so a ∈ I.
2 ⇒ 1. Let I be a left ideal and a ∈ I. For each x ∈ Ma, we have Mx ⊆ Ma. By hypothesis
x ∈ I, and so Ma ⊆ I. Therefore I is a z-ideal. �

Let R be a ring and I be a left (right) ideal of R. The intersection of all z-ideals
containing I will be denoted by Iz. For each element a ∈ Iz and for every z-ideal J of
R containing I, we have a ∈ J . Then Ma ⊆ J , and so Ma ⊆ Iz. Therefore, we have the
following Lemma:
Lemma 3.5. For every left (right) ideal I of a ring R, the intersection of all z-ideals
containing I, which is denoted by Iz, is a z-ideal. In particular, Iz is the smallest z-ideal
containing I.
Lemma 3.6. Let R be a ring. Then the following statements hold.

(1) For every left ideals I and J of R, if I ⊆ J , then Iz ⊆ Jz.
(2) If {Iλ}λ∈Λ is any family of left ideals of R, then

(
∩

λ∈Λ
Iλ)z ⊆

∩
λ∈Λ

(Iλ)z.

Proof. 1. Since every z-ideal containing J contains I, we see Iz ⊆ Jz.
2. For every µ ∈ Λ, we have

∩
λ∈Λ Iλ ⊆ Iµ. Hence our claim is true, by part (1). �
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It is immediate that for every z-ideal I, we have Iz = I. In the next two Propositions,
we study the structure of z-ideals in right duo rings.

Proposition 3.7. Let R be a right duo ring and I be an ideal of R. Then I ⊆
√

I ⊆ Iz.

Proof. Clearly, I ⊆
√

I. Now, we assume that x ∈
√

I and J is a z-ideal containing I.
Thus there is a positive integer n such that xn ∈ I ⊆ J . Hence x ∈ Mx = Mxn ⊆ J , by
Lemma 2.5. Therefore x ∈ Iz, and so

√
I ⊆ Iz. �

Recall that a proper ideal I of a ring R is said to be a semiprime ideal if for every ideal
J of R, J2 ⊆ I implies that J ⊆ I. As an immediate consequence of Proposition 3.7 and
[7, Theorem 10.11], we get the following result

Corollary 3.8. Let R be a right duo ring and I be a z-ideal of R. Then
√

I = I. In
particular, I is a semiprime ideal of R.

Proposition 3.9. Let R be a right duo ring and I be an ideal of R. Then the following
statements hold.

(1) (
√

I)z = Iz.
(2) If I is a z-ideal, then (

√
I)z = I.

(3)
√

Iz = (
√

I)z.

Proof. 1. Every z-ideal containing
√

I also contains I. Therefore Iz ⊆ (
√

I)z. Conversely,
Proposition 3.7 gives

√
I ⊆ Iz. This means that Iz is a z-ideal containing

√
I. Thus

(
√

I)z ⊆ Iz, and consequently (
√

I)z = Iz.
2. Since I is a z-ideal, we have Iz = I. The proof is completed by (1).
3. We know that Iz is a z-ideal of R. Corollary 3.8 yields

√
Iz = Iz. Therefore√

Iz = (
√

I)z, by (1). �

The following Proposition is a generalization of [11, Proposition 3.1] to noncommutative
case.

Proposition 3.10. Let R be a right duo ring. Then the following statements are equiva-
lent:

(1) For any z-ideals I and J , I + J is a z-ideal.
(2) For any ideals I and J , (I + J)z = Iz + Jz.
(3) The sum of any nonempty family of z-ideals is a z-ideal.
(4) For every nonempty family {Iα}α∈A of ideals,

(
∑
α∈A

Iα)z =
∑
α∈A

(Iα)z.

Proof. 1 ⇒ 2. Since Iz and Jz are z-ideals, Iz + Jz is a z-ideal containing I + J , by
hypothesis. Hence (I + J)z ⊆ Iz + Jz. It follows from Lemma 3.6 that Iz + Jz ⊆ (I + J)z.
Therefore (I + J)z = Iz + Jz.
2 ⇒ 3. Let {Iα}α∈A be a family of z-ideals and a ∈

∑
α∈A Iα. Then there exists a finite

subset F of A such that a ∈
∑

α∈F Iα. Since Iα is a z-ideal, we have (Iα)z = Iα, for every
α ∈ F . A simple induction argument shows that

(
∑
α∈F

Iα)z =
∑
α∈F

(Iα)z =
∑
α∈F

Iα.

Consequently,
∑

α∈F Iα is a z-ideal, and so

Ma ⊆
∑
α∈F

Iα ⊆
∑
α∈A

Iα.



1428 M. Masoudi-Arani, R. Jahani-Nezhad

Therefore
∑

α∈A Iα is a z-ideal.
3 ⇒ 4. Let {Iα}α∈A be a family of ideals. Since Iβ ⊆

∑
α∈A Iα, for all β ∈ A, we have

(Iβ)z ⊆ (
∑

α∈A Iα)z, for all β ∈ A, by Lemma 3.6. Therefore∑
α∈A

(Iα)z ⊆ (
∑
α∈A

Iα)z.

Since (Iα)z is a z-ideal containing Iα, for all α ∈ A, we may conclude from assumption
that

∑
α∈A (Iα)z is a z-ideal containing

∑
α∈A Iα. Hence

(
∑
α∈A

Iα)z ⊆
∑
α∈A

(Iα)z.

Therefore
(

∑
α∈A

Iα)z =
∑
α∈A

(Iα)z.

4 ⇒ 1. If I and J are z-ideals, then Iz = I and Jz = J . By hypothesis, we have
(I + J)z = Iz + Jz. Therefore (I + J)z = Iz + Jz = I + J , and so I + J is a z-ideal. �

Lemma 3.11. Let R be a right duo ring and P be a prime ideal of R. Let n ∈ N,
I1, ..., In−1 be ideals and In be a left ideal of R. Then the following statements are equiv-
alent:

(1) Ij ⊆ P , for some 1 ≤ j ≤ n.

(2)
n∩

i=1
Ii ⊆ P.

(3) I1I2 · · · In ⊆ P.

Proof. 1 ⇒ 2.
n∩

i=1
Ii ⊆ Ij ⊆ P .

2 ⇒ 3. Since In is a left ideal of R, we have I1I2 · · · In ⊆ In. On the other hand, Ii is
an ideal, for every 1 ≤ i ≤ n − 1, and hence I1I2 · · · In ⊆ Ii, for all 1 ≤ i ≤ n. Thus

I1I2 · · · In ⊆
n∩

i=1
Ii ⊆ P.

3 ⇒ 1. Suppose that Ii * P and xi ∈ Ii r P , for every 1 ≤ i ≤ n. Thus

x1x2 · · · xn ∈ I1I2 · · · In ⊆ P

which yields xj ∈ P, for some 1 ≤ j ≤ n, by Lemma 2.2. This contradicts the choice of
xj . �

Proposition 3.12. Let R be a right duo ring and I an ideal of R. If I is a finite
intersection of maximal ideals of R, then any minimal prime ideal of I is a z-ideal.

Proof. Since I is a finite intersection of maximal ideals, Lemma 3.11 implies that any
minimal prime ideal of I is a maximal ideal. Hence each minimal prime ideal of I is a
z-ideal. �

Recall from [7, Definition 10.3] that a nonempty set S of a ring R is said to be m-system
if for any a, b ∈ S, there exists r ∈ R such that arb ∈ S.

Theorem 3.13. Let R be a right duo ring, I a z-ideal of R and Q be a minimal prime
ideal of I. If for every a, b ∈ R with a /∈ Q, there exists r ∈ RrQ such that ab = br, then
Q is a z-ideal.

Proof. Suppose Q is not z-ideal. Then there exist elements a ∈ R r Q and b ∈ Q such
that Ma ⊆ Mb, by Lemma 3.4. We now assume that

S = (R r Q) ∪ { bnc | n ∈ N, c ∈ R r Q }.
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We first prove that r1r2 ∈ S, for every r1, r2 ∈ S. Consider r1, r2 ∈ S.
- If r1, r2 ∈ R r Q, then r1r2 /∈ Q, by Lemma 2.2, and so r1r2 ∈ S.
- If there are c1, c2 ∈ R r Q such that r1 = bnc1 and r2 = bmc2, for some positive integers
n and m, then c1bm = bmr, for some r ∈ R r Q, by hypothesis. Therefore

r1r2 = bnc1bmc2 = b(n+m)rc2 ∈ S

because r, c2 ∈ R r Q, and so rc2 /∈ Q, by Lemma 2.2.
- If r1 ∈ R rQ and r2 = bnc, for some n ∈ N and c ∈ R rQ, then there exists an element
r ∈ R r Q such that r1bn = bnr, by hypothesis. This yields

r1r2 = r1bnc = bnrc.

Since rc /∈ Q, we have r1r2 ∈ S. Also, we see that r2r1 = bncr1 ∈ S. Hence for every
r1, r2 ∈ S we have r1r2 ∈ S. Therefore S is an m-system of R.

Now, we show that I ∩ S = ∅. If x ∈ I ∩ S, then x ∈ I ⊆ Q and x ∈ S. Hence x = bnc,
for some n ∈ N and c ∈ R r Q. From Lemma 2.5 we see that

ac ∈ Mac = Ma ∩ Mc ⊆ Mb ∩ Mc = Mbn ∩ Mc = Mx ⊆ I

because Ma ⊆ Mb and I is a z-ideal. This yields ac ∈ Q. Hence a ∈ Q or c ∈ Q, by
Lemma 2.2. This contradicts the choice of a and c. Therefore I ∩ S = ∅. By Zorn’s
Lemma, there exists an ideal I ⊆ P which is maximal with respect to being disjoint from
S. From [7, Proposition 10.5] it follows that P is a prime ideal. Since S ∩ P = ∅ and
b ∈ S, we have I ⊆ P & Q. However, this contradicts our assumption that Q is a minimal
prime ideal of I. Therefore Q is a z-ideal. �

We know that the Jacobson radical of a ring R, which denoted by rad(R), is the
intersection of all maximal right (or left) ideals of R. Now, if R is a right (or left) duo
ring, then every maximal right (or left) ideal is a maximal ideal. Therefore, if R is a right
(or left) duo ring, then we can say that rad(R) is the intersection of all maximal ideals of
R.

Example 3.14. Let D be a division ring and C be the field of complex numbers. Let
R = D × C[x]. We know that R is a duo ring. If f ∈ rad(C[x]), then 1 − xf is a unit
of C[x], by [7, Lemma 4.1], which yields f = 0. Hence rad(C[x]) = 0. This implies that
rad(R) = rad(D)×rad(C[x]) = 0, and so I = {0} is a z-ideal of R. If P is a prime ideal of
R, then P = 0×C[x] or P = D×Q, where Q is a prime ideal of C[x]. obviously, D×0 and
0 ×C are minimal prime ideals of I which 0 ×C is maximal, and so is a z-ideal. Consider
(a, f), (c, g) ∈ R such that (a, f) /∈ D × 0. It is clear that ac = cr, for some r ∈ D. Thus

(a, f)(c, g) = (ac, fg) = (cr, gf) = (c, g)(r, f).
Since (a, f) /∈ D × 0, we have f ̸= 0, and so (r, f) /∈ D × 0. Therefore D × 0 is a z-ideal,
by Theorem 3.13.

Proposition 3.15. Let R be a right duo ring and I be a left ideal of R. Then (In)z = Iz,
for every n ∈ N.

Proof. Clearly, (In)z ⊆ Iz. For every x ∈ I, we have xn ∈ In ⊆ (In)z, and so
Mxn ⊆ (In)z. From Lemma 2.5, we see that x ∈ Mx = Mxn ⊆ (In)z. Hence I ⊆ (In)z.
By Lemma 3.5, (In)z is a z-ideal, and so Iz ⊆ (In)z. Therefore (In)z = Iz. �

Recall that a ring R is said to be a von Neumann regular ring if for any a ∈ R, there
exists an element r ∈ R such that a = ara. Furthermore, for any ideal I of a von Neumann
regular ring R, it is clear that R

I
is also a von Neumann regular ring. Therefore, we have

Proposition 3.16. Let R be a right (or left) duo ring. If R is a von Neumann regular
ring, then every ideal of R is a z-ideal.
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Proof. Let I be a proper ideal of R. Since R

I
is a von Neumann regular ring, we have

rad(R

I
) = 0, by [7, Corollary 4.24]. On the other hand, R

I
is also a right (or left) duo ring.

Thus rad(R

I
) is the intersection of all maximal ideals of R

I
. Hence I is the intersection of

all maximal ideal of R containing I, and so I is a z-ideal. �
Proposition 3.17. Let R be a right duo ring. If every left ideal of R is a z-ideal, then R
is a von Neumann regular ring.

Proof. Let a ∈ R and I = Ra. By hypothesis, I is a z-ideal, and so Iz = I. Hence
(I2)z = Iz = I, by Proposition 3.15. On the other hand, from Lemma 2.1, we see that
I2 = RaRa = aRa. Since I2 is a left ideal, I2 is a z-ideal, and so (I2)z = I2. Hence
I2 = (I2)z = Iz = I. Then we may conclude from a ∈ I = I2 = aRa that there exists an
element r ∈ R such that a = ara. Therefore R is a von Neumann regular ring. �

The following result, which is a generalization of [10, Theorem 1.2] to noncommutative
case, follows immediately from Proposition 3.16 and Proposition 3.17.

Corollary 3.18. Let R be a duo ring. Then R is a von Neumann regular ring if and only
if every ideal of R is a z-ideal.

Recall that if I and J are two left ideals of a ring R, then the subset { x ∈ R | xI ⊆ J}
is denoted by (J :l I). It is easily seen that (J :l I) is an ideal of R. In particular, for each
left ideal I, the subset (0 :l I), which will be denote by Annl(I), is also an ideal of R. We
call it the left annihilator of I.

Proposition 3.19. Let I and J be two left ideals of a right duo ring R. If J is a z-ideal,
then (J :l I) is a z-ideal of R.

Proof. By Lemma 3.4, it is sufficient to show that for every a ∈ R and b ∈ (J :l I), if
Ma ⊆ Mb then a ∈ (J :l I). Now, we assume that a ∈ R, b ∈ (J :l I) and Ma ⊆ Mb. Thus
for every x ∈ I, we have bx ∈ J . Moreover

Max = Ma ∩ Mx ⊆ Mb ∩ Mx = Mbx

by Lemma 2.5. Since bx ∈ J and J is a z-ideal, Mbx ⊆ J , and so ax ∈ Max ⊆ Mbx ⊆ J .
Therefore a ∈ (J :l I). �
Lemma 3.20. If e is an idempotent element of a right duo ring R, then

Re = Annl(R(1 − e)).

Proof. For every r ∈ R, we have reR(1 − e) ⊆ re(1 − e)R = 0, by Lemma 2.1. Hence
Re ⊆ Annl(R(1−e)). We now assume that r ∈ Annl(R(1−e)). Thus r−re = r(1−e) = 0,
and so r = re ∈ Re. �

From [7, Theorem 2.5], it follows that every right ideal of a ring R is a direct summand
of R if and only if every left ideal of R is a direct summand of R. A ring satisfying these
equivalent conditions is called a semisimple ring.

Proposition 3.21. Let R be a semisimple right duo ring. Then every one sided ideal of
R is an ideal.

Proof. Since R is a right duo ring, every right ideal of R is an ideal. By [7, Theorem
4.25], semisimple rings are exactly the left Noetherian von Neumann regular rings. Let I
be a left ideal of R. Since R is left Noetherian, every left ideal of R is finitely generated,
and so I = Re, for an idempotent element e of R, by using the characterization (3) of
[7, Theorem 4.23]. Hence I = Annl(R(1 − e)), by Lemma 3.20, and consequently I is an
ideal of R. �
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As observed in the proof of Proposition 3.21, every ideal of a semisimple right duo ring
is an annihilator of a left ideal. On the other hand, we know from [7, Theorem 4.25] that
rad(R) = 0, for every semisimple ring R, and hence the zero ideal of R is a z-ideal. Now,
we may by using Proposition 3.19 conclude that the following result.

Corollary 3.22. Every ideal of a semisimple right duo ring is a z-ideal.

4. Relative z-ideals in a right duo ring
The main goal of this section is to introduce left relative z-ideals. We define the concept

of p-right duo rings to obtain equivalent condition to minimal prime ideals of an ideal,
and then study left relative z-ideals of their rings. Finally, we prove that if every proper
ideal of a p-right duo ring R is a left relative z-ideal, then every ideal of R is a z-ideal.

Definition 4.1. Let J be a left ideal of a ring R. A left ideal I of R is said to be a left
zJ -ideal if Ma ∩ J ⊆ I, for every a ∈ I. Whenever, for a left ideal I, there exists a left
ideal J such that J * I and I is a left zJ -ideal, we say that I is a left relative z-ideal and
J is called a z-factor of I.

Recall that a ring R is said to be a reduced ring if R has no nonzero nilpotent element.
In the following, we introduce a class of left relative z-ideals in a right duo ring. Before
giving it, let us state the following Lemma which follows immediately from Lemma 2.2.

Lemma 4.2. For each right duo ring R, if rad(R) = 0, then R is a reduced ring.

Proposition 4.3. Let R be a right duo ring with rad(R) = 0. If I is a left ideal of R
such that Annl(I) ̸= 0, then I is a left relative z-ideal.

Proof. First, we show that Ma ∩ Annl(I) = 0, for every a ∈ I. Suppose that
x ∈ Ma ∩ Annl(I). Then Mx ⊆ Ma and xa ∈ xI = 0, for every a ∈ I. From Lemma 2.5,
it thus follows that

x ∈ Mx = Mx ∩ Ma = Mxa = M0 = rad(R) = 0.

Hence Ma ∩ Annl(I) = 0. We now put J = Annl(I), and show that J * I. If J ⊆ I, then
J2 ⊆ JI = Annl(I)I = 0. Thus J2 = 0, and so J = 0, because R is a reduced ring, by
Lemma 4.2. But this contradicts the assumption that J = Annl(I) ̸= 0. Therefore J * I,
and so I is a left relative z-ideal. �
Definition 4.4. A right duo ring R is called a p-right duo ring if for every prime ideal P
of R and every elements a, b ∈ R, which a /∈ P , there exists r ∈ R r P such that ab = br.

In the following, we give some examples of p-right duo rings.

Proposition 4.5. Let R be a prime right duo ring. If R has a unique nonzero prime
ideal, then R is a p-right duo ring.

Proof. Let P be the unique nonzero prime ideal of R and a, b ∈ R such that a /∈ P . If
b = 0, then ab = b1. Now, we assume that b ̸= 0. Since R is a right duo ring, ab = br,
for some r ∈ R. On the other hand, P is the unique nonzero prime ideal of R and a /∈ P .
Thus a is a unit element of R which yields b = a−1br = br′r, for some r′ ∈ R. It follows
b(1 − r′r) = 0. Since R is a prime right duo ring and b ̸= 0, we have r′r = 1. Therefore
r /∈ P . �
Example 4.6. Let D be a division ring and R = D ×Z. We show that R is a p-right duo
ring. It is easily seen that R is a right duo ring. If P is a prime ideal of R, then P = D×0,
or P = 0 × Z or P = D × pZ, for some prime number p. We assume that (a, b), (c, d) ∈ R
and (a, b) ̸∈ P . It is clear that ac = cr, for some r ∈ D. Thus

(a, b)(c, d) = (ac, bd) = (cr, db) = (c, d)(r, b).
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We consider the following three cases:
1. If P = D × 0, then b ̸= 0, because (a, b) /∈ P , and so (r, b) /∈ P .
2. If P = 0 × Z, then a ̸= 0, because (a, b) /∈ P . Now, if c ̸= 0, then r ̸= 0, and so
(r, b) /∈ P , and if c = 0, we have

(a, b)(c, d) = (0, bd) = (0, db) = (c, d)(1, b)
which (1, b) /∈ P .
3. If P = D × pZ, for some prime number p, then p - b, because (a, b) /∈ P , and so
(r, b) /∈ P .

Proposition 4.7. Let R be a p-right duo ring with rad(R) = 0 and P be a prime ideal
of R. Let Γ be the set of all z-ideals of R contained in P . Then Γ (partially ordered by
inclusion) has a maximal element. Furthermore, every maximal element of Γ is a prime
z-ideal of R.

Proof. Since rad(R) = 0, the zero ideal of R is a z-ideal, and so Γ ̸= ∅. If P is a z-ideal,
then clearly P is the only maximal element of Γ. We now assume that P is not z-ideal.
If Σ is a chain in Γ, then it is quite obvious that

∪
Iα∈Σ Iα is a z-ideal contained in P .

Therefore Γ has a maximal element J , by Zorn’s Lemma. Hence J $ P , because P is not
z-ideal. Suppose that Q is a minimal prime ideal of J such that J ⊆ Q ⊆ P . Theorem
3.13 implies that Q is a z-ideal, because R is a p-right duo ring, and so Q ∈ Γ. Since J is
a maximal element in Γ, we have J = Q. Therefore J is a prime z-ideal. �
Proposition 4.8. Let R be a ring and I be a proper ideal of R. Let

Γ = { S ⊆ R | S is an m − system and S ∩ I = ∅ }.

If P is a prime ideal of R, then P ∈ Min(I) if and only if R r P is a maximal element
of Γ.

Proof. We know from [7, Corollary 10.4] that an ideal P of R is prime if and only if RrP
is an m-system. Therefore, if T = R r P is a maximal element of Γ, then P is a prime
ideal of R. Also, T ∩ I = ∅ implies that I ⊆ P . Now, we assume that there exists a prime
ideal Q of R such that I ⊆ Q ⊆ P . It follows that (R r Q) ∩ I = ∅ and R r Q is an
m-system, by [7, Corollary 10.4]. Thus R r Q ∈ Γ. Since T ⊆ R r Q and T is a maximal
element of Γ, we have R r Q = T , and so P = Q. Therefore P ∈ Min(I).

Conversely, if P ∈ Min(I), then T = R r P is an m-system, by [7, Corollary 10.4].
Furthermore, T ∩ I = ∅. Thus T ∈ Γ. Suppose that there exists S ∈ Γ such that T ⊆ S.
Hence S is an m-system and S ∩ I = ∅. By Zorn’s Lemma, there exists an ideal I ⊆ Q
which is maximal with respect to being disjoint from S. From [7, Proposition 10.5], it
follows that Q is a prime ideal. Since S ∩ Q = ∅ and T ⊆ S, we have Q ∩ T = ∅. Hence
I ⊆ Q ⊆ P , and consequently Q = P , because P ∈ Min(I). It follows from P ∩ S = ∅
that S ⊆ R r P = T , and so T = S. Therefore, T is a maximal element of Γ. �

It is well known that, if I is an ideal of a commutative ring R, then P ∈ Min(I) if and
only if for each a ∈ P, there exist c ∈ R r P and n ∈ N such that (ac)n ∈ I. We need
generalization of this conclusion for the noncommutative rings. In the following Lemma,
we will generalize it to right duo rings.

Proposition 4.9. Let R be a p-right duo ring and I be a proper ideal of R. If P is a
nonzero prime ideal of R containing I and T = R r P , then the following statements are
equivalent:

(1) P ∈ Min(I).
(2) For every x ∈ P , there exist y, z ∈ T and n ∈ N such that yxnz ∈ I.

Proof. 1 ⇒ 2. Let P ∈ Min(I) and 0 ̸= x ∈ P . If
Γ = { S ⊆ R | S is an m − system and S ∩ I = ∅ },



Generalization of z-ideals in right duo rings 1433

then T is a maximal element of Γ, by Proposition 4.8. Now, we assume that

T ′ = { yxnz | y, z ∈ T , n ∈ N ∪ {0} }.

Let y1xmz1, y2xnz2 ∈ T ′. From Lemma 2.2, it is clear that z1y2 ∈ T , and hence there is
an element r ∈ T such that z1y2xn = xnr, because R is a p-right duo ring. Thus

y1xmz1y2xnz2 = y1xm+nrz2 ∈ T ′.

Therefore T ′ is an m-system. Obviously, x ∈ T ′ r T, consequently T & T ′. Hence T ′ /∈ Γ,
by the maximality of T . However, this yields T ′ ∩ I ̸= ∅. Therefore, there exist y, z ∈ T
and n ∈ N such that yxnz ∈ I.
2 ⇒ 1. Let Q be a prime ideal of R such that I ⊆ Q ⊆ P . For each x ∈ P , there exist
n ∈ N and y, z ∈ T such that yxnz ∈ I ⊆ Q, by hypothesis. Since Q is a prime ideal and
y, z /∈ Q, we have x ∈ Q, by Lemma 2.2. Therefore Q = P , and so P ∈ Min(I). �

In the following Proposition, which is an analogue of [1, Lemma 2.1], we give conditions
that, whenever J is a left ideal, then every minimal prime ideal of a left zJ -ideal, is also
a left zJ -ideal.

Proposition 4.10. Let R be a p-right duo ring, I be an ideal and J be a left ideal of R.
If I is a left zJ -ideal, then every minimal prime ideal of I is a left zJ -ideal.

Proof. Let P ∈ Min(I). For every element a ∈ P , there exist elements b, c ∈ R r P
and n ∈ N such that banc ∈ I, by Proposition 4.9. Since I is a left zJ -ideal, we have
Mbanc ∩ J ⊆ I. Now, it follows from Lemma 2.5 that

Mb ∩ Ma ∩ Mc ∩ J = Mb ∩ Man ∩ Mc ∩ J = Mbanc ∩ J ⊆ I ⊆ P.

Obviously, Mb, Mc ̸⊆ P , because b, c /∈ P . It follows that Ma ∩ J ⊆ P , by Lemma 3.11,
and so P is a left zJ -ideal of R. �

Proposition 4.11. Let R be a right duo ring and J be a left ideal of R. If P is a prime
ideal of R for which J * P , then P is a left zJ -ideal if and only if P is a z-ideal.

Proof. It is clear that if P is a z-ideal, then P is also a left zJ -ideal. Conversely, if P is a
left zJ -ideal, then Ma ∩ J ⊆ P , for each a ∈ P . Since J * P , Lemma 3.11 yields Ma ⊆ P ,
for each a ∈ P . Hence P is a z-ideal of R. �

Let R be a p-right duo ring and I be an ideal of R. From Lemma 2.2, it is clear that√
I ⊆ P , for each P ∈ Min(I). On the other hand, if P ∈ Min(I) and x ∈ R r P , we

conclude from Proposition 4.9 that xn ̸∈ I, for every n ∈ N, and so x /∈
√

I. Therefore,
we have √

I =
∩

P ∈Min(I)
P.

The following Lemma corresponds to [1, Lemma 2.2].

Lemma 4.12. Let R be a p-right duo ring, I be an ideal and J be a left ideal of R. If I
is a left zJ -ideal, then Iz ∩ J ⊆ I.

Proof. As we have seen in the preceding paragraph
√

I =
∩

P ∈Min(I)
P.

From Proposition 3.9, it follows that

Iz ∩ J = (
√

I)z ∩ J = (
∩

P ∈Min(I)
P )z ∩ J.
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Moreover, Lemma 3.6 yields

(
∩

P ∈Min(I)
P )z ⊆

∩
P ∈Min(I)

Pz.

Thus

Iz ∩ J ⊆ (
∩

P ∈Min(I)
Pz) ∩ J. (4.1)

Since I is a left zJ -ideal, from Proposition 4.10, we see that P is a left zJ -ideal, for every
P ∈ Min(I). However, we conclude from Proposition 4.11 that J ⊆ P or P is a z-ideal,
for every P ∈ Min(I).

We now assume that P ∈ Min(I). If P is a z-ideal, then Pz = P , and so Pz ∩J = P ∩J .
If J ⊆ P , then we also have Pz ∩ J = J = P ∩ J . Therefore

(
∩

P ∈Min(R)
Pz) ∩ J = (

∩
P ∈Min(R)

P ) ∩ J =
√

I ∩ J

and from (4.1) we get
Iz ∩ J ⊆

√
I ∩ J.

Let us finally prove that
√

I ∩ J ⊆ I. If x ∈
√

I ∩ J , then there is a positive integer n such
that xn ∈ I. Since I is a left zJ -ideal, we have Mxn ∩ J ⊆ I. Hence, from Lemma 2.5, it
follows that

x ∈ Mx ∩ J = Mxn ∩ J ⊆ I.

Thus
√

I ∩ J ⊆ I, and consequently Iz ∩ J ⊆
√

I ∩ J ⊆ I. �

Lemma 4.13. Let R be a p-right duo ring and J be a left ideal of R. If I is an ideal of
R, then I is a left zJ -ideal if and only if I is a left zI+J -ideal.

Proof. If I is a left zI+J -ideal, then clearly I is a left zJ -ideal. Conversely, let I be a left
zJ -ideal. Since I ⊆ Iz, from Lemma 4.12 and modular law follow that

Iz ∩ (I + J) = I + (Iz ∩ J) ⊆ I.

For every a ∈ I, we have Ma ⊆ Iz, because I ⊆ Iz and Iz is a z-ideal. Hence

Ma ∩ (I + J) ⊆ Iz ∩ (I + J) ⊆ I.

Therefore, I is a left zI+J - ideal. �

Lemma 4.14. Let R be a right duo ring. If I and J are two left ideals of R such that at
least one of them is ideal, then I ∩ J is a left zJ -ideal if and only if I is a left zJ -ideal.

Proof. We first assume that J is an ideal. If I is a left zJ -ideal, then for every a ∈ I ∩ J ,
we have Ma ∩ J ⊆ I, and so Ma ∩ J ⊆ I ∩ J . Hence I ∩ J is a left zJ -ideal.

Conversely, let I ∩ J be a left zJ -ideal and a ∈ I. We must show that Ma ∩ J ⊆ I. We
now assume that x ∈ Ma ∩ J . Thus xa ∈ I ∩ J , because J is an ideal. Since I ∩ J is a left
zJ -ideal, Mxa ∩ J ⊆ I ∩ J . From Lemma 2.5, we see that

x ∈ Mx ∩ Ma ∩ J = Mxa ∩ J ⊆ I ∩ J ⊆ I.

Therefore Ma ∩ J ⊆ I, and so I is a left zJ -ideal.
Now, if I is an ideal, then we can prove this Lemma by a similar argument. �

The following result is an analogue of [1, Proposition 2.5].

Proposition 4.15. Let R be a p-right duo ring and M be a maximal ideal of R. If I is
an ideal of R, then I is a z-ideal if and only if I ∩ M is a z-ideal.
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Proof. If I is a z-ideal, then clearly I ∩ M is a z-ideal. We now assume that I ∩ M is a
z-ideal of R. If I ⊆ M , then I = I ∩M , and so I is a z-ideal. If I * M , then Ma ⊆ I ∩M ,
for every a ∈ I ∩M , and so Ma ∩M ⊆ I ∩M . Thus I ∩M is a left zM -ideal. It follows from
Lemma 4.14 that I is a left zM -ideal. Now, Lemma 4.13 implies that I is a left zR-ideal,
because I + M = R. However, I is a z-ideal of R. �

The following Proposition is an analogue of [1, Proposition 2.6] and [2, Proposition 2.2].
Proposition 4.16. Let R be a p-right duo ring and J be an ideal of R with J * rad(R).
If J is not a z-ideal, then there exists an ideal I of R such that I & J and I is a left
zJ -ideal which is not a z-ideal.

Proof. Since J * rad(R), there is a maximal ideal M of R such that J * M . Thus
I = J ∩ M is an ideal of R and I & J . Obviously, for every a ∈ I, Ma ∩ J ⊆ M ∩ J = I,
and so I is a left zJ -ideal of R. From Proposition 4.15, it follows that J is a z-ideal if and
only if I is a z-ideal. Therefore, the desired conclusion trivially holds. �
Lemma 4.17. Let R be a p-right duo ring and I be an ideal of R. If I is a left relative
z-ideal of R, then the set

Γ = { J | J is a z−factor of I }
has a maximal member with respect to inclusion. Furthermore, every maximal element of
Γ properly contains I.
Proof. Obviously, Γ ̸= ∅. If Σ is a non-empty totally ordered subset of Γ, then clearly
L =

∪
J∈Σ

J is a left ideal which L * I. We will show that I is a zL-ideal. For every a ∈ I,

we have
Ma ∩ L = Ma ∩ (

∪
J∈Σ

J) =
∪

J∈Σ
(Ma ∩ J) ⊆ I,

because J is a z-factor of I, for all J ∈ Σ, and so Ma ∩ L ⊆ I. Hence I is a left relative
zL-ideal, and consequently I is an upper bound for Σ in Γ. From Zorn’s Lemma, we see
that Γ has a maximal element.

Now, we show that every maximal element of Γ properly contains I. If J is a maximal
element of Γ, then I is a left zJ -ideal and J * I. Hence I is a left zI+J -ideal, by Lemma
4.13. Since I + J * I, I + J is a z-factor of I, and so I + J ∈ Γ. Therefore, by the
maximality of J , we deduce that J = I + J , and consequently I & J . �
Lemma 4.18. Let R be a right duo ring and I, J and L be left ideals of R such that
I ⊆ J . If I is a left zJ -ideal and J is a left zL-ideal, then I is a left zL-ideal.
Proof. Since I is a left zJ -ideal, we have Ma ∩J ⊆ I, for every a ∈ I. Moreover, Ma ∩L ⊆
J , for every a ∈ I, because I ⊆ J and J is a left zL-ideal. Thus Ma ∩ L ⊆ Ma ∩ J ⊆ I, for
every a ∈ I. Therefore I is a left zL-ideal. �
Theorem 4.19. Let R be a duo ring such that every proper ideal of R is a left relative
z-ideal. If R is a p-right duo ring, then every ideal of R is a z-ideal.
Proof. It is clear that R is a z-ideal. Let I be a proper ideal of R. Then I is a left relative
z-ideal, by hypothesis. It follows from Lemma 4.17 that there exists a maximal z-factor
J of I such that I & J . We claim that J = R. If J ̸= R, then J is also a left relative
z-ideal, and hence we can assume that L is a z-factor of J such that J & L, by Lemma
4.17. It follows that I is a left zJ -ideal and J is a left zL-ideal. From Lemma 4.18, we may
conclude that I is a left zL-ideal. Since I & J & L, L is a z-factor of I, which contradicts
the maximality of J . Therefore, J = R, and so I is a z-ideal. �
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