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Abstract

The aim of this paper is to generalize the notion of z-ideals to arbitrary noncommutative
rings. A left (right) ideal I of a ring R is called a left (right) z-ideal if M, C I, for
each a € I, where M, is the intersection of all maximal ideals containing a. For every
two left ideals I and J of a ring R, we call I a left zj-ideal if M, N J C I, for every
a € I, whenever J ¢ I and [ is a zj-ideal, we say that I is a left relative z-ideal. We
characterize the structure of them in right duo rings. It is proved that a duo ring R is von
Neumann regular ring if and only if every ideal of R is a z-ideal. Also, every one sided
ideal of a semisimple right duo ring is a z-ideal. We have shown that if I is a left zj-ideal
of a p-right duo ring, then every minimal prime ideal of I is a left zj-ideal. Moreover, if
every proper ideal of a p-right duo ring R is a left relative z-ideal, then every ideal of R
is a z-ideal.
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1. Introduction

Throughout this article all rings are associative with identity. The notion of z-ideals
which are both algebraic and topological objects was first introduced in [6] by Kohls.
These ideals play a fundamental role in studying the ideal structure of C(X), the ring
of real-valued continuous functions on a completely regular Hausdorff space X, see [6].
Although in [6], he defined these ideals topologically, in terms of zero-sets, he showed that
they can be characterized algebraically. Gillman and Jerison in [4], have proved it to be
a powerful tool in the study of both algebraic properties of function rings and topological
properties of Tychonoff spaces.

It was Mason [11], who initiated the study of z-ideals in arbitrary commutative rings
with identity. An ideal I of a commutative ring R is called a z-ideal (2°-ideal) if for
each a € I, the intersection of all maximal ideals (minimal prime ideals) containing a
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is contained in I. A. Rezaei Aliabad and R. Mohamadian in [12], characterized the
z-ideals and z°-ideals of formal power series ring on a commutative ring. They showed
that if R is a commutative ring, then an ideal I of formal power series ring R][[z]] is a
z-ideal if and only if I = (J,x), where J is a z-ideal of R. Also, they characterized a
relation between the set of z°-ideals of R[[z]|] and the set of z°-ideals of R.

Let I and J be two ideals of a commutative ring R. [ is said to be a zj-ideal if
MyNJ C I, for every a € I, where M, is the intersection of all maximal ideals containing
a. Whenever J ¢ I and I is a zj-ideal, we say that I is a relative z-ideal. This special kind
of z-ideals introduced and investigated by F. Azarpanah and A. Taherifar in [2]. They
have shown that for any ideal J in C'(X), the sum of every two z;-ideals is a zj-ideal if and
only if X is an F-space, where the F-space is a space for which every finitely generated
ideal of C'(X) is principal. A space X is called P-space if every prime ideal in C(X) is a
z-ideal. It is in [2] shown that every principal ideal in C'(X) is a relative z-ideal if and
only if X is a P-space. Also, they characterized the space X for which the sum of every
two relative z-ideals of C'(X) is a relative z-ideal. If I is an ideal of a semisimple ring and
Ann(I) # 0, A. R. Aliabad and F. Azarpanah and A. Taherifar in [1], have shown that
is a relative z-ideal and the converse is also true for each finitely generated ideal in C'(X).

These ideals are also studied further by others in commutative rings. In the following, we

present a generalization of z-ideals to noncommutative rings and investigate the structure
of them in right duo rings, which are rings in which every right ideal is a two-sided ideal.
In fact, we generalize the results in [1] to right duo rings. This paper is organized as
follows:
In the second section, we study some properties of ideals in right duo rings. In the third
section, we shall generalize the concept of z-ideal to noncommutative rings and we study
their structure in right duo rings. We show that every z-ideal of a right duo ring is
semiprime. Mason in [10], showed that if I is a z-ideal of a semisimple commutative ring,
then every minimal prime ideal of I is also a z-ideal. In a right duo ring, we consider
sufficient conditions that every minimal prime ideal of a z-ideal is also a z-ideal. We will
show that every ideal of von Neumann right duo rings is a z-ideal. Also, if every left ideal
of a right duo ring R is a z-ideal, then R is a von Neumann ring. Furthermore, every left
ideal of a semisimple right duo ring is a z-ideal.

In the fourth section, we generalize left relative z-ideals to noncommutative rings. We
define the concept of p-right duo rings to obtain equivalent condition to minimal prime
ideals of an ideal, and then study left relative z-ideals of their rings. We will present
sufficient conditions in order that if every proper ideal of a ring R is a left relative z-ideal,
then every ideal of R is a z-ideal.

Let us close this section by mentioning some symbols. Let R be a ring and I an ideal
of R. The set of all prime ideals of R is denoted by Spec(R). Also, Min(I) is the set of
all minimal prime ideals containing I, for each ideal I of R, and the Jacobson radical of
R is denoted by rad(R).

2. Some properties of structure of right duo rings

Recall that a ring R is called a right duo ring if each right ideal of R is a two sided ideal.
We can similarly define the notion of a left duo ring. A ring R is said to be a duo ring if
R is a right and left duo ring. Commutative rings and division rings are clearly duo ring.
Furthermore, any valuation ring arising from a Krull valuation of a division ring is always
duo ring, see [8, Exercise 19.9]. It is easily seen that any finite direct product of a right
duo ring is a right duo ring. Proposition 1.1 of [3] says that any homomorphic image of a
right duo ring is a right duo ring, and so is any factor ring of it. Gerg Marks in Proposition
5 of [9] shows that any power series ring of a right self injective von Neumann right duo
ring is a right duo ring. In particular, the power series ring of a division ring is a right
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duo ring. Further a von Neumann ring which any idempotent element of it is central, is a
right duo ring, by [5, Theorem 2.5]. It follows immediately from [3, Proposition 1.1] that

R
for every ideal I of a right (left) duo ring R, T is also a right (left) duo ring.

It is well known that in every right duo ring R, RzR = zR, for all z € R, and so
Rx C RxR = xR, see [3]. The following results will be needed in this paper.

Lemma 2.1 ([3]). Let R be a right duo ring and x € R. Then

(1) RzR = zR.
(2) Rx C zR.

We know that a ring R is called a Dedekind-finite ring if whenever z,y € R and zy = 1,
then yx = 1. Now, we assume that R is a right duo ring and ab = 1, for some a,b € R.
Then there exists an element r € R such that ab = br, by Lemma 2.1. Hence, we have
a=a.l =a(ab) = a(br) = (ab)r = 1.r = r, and so 1 = ba. Therefore, every right duo ring
is Dedekind-finite, see [8, Theorem 3.2].

It is well known that if P is a prime ideal of a right duo ring and zy € P, then x € P or
y € P, because zy € P implies that xRy C zyR C P, by Lemma 2.1. Since P is a prime
ideal, we have z € P or y € P. Therefore, we have the following Lemma:

Lemma 2.2. Let R be a right duo ring and P be a proper ideal of R. Then the following
statements are equivalent:

(1) P is a prime ideal.

(2) For every xz,y € R, if xy € P then x € P ory € P.
Therefore, if P is a prime ideal of R and ™ € P, for somex € R andn € N, then z € P.

Let R be a ring and I be an ideal of R. We denote by v/I the subset
{reR|3IneN, mel}

of R. It is easily seen from Lemma 2.1 that if P is a prime ideal of a right duo ring R,
then /P = P.

Lemma 2.3. Let R be a right duo ring and I and J be ideals of R. Then
VI+VICVT+J.

Proof. Let a € VI and b € /J. Then there exist n,m € N such that ™ € I and b" € J.
Now, we claim that (a + b)"t" € I + J. In fact, (a + b)™ " is the sum of 2™ elements
of the form f = cica- - - cmyn Where each ¢; = a or b. If at least m of these ¢;s are a, then
there exists a’ € R such that f = a™d’, by Lemma 2.1, and so f € I, because a™ € I. If
the number of the ¢; = a is smaller than m, then at least n of them are b, and hence there
exists b’ € R such that f = 0"/, by Lemma 2.1. Thus f € J, because b" € J. Therefore
(a+b)"t™ eI+ J. O

Proposition 2.4. Let R be a right duo ring and I be an ideal of R. Then /T is an ideal
of R.

Proof. Clearly, 0 € v/I. If a,b € /I, then a + b € /I, by Lemma 2.3. Now, assume
that @ € VI and r € R. Hence there exists n € N such that a™ € T , and so there exists
an element 1’ € R such that (ra)” = ™’ € I, by Lemma 2.1. Therefore ra € /I and
similarly we show that ar € V/I. ]

Let R be a ring and a € R. The intersection of all maximal ideals of R containing a
will be denoted by M,. We set M, = R when a is a unit.

Lemma 2.5. Let R be a right duo ring and a,b € R. Then My, = M,N M. In particular,
if a € R we conclude that Myn = M,, for every n € N,
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Proof. Clearly, for every x € M, we have M, C M,. Thus My, C M, and My, C My,
and so My, C M, N My, for each a,b € R. Conversely, let x € M, N M. We show that
every maximal ideal containing ab is also containing z. Assume that N is a maximal
ideal of R such that ab € N. Then a € N or b € N, by Lemma 2.2. If a € N, then
r € MoNMy, € M, CN. If b € N, then x € M, C N. Therefore + € N. Thus
My, N My C Mgy, and consequently My, = M, N M. ]

3. Generalization of z-ideals in a right duo ring

The z-ideals are studied further in commutative rings. These ideals are useful concept
in studying the ideal structure of the ring C'(X) of continuous real-valued functions on
a topological space X. In the following, we shall present a generalization of z-ideals to
noncommutative rings.

Definition 3.1. A left (right) ideal I of a ring R is called a left (right) z-ideal if M, C I,
forall a € 1.

In the following we show that every one sided z-ideal is an ideal.

Proposition 3.2. Let R be a ring and I be a left (right) z-ideal of R. Then I is an ideal
of R.

Proof. Let I be a left z-ideal of R and a € I. If N is a maximal ideal of R containing
a, then ar € N for every r € R. Thus M, C M,. On the other hand, since I is a left
z-ideal, we have M, C I. Therefore, ar € M., C M, C I, and so ar € I. Hence I is an
ideal. ]

Here in after a left (right) z-ideal of a ring is called a z-ideal, by Proposition 3.2.

Example 3.3. Every intersection of maximal ideals of a ring R is a z-ideal. In fact, every
intersection of z-ideals is a z-ideal.

Lemma 3.4. Let R be a ring and I be a left (right) ideal of R. Then the following
statements are equivalent:

(1) I is a z-ideal.

(2) For everya € R and b e I, if M, C My, then a € I.

Proof. 1 = 2. Let a € Rand b € I. Since [ is a z-ideal and b € I, we have M; C I.
Hence, if M, C My, then a € M, C M, C I, and so a € I.

2 = 1. Let I be a left ideal and a € I. For each x € M,, we have M, C M,. By hypothesis
x € I, and so M, C I. Therefore I is a z-ideal. ]

Let R be a ring and I be a left (right) ideal of R. The intersection of all z-ideals
containing I will be denoted by I,. For each element a € I, and for every z-ideal J of
R containing I, we have a € J. Then M, C J, and so M, C I,. Therefore, we have the
following Lemmas:

Lemma 3.5. For every left (right) ideal I of a ring R, the intersection of all z-ideals
containing I, which is denoted by I, is a z-ideal. In particular, 1, is the smallest z-ideal
containing I.

Lemma 3.6. Let R be a ring. Then the following statements hold.

(1) For every left ideals I and J of R, if I C J, then I, C J,.
(2) If {Ix}ren is any family of left ideals of R, then
AEA AEA

Proof. 1. Since every z-ideal containing J contains I, we see I, C J,.
2. For every € A, we have (\ycp In C I,,. Hence our claim is true, by part (1). O
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It is immediate that for every z-ideal I, we have I, = I. In the next two Propositions,
we study the structure of z-ideals in right duo rings.

Proposition 3.7. Let R be a right duo ring and I be an ideal of R. Then I C /I C I,.

Proof. Clearly, I C v/I. Now, we assume that € /T and J is a z-ideal containing I.
Thus there is a positive integer n such that 2" € I C J. Hence x € M, = My~ C J, by
Lemma 2.5. Therefore z € I, and so v C I,. O

Recall that a proper ideal I of a ring R is said to be a semiprime ideal if for every ideal
J of R, J? C I implies that J C I. As an immediate consequence of Proposition 3.7 and
[7, Theorem 10.11], we get the following result

Corollary 3.8. Let R be a right duo ring and I be a z-ideal of R. Then /T = 1. In
particular, I is a semiprime ideal of R.

Proposition 3.9. Let R be a right duo ring and I be an ideal of R. Then the following
statements hold.

(1) (VI)z = L.
(2) If I is a z-ideal, then (V). = I.
(3) VL = (VI)..

Proof. 1. Every z-ideal containing v/T also contains I. Therefore I, C (v/T).. Conversely,
Proposition 3.7 gives VI C I,. This means that I, is a z-ideal containing v/I. Thus
(vV/I). C I, and consequently (vI), = I..

2. Since [ is a z-ideal, we have I, = I. The proof is completed by (1).

3. We know that I, is a z-ideal of R. Corollary 3.8 yields /I, = I,. Therefore

VI = (\ﬁ)m by (1). O]

The following Proposition is a generalization of [11, Proposition 3.1] to noncommutative
case.

Proposition 3.10. Let R be a right duo ring. Then the following statements are equiva-
lent:

(1) For any z-ideals I and J, I + J is a z-ideal.

(2) For any ideals I and J, (I +J), =1, + J,.

(3) The sum of any nonempty family of z-ideals is a z-ideal.
(4) For every nonempty family {I,}aca of ideals,

(E:]@Lr: E:(Lﬁz
acA acA

Proof. 1 = 2. Since I, and J, are z-ideals, I, + J, is a z-ideal containing I + J, by
hypothesis. Hence (I +J), C I, + J,. It follows from Lemma 3.6 that I, +J, C (I 4+ J),.
Therefore (I + J), = I, + J,.

2 = 3. Let {I,}aca be a family of z-ideals and a € }° 4 Io. Then there exists a finite
subset F' of A such that a € }_ cp Io. Since I, is a z-ideal, we have (I,). = I, for every
«a € F. A simple induction argument shows that

(§:~%Jz: E:(Lﬂzzzi:]ﬁ-
acF ack ackF
Consequently, > cr 1o is a z-ideal, and so

Mo €Y IaC ) o

aclF acA
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Therefore ), c 4 Io is a z-ideal.
3 = 4. Let {Io}aca be a family of ideals. Since Ig C > c4la, for all B € A, we have
(Ig): € (X aea la),, for all g € A, by Lemma 3.6. Therefore

Z (IOé)Z g (Z Ia)z-
acA acA

Since (I,), is a z-ideal containing I, for all & € A, we may conclude from assumption
that 3 ,ca (Ia)- is a z-ideal containing ), 4 lo. Hence

(Z IOé)Z g Z (Ioz)z‘

acA a€A
Therefore

(Z Ia)z - Z (Ia)z-

a€cA acA

4 = 1. If I and J are z-ideals, then I, = I and J, = J. By hypothesis, we have
(I+J),=1,+J,. Therefore I+ J),=1,+J,=1+J,andso I+ Jisa z-ideal. [O

Lemma 3.11. Let R be a right duo ring and P be a prime ideal of R. Let n € N,
Iy, ..., In—1 be ideals and I, be a left ideal of R. Then the following statements are equiv-
alent:

(1)
(2)
3)

n
Proof. 1=2. (1, CI; C P.

i=1
2 = 3. Since I, is a left ideal of R, we have I1I5---1, C I,. On the other hand, I; is
an ideal, for every 1 < i < n — 1, and hence I1Is---1, C I;, for all 1 < ¢ < n. Thus

n
LI, C (L CP
i=1
3 = 1. Suppose that I; ¢ P and x; € I; \ P, for every 1 <i < n. Thus

C P, for some 1l < j<n.
i ©

I; C P

D

1
Iz I, C P

~

1T Xy € [115--- I, C P
which yields z; € P, for some 1 < j < n, by Lemma 2.2. This contradicts the choice of
Zj. ]
Proposition 3.12. Let R be a right duo ring and I an ideal of R. If I is a finite

intersection of mazximal ideals of R, then any minimal prime ideal of I is a z-ideal.

Proof. Since [ is a finite intersection of maximal ideals, Lemma 3.11 implies that any
minimal prime ideal of I is a maximal ideal. Hence each minimal prime ideal of I is a
z-ideal. (]

Recall from [7, Definition 10.3] that a nonempty set S of a ring R is said to be m-system
if for any a,b € S, there exists r € R such that arb € S.

Theorem 3.13. Let R be a right duo ring, I a z-ideal of R and @ be a minimal prime
ideal of I. If for every a,b € R with a ¢ Q, there exists r € R~ Q such that ab = br, then
Q is a z-ideal.

Proof. Suppose @ is not z-ideal. Then there exist elements a € R~ @ and b € () such
that M, C M, by Lemma 3.4. We now assume that

S=(R~Q)U{b'c¢ | neN, ce R\Q }.
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We first prove that riro € S, for every ri,79 € S. Consider 71,19 € S.

-If ri,79 € R\ Q, then 7172 ¢ @, by Lemma 2.2, and so riry € S.

- If there are c1,co € R~ @ such that 71 = b"c; and ro = b™co, for some positive integers
n and m, then ¢ = b™r, for some r € R\ (), by hypothesis. Therefore

riry = brcib™ey = b Mrey € §

because r,co € R\ Q, and so rca ¢ @, by Lemma 2.2.
-Ifr; € RN Q and ro = b"c, for some n € N and ¢ € R\ @, then there exists an element
r € R~ @ such that 1" = b"r, by hypothesis. This yields

r1ir9 = r1b"c = b"re.

Since rc¢ ¢ @, we have rirg € S. Also, we see that ror; = b"cry € S. Hence for every
r1,72 € S we have riro € S. Therefore S is an m-system of R.

Now, we show that INS =0. If x € INS, thenx € I C Q and = € S. Hence z = b"c,
for some n € N and ¢ € R~ Q. From Lemma 2.5 we see that

ac € Mye = My O\ M. C MyN M, = My N M. = M, C I

because M, C M, and I is a z-ideal. This yields ac € ). Hence a € Q or ¢ € @, by
Lemma 2.2. This contradicts the choice of a and c¢. Therefore I NS = (). By Zorn’s
Lemma, there exists an ideal I C P which is maximal with respect to being disjoint from
S. From [7, Proposition 10.5] it follows that P is a prime ideal. Since SN P = () and
be S, wehave I C P& Q. However, this contradicts our assumption that @ is a minimal
prime ideal of I. Therefore () is a z-ideal. ]

We know that the Jacobson radical of a ring R, which denoted by rad(R), is the
intersection of all maximal right (or left) ideals of R. Now, if R is a right (or left) duo
ring, then every maximal right (or left) ideal is a maximal ideal. Therefore, if R is a right

(or left) duo ring, then we can say that rad(R) is the intersection of all maximal ideals of
R.

Example 3.14. Let D be a division ring and C be the field of complex numbers. Let
R = D x C[x]. We know that R is a duo ring. If f € rad(C[z]), then 1 — xf is a unit
of C[z], by [7, Lemma 4.1], which yields f = 0. Hence rad(C[z]) = 0. This implies that
rad(R) = rad(D) x rad(Clz]) = 0, and so I = {0} is a z-ideal of R. If P is a prime ideal of
R, then P = 0xC[z] or P = D x @, where @ is a prime ideal of C[z]. obviously, D x 0 and
0 x C are minimal prime ideals of I which 0 x C is maximal, and so is a z-ideal. Consider
(a, f),(c,g9) € R such that (a, f) ¢ D x 0. It is clear that ac = cr, for some r € D. Thus

(a, f)(¢, 9) = (ac, fg) = (er,gf) = (¢, 9)(r, [).

Since (a, f) ¢ D x 0, we have f # 0, and so (r, f) ¢ D x 0. Therefore D x 0 is a z-ideal,
by Theorem 3.13.

Proposition 3.15. Let R be a right duo ring and I be a left ideal of R. Then (I™), = I,
for every n € N.

Proof. Clearly, (I"), C I,. For every x € I, we have 2" € I" C (I"),, and so
Myn C (I™),. From Lemma 2.5, we see that x € M, = Myn C (I™),. Hence I C (I"),.
By Lemma 3.5, (I"), is a z-ideal, and so I, C (I™),. Therefore (I"), = I,. O

Recall that a ring R is said to be a von Neumann reqular ring if for any a € R, there
exists an element r € R such that a = ara. Furthermore, for any ideal I of a von Neumann

R
regular ring R, it is clear that T is also a von Neumann regular ring. Therefore, we have

Proposition 3.16. Let R be a right (or left) duo ring. If R is a von Neumann regular
ring, then every ideal of R is a z-ideal.
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R
Proof. Let I be a proper ideal of R. Since T is a von Neumann regular ring, we have
R R
ra,d(T) =0, by [7, Corollary 4.24]. On the other hand, T is also a right (or left) duo ring.

R R
Thus rad(—) is the intersection of all maximal ideals of —. Hence [ is the intersection of

all maximal ideal of R containing I, and so [ is a z-ideal. ]

Proposition 3.17. Let R be a right duo ring. If every left ideal of R is a z-ideal, then R
is a von Neumann regqular ring.

Proof. Let a € R and I = Ra. By hypothesis, I is a z-ideal, and so I, = I. Hence
(I?), = I, = I, by Proposition 3.15. On the other hand, from Lemma 2.1, we see that
I? = RaRa = aRa. Since I? is a left ideal, I? is a z-ideal, and so (I?), = I?. Hence
I? = (I?), = I, = I. Then we may conclude from a € I = I? = aRa that there exists an
element r € R such that a = ara. Therefore R is a von Neumann regular ring. U

The following result, which is a generalization of [10, Theorem 1.2] to noncommutative
case, follows immediately from Proposition 3.16 and Proposition 3.17.

Corollary 3.18. Let R be a duo ring. Then R is a von Neumann regular ring if and only
if every ideal of R is a z-ideal.

Recall that if I and J are two left ideals of a ring R, then the subset { t € R | I C J}
is denoted by (J :; I). It is easily seen that (J ;; I) is an ideal of R. In particular, for each
left ideal I, the subset (0 :; I), which will be denote by Ann;(I), is also an ideal of R. We
call it the left annihilator of I.

Proposition 3.19. Let I and J be two left ideals of a right duo ring R. If J is a z-ideal,
then (J : I) is a z-ideal of R.

Proof. By Lemma 3.4, it is sufficient to show that for every a € R and b € (J y I), if
M, C My then a € (J ;; I). Now, we assume that a € R, b € (J ;; I) and M, C M. Thus
for every x € I, we have bx € J. Moreover

Maa::MaﬂngMmew:be

by Lemma 2.5. Since bx € J and J is a z-ideal, My, C J, and so ax € My, C My, C J.
Therefore a € (J 3 I). O

Lemma 3.20. If e is an idempotent element of a right duo ring R, then
Re = Anni(R(1 — e)).

Proof. For every r € R, we have reR(1 — e) C re(l — e)R = 0, by Lemma 2.1. Hence
Re C Anny(R(1—¢)). We now assume that r € Ann;(R(1—e¢)). Thus r—re =r(1—e) =0,
and so r = re € Re. O

From [7, Theorem 2.5], it follows that every right ideal of a ring R is a direct summand
of R if and only if every left ideal of R is a direct summand of R. A ring satisfying these
equivalent conditions is called a semisimple ring.

Proposition 3.21. Let R be a semisimple right duo ring. Then every one sided ideal of
R is an ideal.

Proof. Since R is a right duo ring, every right ideal of R is an ideal. By [7, Theorem
4.25], semisimple rings are exactly the left Noetherian von Neumann regular rings. Let I
be a left ideal of R. Since R is left Noetherian, every left ideal of R is finitely generated,
and so I = Re, for an idempotent element e of R, by using the characterization (3) of
[7, Theorem 4.23]. Hence I = Ann;(R(1 — e)), by Lemma 3.20, and consequently I is an
ideal of R. g
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As observed in the proof of Proposition 3.21, every ideal of a semisimple right duo ring
is an annihilator of a left ideal. On the other hand, we know from [7, Theorem 4.25] that
rad(R) = 0, for every semisimple ring R, and hence the zero ideal of R is a z-ideal. Now,
we may by using Proposition 3.19 conclude that the following result.

Corollary 3.22. Fvery ideal of a semisimple right duo ring is a z-ideal.

4. Relative z-ideals in a right duo ring

The main goal of this section is to introduce left relative z-ideals. We define the concept
of p-right duo rings to obtain equivalent condition to minimal prime ideals of an ideal,
and then study left relative z-ideals of their rings. Finally, we prove that if every proper
ideal of a p-right duo ring R is a left relative z-ideal, then every ideal of R is a z-ideal.

Definition 4.1. Let J be a left ideal of a ring R. A left ideal I of R is said to be a left
zj-ideal if M, N J C I, for every a € I. Whenever, for a left ideal I, there exists a left
ideal J such that J € I and I is a left z;-ideal, we say that I is a left relative z-ideal and
J is called a z-factor of I.

Recall that a ring R is said to be a reduced ring if R has no nonzero nilpotent element.
In the following, we introduce a class of left relative z-ideals in a right duo ring. Before
giving it, let us state the following Lemma which follows immediately from Lemma 2.2.

Lemma 4.2. For each right duo ring R, if rad(R) = 0, then R is a reduced ring.

Proposition 4.3. Let R be a right duo ring with rad(R) = 0. If I is a left ideal of R
such that Anny(I) # 0, then I is a left relative z-ideal.

Proof. First, we show that M, N Ann;(I) = 0, for every a € I. Suppose that
x € My N Anny(I). Then M, C M, and za € I = 0, for every a € I. From Lemma 2.5,
it thus follows that

x € My =M, NMy, =My, = My=rad(R) = 0.

Hence M, N Anny(I) = 0. We now put J = Anny(I), and show that J & I. If J C I, then
J? C JI = Anny(I)I = 0. Thus J? = 0, and so J = 0, because R is a reduced ring, by
Lemma 4.2. But this contradicts the assumption that J = Anny(I) # 0. Therefore J € I,
and so [ is a left relative z-ideal. O

Definition 4.4. A right duo ring R is called a p-right duo ring if for every prime ideal P
of R and every elements a,b € R, which a ¢ P, there exists r € R \. P such that ab = br.

In the following, we give some examples of p-right duo rings.

Proposition 4.5. Let R be a prime right duo ring. If R has a unique nonzero prime
ideal, then R is a p-right duo ring.

Proof. Let P be the unique nonzero prime ideal of R and a,b € R such that a ¢ P. If
b = 0, then ab = bl. Now, we assume that b # 0. Since R is a right duo ring, ab = br,
for some r € R. On the other hand, P is the unique nonzero prime ideal of R and a ¢ P.
Thus a is a unit element of R which yields b = a~'br = br'r, for some ' € R. It follows
b(1 —r'r) = 0. Since R is a prime right duo ring and b # 0, we have r'r = 1. Therefore
r¢ P. O

Example 4.6. Let D be a division ring and R = D x Z. We show that R is a p-right duo
ring. It is easily seen that R is a right duo ring. If P is a prime ideal of R, then P = D x 0,
or P=0xZor P= D x pZ, for some prime number p. We assume that (a,b), (¢,d) € R
and (a,b) € P. It is clear that ac = cr, for some r € D. Thus

(a,b)(c,d) = (ac,bd) = (cr,db) = (¢,d)(r,b).
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We consider the following three cases:

1. If P =D x 0, then b # 0, because (a,b) ¢ P, and so (r,b) ¢ P.

2. If P =0 X Z, then a # 0, because (a,b) ¢ P. Now, if ¢ # 0, then r # 0, and so
(r,b) ¢ P, and if ¢ = 0, we have

(a,b)(c,d) = (0,bd) = (0,db) = (¢,d)(1,b)
which (1,b) ¢ P.
3. If P = D x pZ, for some prime number p, then p t b, because (a,b) ¢ P, and so
(r,b) ¢ P.

Proposition 4.7. Let R be a p-right duo ring with rad(R) = 0 and P be a prime ideal
of R. Let T' be the set of all z-ideals of R contained in P. Then I' (partially ordered by
inclusion) has a mazximal element. Furthermore, every maximal element of T' is a prime
z-ideal of R.

Proof. Since rad(R) = 0, the zero ideal of R is a z-ideal, and so I # . If P is a z-ideal,
then clearly P is the only maximal element of I'. We now assume that P is not z-ideal.
If 3 is a chain in ', then it is quite obvious that (J; cx Io is a 2-ideal contained in P.
Therefore I' has a maximal element J, by Zorn’s Lemma. Hence J ; P, because P is not
z-ideal. Suppose that @ is a minimal prime ideal of J such that J C () C P. Theorem
3.13 implies that Q is a z-ideal, because R is a p-right duo ring, and so @ € I'. Since J is
a maximal element in I', we have J = (). Therefore J is a prime z-ideal. O

Proposition 4.8. Let R be a ring and I be a proper ideal of R. Let
r={SCR | Sisan m—system and SNI =10 }.

If P is a prime ideal of R, then P € Min(I) if and only if R~ P is a mazimal element
of T.

Proof. We know from [7, Corollary 10.4] that an ideal P of R is prime if and only if R~ P
is an m-system. Therefore, if T'= R ~ P is a maximal element of I', then P is a prime
ideal of R. Also, TN I = () implies that I C P. Now, we assume that there exists a prime
ideal @ of R such that I C @ C P. Tt follows that (R~ Q) NI = 0 and R\ Q is an
m-system, by [7, Corollary 10.4]. Thus R~ @ € I". Since T'C R\ @ and T is a maximal
element of I', we have R\ @ =T, and so P = Q. Therefore P € Min(I).

Conversely, if P € Min(I), then T = R ~ P is an m-system, by [7, Corollary 10.4].
Furthermore, TN I = (). Thus T € T'. Suppose that there exists S € T such that T' C S.
Hence S is an m-system and S NI = (). By Zorn’s Lemma, there exists an ideal I C @
which is maximal with respect to being disjoint from S. From [7, Proposition 10.5], it
follows that @ is a prime ideal. Since SN Q = () and T'C S, we have Q NT = (). Hence
I C Q C P, and consequently Q = P, because P € Min(I). It follows from PN.S = ()
that SC R~ P =T, and so T = S. Therefore, T is a maximal element of I'. O

It is well known that, if I is an ideal of a commutative ring R, then P € Min(I) if and
only if for each a € P, there exist ¢ € R~ P and n € N such that (ac)” € I. We need
generalization of this conclusion for the noncommutative rings. In the following Lemma,
we will generalize it to right duo rings.

Proposition 4.9. Let R be a p-right duo ring and I be a proper ideal of R. If P is a
nonzero prime ideal of R containing I and T = R~ P, then the following statements are
equivalent:

(1) P e Min(I).
(2) For every x € P, there exist y,z € T and n € N such that yx"z € I.
Proof. 1 = 2. Let P € Min(Il) and 0 # x € P. If

'={SCR | Sisanm—system and SNI =10 },
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then T is a maximal element of I'; by Proposition 4.8. Now, we assume that
T'={yz"z | yz€T, neNU{0} }.

Let y12™z1, yox" 29 € T'. From Lemma 2.2, it is clear that z1yo € T, and hence there is
an element r € T" such that z1yox™ = x™r, because R is a p-right duo ring. Thus

Y1z 2 yax" 20 = 12" Mz € T

Therefore T' is an m-system. Obviously, € T' \. T, consequently T & T'. Hence T" ¢ T,
by the maximality of T. However, this yields 7/ N I # (). Therefore, there exist y,z € T
and n € N such that yz"z € I.

2 = 1. Let @ be a prime ideal of R such that I C ) C P. For each x € P, there exist
n € N and y, z € T such that yz2"z € I C @, by hypothesis. Since @ is a prime ideal and
Y,z ¢ @, we have x € @, by Lemma 2.2. Therefore Q = P, and so P € Min([). O

In the following Proposition, which is an analogue of [1, Lemma 2.1], we give conditions
that, whenever J is a left ideal, then every minimal prime ideal of a left zj-ideal, is also
a left zj-ideal.

Proposition 4.10. Let R be a p-right duo ring, I be an ideal and J be a left ideal of R.
If I is a left zj-ideal, then every minimal prime ideal of I is a left zj-ideal.

Proof. Let P € Min(I). For every element a € P, there exist elements b,c € R\ P
and n € N such that ba"c € I, by Proposition 4.9. Since I is a left zj-ideal, we have
Mpgne N J C I. Now, it follows from Lemma 2.5 that

MyN M, N\ M. J =My Mgn N M. J = MygneNJ CIC P,

Obviously, My, M. Z P, because b,c ¢ P. It follows that M, NJ C P, by Lemma 3.11,
and so P is a left zj-ideal of R. (]

Proposition 4.11. Let R be a right duo ring and J be a left ideal of R. If P is a prime
ideal of R for which J ¢ P, then P is a left zj-ideal if and only if P is a z-ideal.

Proof. 1t is clear that if P is a z-ideal, then P is also a left zj-ideal. Conversely, if P is a
left z;-ideal, then M, NJ C P, for each a € P. Since J ¢ P, Lemma 3.11 yields M, C P,
for each a € P. Hence P is a z-ideal of R. ]

Let R be a p-right duo ring and I be an ideal of R. From Lemma 2.2, it is clear that
VI C P, for each P € Min(I). On the other hand, if P € Min(I) and z € R~ P, we
conclude from Proposition 4.9 that 2™ ¢ I, for every n € N, and so = ¢ V/I. Therefore,

we have
Vi= () P

PeMin(I)

The following Lemma corresponds to [1, Lemma 2.2].

Lemma 4.12. Let R be a p-right duo ring, I be an ideal and J be a left ideal of R. If I
is a left zj-ideal, then I, N J C 1.

Proof. As we have seen in the preceding paragraph

Vi= () P

PeMin(I)
From Proposition 3.9, it follows that

LnJ=WD).nJ=( (] P)nJ
PeMin(I)
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Moreover, Lemma 3.6 yields
( N P:=< [ P
PeMin(I) PeMin(I)
Thus
LnJc( () P)nJ (4.1)
PeMin(I)

Since I is a left zj-ideal, from Proposition 4.10, we see that P is a left zj-ideal, for every
P € Min(I). However, we conclude from Proposition 4.11 that J C P or P is a z-ideal,
for every P € Min(I).

We now assume that P € Min(I). If P is a z-ideal, then P, = P, and so P,NJ = PNJ.
If J C P, then we also have P, ".J = J = PN J. Therefore

( N P)nJ=( (| P)nJ=VInJ
PeMin(R) PeMin(R)
and from (4.1) we get
LnJCVInd

Let us finally prove that v/TNJ C I. If z € /TN J, then there is a positive integer n such
that ™ € I. Since I is a left zj-ideal, we have M,~» N J C I. Hence, from Lemma 2.5, it
follows that

reM,NJ=Mn~nNnJCI.
Thus \/TOJQI, and consequently Izmjgﬁmjgl. O

Lemma 4.13. Let R be a p-right duo ring and J be a left ideal of R. If I is an ideal of
R, then I is a left zj-ideal if and only if I is a left zry j-ideal.

Proof. If I is a left zy j-ideal, then clearly [ is a left zj-ideal. Conversely, let I be a left
zj-ideal. Since I C I, from Lemma 4.12 and modular law follow that

ILn(I+J)=I+(I,nJ)CI.

For every a € I, we have M, C I,, because I C I, and I, is a z-ideal. Hence
M,n(I+J)CL,Nn(I+J)C 1.

Therefore, I is a left zy4 ;- ideal. 0

Lemma 4.14. Let R be a right duo ring. If I and J are two left ideals of R such that at
least one of them is ideal, then I N J is a left zj-ideal if and only if I is a left zj-ideal.

Proof. We first assume that J is an ideal. If I is a left zj-ideal, then for every a € I N J,
we have M, NJ C I, and so M,NJ CINJ. Hence I NJ is a left zj-ideal.

Conversely, let I N J be a left zj-ideal and a € I. We must show that M, NJ C I. We
now assume that x € M, NJ. Thus za € I NJ, because J is an ideal. Since I N J is a left
zj-ideal, M., N J C I NJ. From Lemma 2.5, we see that

reM, "M, NI =M, NJCINJCI

Therefore M, NJ C I, and so I is a left z-ideal.
Now, if I is an ideal, then we can prove this Lemma by a similar argument. ]

The following result is an analogue of [1, Proposition 2.5].

Proposition 4.15. Let R be a p-right duo ring and M be a mazximal ideal of R. If I is
an ideal of R, then I is a z-ideal if and only if I N M is a z-ideal.
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Proof. If I is a z-ideal, then clearly I N M is a z-ideal. We now assume that I N M is a
z-ideal of R. If I C M, then I = INM, and so I is a z-ideal. If I € M, then M, C INM,
for every a € INM, and so M;NM C INM. Thus INM is a left zp;-ideal. It follows from
Lemma 4.14 that I is a left zp;-ideal. Now, Lemma 4.13 implies that I is a left zr-ideal,
because I + M = R. However, [ is a z-ideal of R. O

The following Proposition is an analogue of [1, Proposition 2.6] and [2, Proposition 2.2].

Proposition 4.16. Let R be a p-right duo ring and J be an ideal of R with J ¢ rad(R).
If J is not a z-ideal, then there exists an ideal I of R such that I & J and I is a left
zy-ideal which is not a z-ideal.

Proof. Since J ¢ rad(R), there is a maximal ideal M of R such that J ¢ M. Thus
I =JNM is an ideal of R and I & J. Obviously, for every a € I, M,NJ C MnNJ =1,
and so [ is a left zj-ideal of R. From Proposition 4.15, it follows that .J is a z-ideal if and
only if I is a z-ideal. Therefore, the desired conclusion trivially holds. U

Lemma 4.17. Let R be a p-right duo ring and I be an ideal of R. If I is a left relative
z-ideal of R, then the set

'={J | Jisaz—factor of I}

has a maximal member with respect to inclusion. Furthermore, every mazimal element of
I' properly contains I.

Proof. Obviously, I" # (). If ¥ is a non-empty totally ordered subset of I', then clearly
L= U J is a left ideal which L ¢ I. We will show that I is a zz-ideal. For every a € I,

Jex
we haxefe

M,NL=M,n(|J )= M.nJ)C1,
Jes Jex

because J is a z-factor of I, for all J € X, and so M, "L C I. Hence [ is a left relative
zr-ideal, and consequently [ is an upper bound for ¥ in I". From Zorn’s Lemma, we see
that I' has a maximal element.

Now, we show that every maximal element of I" properly contains I. If J is a maximal
element of T, then I is a left z;-ideal and J ¢ I. Hence [ is a left zy j-ideal, by Lemma
4.13. Since I +J ¢ I, I+ J is a z-factor of I, and so I + J € I'. Therefore, by the
maximality of J, we deduce that J = I + J, and consequently I & J. ]

Lemma 4.18. Let R be a right duo ring and I,J and L be left ideals of R such that
1 CJ. If I is a left zj-ideal and J is a left zp-ideal, then I is a left zp-ideal.

Proof. Since I is a left zj-ideal, we have M,NJ C I, for every a € I. Moreover, M,NL C
J, for every a € I, because I C J and J is a left zp-ideal. Thus M,NL C M,NJ C I, for
every a € I. Therefore I is a left zp-ideal. O

Theorem 4.19. Let R be a duo ring such that every proper ideal of R is a left relative
z-ideal. If R is a p-right duo ring, then every ideal of R is a z-ideal.

Proof. 1t is clear that R is a z-ideal. Let I be a proper ideal of R. Then [ is a left relative
z-ideal, by hypothesis. It follows from Lemma 4.17 that there exists a maximal z-factor
J of I such that I & J. We claim that J = R. If J # R, then J is also a left relative
z-ideal, and hence we can assume that L is a z-factor of J such that J & L, by Lemma
4.17. Tt follows that I is a left zj-ideal and J is a left zp-ideal. From Lemma 4.18, we may
conclude that I is a left zz-ideal. Since I & J & L, L is a z-factor of I, which contradicts
the maximality of J. Therefore, J = R, and so [ is a z-ideal. U
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