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AIM AND SCOPES 
Journal of Cellular Neuroscience and Oxidative Stress is an 
online journal that publishes original research articles, 
reviews and short reviews on the molecular basis of 
biophysical, physiological and pharmacological 
processes that regulate cellular function, and the control 
or alteration of these processes by the action of receptors, 
neurotransmitters, second messengers, cation, anions, 
drugs or disease. 
 
Areas of particular interest are four topics. They are; 
 
A- Ion Channels (Na+- K+ Channels, Cl– channels, Ca2+ 

channels, ADP-Ribose and metabolism of NAD
+
, Patch- 

Clamp applications) 
 
B- Oxidative Stress (Antioxidant vitamins, antioxidant 
enzymes, metabolism of nitric oxide, oxidative stress, 
biophysics, biochemistry and physiology of free oxygen 
radicals) 
 
C- Interaction Between Oxidative Stress and Ion Channels 
in Neuroscience 
(Effects of the oxidative stress on the activation of the 
voltage sensitive cation channels, effect of ADP-Ribose 
and NAD+ on activation of the cation channels which 
are  sensitive  to  voltage, effect of the oxidative stress 
on activation of the TRP channels in neurodegenerative 
diseases such Parkinson’s and Alzheimer’s diseases) 
 
D- Gene and Oxidative Stress  
(Gene abnormalities. Interaction between gene and free 
radicals. Gene anomalies and iron. Role of radiation and 
cancer on gene  polymorphism) 
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Abstract 
Neurological disorders (NDs) are an important 

cause of mortality and constitute 11.84% of total deaths 
globally according to WHO data 2015. It is estimated to 
increase up to 12.22% in year 2030. Most common NDs 
can be account for four main groups such as 
Alzheimer’s disease (AD), Amyotrophic lateral 
sclerosis (ALS), Huntington’s disease (HD) and 
Parkinson’s disease (PD). Among these diseases, only 
AD is the seventh common death cause worldwide and 
until recently the therapeutic approaches are still lack to 
decrease of prevalence. Hence, developing new 
strategies  to  understand  molecular   targets   or   break 

 
 
 
 
 

 
 

 
 
 

 
 

down to cascade of cellular degenerative process in the 
neurodegeneration should be investigated by future 
studies. In cell culture studies, many types of tissues and 
cells can be cultivated to be a minimized model to 
normal or pathophysiological status of disorders. There 
are lots of methodology or technique to compose 
efficient and respective neurodegenerative disease 
models in cell lines such as COS-7, HC2S2, HEK-293, 
HeLa, Neuro-2a, NSC-34, PC-12, and SH-SY5Y. We 
indicated best medium formula to growth of neuronal 
cells as well as differentiation chemicals and 
time/dosages. In the review, it was aimed to summarize 
not only give information about cell lines, 
methodological procedures and molecular mechanisms 
of the diseases but also represent future perspective and 
offers to this field of neuroscience research. 

Keywords: Alzheimer’s disease, Huntington’s disease, 
Parkinson’s disease, Amyotrophic lateral sclerosis, 
Cellular models 

Introduction 
Neurological disorders (NDs) are generally 

characterized progressive neuronal damage and resulted 
with destruction of neuron structure or loss of function 
and finally apoptosis. Systemic indicators of NDs are 
going with low quality of life, personal care necessary, 
as age-related loss of mental and motor functions, life-
threatening and death. NDs debouch with different 
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reasons including alcoholism, genetically factors, 
stroke, chemicals and toxins however sometimes 
couldn’t root on a clear reason. The main separating 
difference them to other nervous system diseases is a 
phenomenon that neurodegeneration. Actually, it is 
basically as a consequence of degradation of protein 
architecture or a genetic defect in a chromosome. NDs 
can be divided into four main groups such as 
Alzheimer’s disease (AD), amyotrophic lateral sclerosis 
(ALS), Huntington’s disease (HD) and Parkinson’s 
disease (PD). However, prion diseases, spinal muscular 
atrophy (SMA) and spinocerebellar ataxia (SCA) can 
also be classified under NDs. According to the WHO 
2016 data, AD is the fifth rank of ten common death 
causes. Because of many ND types have no cure, 
understanding to cellular and molecular basis of 
neurodegeneration is very important to develop new 
therapeutic strategies (https://www.who.int/news-
room/fact-sheets/detail/the-top-10-causes-of-death). 
Cellular models are given basic, sustainable, economic 
and as much as possible optimized outputs of the 
systemic disorders under in vitro conditions. Moreover, 
in vitro model approaches are using for many 
pathologies including cardiovascular and respiratory 
disorders, various cancers, ischemia models, viral and 
bacterial diseases as well as neurological diseases and 
also provide indispensable solutions for molecular 
levels of cellular anomalies and reversals. Day by day 
researchers come up with new in vitro model 
approaches or therapeutic aspects for cellular mimics of 
NDs. They are not only contributed to animal and 
human phase studies for later but also put out novel data 
in itself. Hence, in this review, cell line models of four 
famous ND types are criticized and general features of 
in vitro models are tried to summarize. 

 
In vitro approaches to cellular and molecular basis of 
NDs 

Neurodegeneration used as an umbrella term, 
caused by the situations which are directly or indirectly 
affecting to neuronal functions, including age, 
chemicals, unprecedented protein expressions and 
genetic defects in the nervous system. Therefore, every 
pathophysiological condition in the nervous system such 
as multiple sclerosis, hypoxia and metabolic defects are 
not referred to as neurodegeneration. NDs come out 
from several parts of the brain and so they are grouped 

under cerebral cortex, basal ganglia and spinal cord 
originated causes. Although more than a hundred 
different NDs are diagnosed, researchers focus on 
treatments of four types that approved as more 
abundant. For example, the diseases affect cerebral 
cortex classified into dementing (AD) and non-
dementing status. Basal ganglia related diseases 
affecting to substantia nigra, thalamic and brain stem 
nuclei characterized by movement anomalies and 
grouped as hypokinetic (PD) and hyperkinetic (HD) 
conditions. The diseases highly affecting to spinal cord 
is another separate subgroup including ALS and spinal 
muscular atrophy (Przedborski et al. 2003). Growing 
evidences proved that apoptosis, calcium signaling, 
oxidative stress and mitochondrial dysfunction are 
related with neurodegeneration. Even so, almost ten 
percent of NDs are assessed as relevant to hereditary 
factors. There are some protein factors under the 
mechanism of neurodegeneration (Soto 2003; Williams 
and Paulson 2008; Hettiarachchi et al. 2009). 
Extracellular amyloid-β deposition as inclusions and 
excessive phosphorylation of cytosolic tau protein 
underlie the molecular basis of AD therefore induce the 
neurodegeneration and cell death (Hasegawa 2016; 
Coskuner-Weber and Uversky 2018). Biochemical 
hallmarks of ALS are also modified and aggregated 
proteins that accumulate in cytosol of lower and upper 
motor neurons. The transactive response DNA-binding 
ribonucleoprotein 43 (TDP-43) and the copper/zinc-
binding superoxide dismutase (SOD1) deposits are 
considered to be signs of ALS (Chong and Forman-Kay 
2016; Hanspal et al. 2017). The HD is an autosomal 
dominant characterized neurodegenerative disease and 
trinucleotide codon repeats (CAG)n of exon 1 in HTT 
gene cause to synthesis of poly-glutamine chains in 
huntingtin protein mutant (mHtt) structure. Cytosolic 
aggregation of mHtt is the reason why impairment of 
protein degradation and folding metabolisms in cytosol, 
it induces mitochondrial dysfunction and disrupts 
synaptic signaling (Labbadia and Morimoto 2013). 
Presence of α-synuclein (Lewy bodies) triggers loss of 
dopaminergic neurons in substantia nigra, cause of PD 
(Smith et al. 2005; Dadakhujaev et al. 2010).  

In cellular models, neurodegeneration can induce 
by chemicals (i.e. okadaic acid), neurotoxins (i.e. 
rotenone) or directly mutant protein metabolites (i.e. 
amyloid-β) of the diseases.  
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Table 1. Effects of various differentiation agents to neuronal cell lines. Most of differentiators target to PKC pathway. 
PKC activation or inhibition may cause to increasing neuronal characterization and decreasing cellular proliferation and 
metabolic activity. (Reductions: dbcAMP: dibutyryl cAMP sodium salt, EGFR: epidermal growth factor receptor, 
ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, FCS: fetal calf serum, NGF: neuronal growth factor, 
NMDA: N-methyl-D-aspartate, PKC: protein kinase C, PMA:  Phorbol 12-myristate 13-acetate, (also known as TPA), 
RA: retinoic acid) 
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However, each neurodegenerative disease is affected to 
different metabolic pathways of the neuronal cells, and 
various functional regions of the brain tissues. 
Generally, degeneration of neurons is resulted to 
apoptosis, and in pathological regions of the brain, loss 
of its function. Degeneration can be spread in the 
similar functional group of the cells and tissues; thus, 
functional loss also invades by the time. Local or 
general shrinkage of the brain is also observed due to 
decrease of cell viability and increase of neuronal 
apoptosis. 

There are a lot of restrictions understanding of 
molecular machinery in many disorders. Lack of in vitro 
models, studying difficulty of disease affected cells and 
tissues, official ethical commitments about reaching the 
patient’s samples and physiological features of neuronal 
and cardiac systems are make the cellular models of 
diseases much necessary (Bahmad et al. 2017). Because 
of less staff, time and economical necessities and 
getting highly optimized results with cell culture 
studies, researchers are used in vitro mimicking of 
pathophysiological conditions in cellular models. 
Although, it’s very difficult to make inferences about 
systemic pathologies and whole-body effects of 
diseases, the advantages of cell culture studies become a 
basement level going across to in vivo and phase studies 
and very suitable to understanding cellular machinery of 
the disease progression. 

 
Cell line preference to neurodegeneration studies 

Investigators have to choose proper cellular model 
systems and induction methods to establish a functional 
and reflective experimental model for diseases. There is 
limited number of cell line utilized as disease model to 
investigate neurodegeneration due to lack of neuronal 
originated cell line counts. However, sometimes, 
researchers focus on just toxic or mutant protein 
production pattern of neurodegeneration and they have 
been used non-neuronal originated cell lines such as 
African green monkey kidney COS-7 (ATCC, CRL-
1651) and HEK-293 (ATCC, CRL-1573) and HeLa 
(ATCC, CCL-2). It will be taken the neuronal cell lines 
to the center of this paper and summarize five most 
common for the neurodegeneration studies such as 
HC2S2, Neuro-2a, NSC-34, PC-12 and SH-SY5Y cell 
lines.  

The HC2S2 (RRID: CVCL_6A80) is neural 

progenitor cells firstly isolated by rats then used for HD 
model. Complete growth medium formula for HC2S2 
cell line is that DMEM and HAM’S F12 basal medium 
mixture (1:1 volume ratio) containing 1% N2 
supplement (100x) at a final concentration and 
additional antibiotics solutions needed (Park EM et al. 
2005).  

The Neuro-2a (N2a; ATCC, CCL-131) is a mouse 
brain neuroblastoma cell line widely used for 
neurodegeneration and toxicology studies. Complete 
growth medium formula for N2a cells is that DMEM 
basal medium including 10% FCS and 1% penicillin-
streptomycin antibiotics solution at a final concentration 
(Lee ES et al. 2015). 

The neuroblastoma x spinal cord clone-34 (NSC-
34; Cedarlane, CLU140) is a spinal cord motor neuron 
and mouse neuroblastoma hybrid has motor neuron 
characteristics (acetyl choline synthesis, storage and 
release etc.) and highly proliferative features (Cashman 
et al. 1992; Eggett et al. 2000; Tovar et al. 2009). 
Complete growth medium formula for NSC-34 cells is 
that DMEM basal medium nutrient including 10% FCS 
at a final concentration without antibiotics solution 
(Cookson et al. 1998). 

The PC-12 (ATCC, CRL-1721) rat adrenal 
pheochromocytoma is another cell line by using 
neurodegeneration model studies because of its 
inducible character for neuronal morphology. The cell 
line can be differentiated by neuronal growth factor 
(NGF) and it shows neurite outgrowth and gains 
neuronal morphology. Growth medium formula for PC-
12 cells is that RPMI-1640 basal medium nutrient with 
L-glutamine including 10% FCS, 5% heat inactivated 
horse serum and 1% penicillin-streptomycin antibiotics 
solution at a final concentration (Yurekli et al. 2013). 

The SH-SY5Y (ATCC, CRL-2266) 
neuroblastoma cell line is well-known and widely being 
used as cellular model for NDs. Because of its 
dopaminergic neuronal activity and enzymatic profile, 
the SH-SY5Y cells suitable for pharmacological studies. 
The cells can be differentiated by retinoic acid and other 
factors to show highly neuronal chemistry and 
morphology. Growth medium formula for SH-SY5Y 
cells is that DMEM and HAM’S F12 basal medium 
mixture (1:1 volume ratio) including 10% fetal bovine 
serum (FCS) and 1% penicillin-streptomycin antibiotics 
solution at a final concentration (Oz and Celik 2016).  
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Table 2. Cellular and molecular pathophysiological mechanisms of NDs, cellular model systems and target pathways. Many 
of the researches about AD focus on okadaic acid usage and induction of tau hyperphosphorylation. TDP-43 and SOD1 
mutations are target mechanism for cellular pathogenesis and transfection methods are preferred to mimic ALS. The poly-
(CAG)n repeats are other genetic target for HD research. The mHtt protein expression studies are very common in the 
literature. In the PD researches, it can be found various chemical agents and processes to induction. 
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The cells express amyloid-β and α-synuclein and so it is 
very convenient cellular organization to evaluate AD 
and PD etiology (Kunzler et al. 2017). 

 
Neurodegeneration inducers 

It is necessary to criticize cellular metabolic 
processes in order to understand how neurodegeneration 
inducers work. There is different kind of factors reduce 
to neuronal activity and cell viability but increase 
apoptosis. Chemicals or toxicants, genetically 
modifications and exogenic mutant proteins are directly 
used in the experimental procedures. 

It doesn’t necessary but enhancing of neuronal 
characteristics and chemistry in neuronal cell lines by 
differentiation inducers have advantageous in NDs 
research. The PC-12 cell line expresses dopamine, 
epinephrine and other neuronal characteristic proteins, 
then it generally uses in neurodegenerative studies. In 
order to make differentiation of the PC-12 cells, 
neurotrophins frequently used in, and among them 
neuronal growth factor (NGF; N0513, Sigma) is very 
suitable since PC-12 cells naturally express NGF 
receptor. NGF induces signaling cascades including 
protein kinase-C (PKC) activation and causes to 
inhibition of cell proliferation but increases neurite 
outgrowth (Das et al. 2004). 

Differentiated and un-differentiated SH-SY5Y 
cells are frequently used in neurological studies, 
especially differentiated SH-SY5Y cells are used in PD 
studies because they have excellent features differ from 
other cell lines such as showing human origin, tyrosine 
hydroxylase and dopamine-β-hydroxylase activities. 
SH-SY5Y cells respect their neuronal and dopaminergic 
characteristics especially in PD (Xie HR et al. 2010; 
Lazaro et al. 2017). Dose and time dependent retinoic 
acid incubation have been highly used to differentiation. 
Moreover, PKC activator phorbol myristate acetate 
(PMA; P8139 Sigma) and inhibitor staurosproine can 
also be used for differentiation methodology (Jalava et 
al. 1993; Tettamanti et al. 1996; Korecka et al. 2013; 
Filograna et al. 2015). 

 Although it is very well-known that 
differentiation enhances the neuronal character, 
genetically changings and morphology, many other 
studies also found in literature that used undifferentiated 
neuronal cell lines for neurodegeneration researches. 
Hence, differentiation preference seems to depend on 

the aim of experimental studies. 
 

AD models 
Although AD is most prevalent ND type and 

seventh most common death cause of the world, 
pathophysiology has not been clearly understood yet. 
There are two main hallmarks such as extracellular 
aggregations of amyloid-β fragments and intracellular 
deposition of neurofibrillary tangles which composed of 
mainly hyperphosphorylated tau proteins. Neuritic 
plaques occur sequential cleavage of APP by β- and γ-
secretases to form 40 or 42 amino acid residues of 
amyloid-β. Abnormal hyperphosphorylation of 
microtubule associated tau protein and amyloid plaques 
formed by amyloid-β deposition are related to 
neurodegeneration, and AD inducers hit mainly target to 
them (Zhang S et al. 2013; Naziroglu et al. 2017). 

The okadaic acid is a dinoflagellate toxin and 
well-known chemical inducer of AD model by 
inhibition of protein phosphatase type 1 and 2A 
(Gehringer 2004). Several studies have shown that 
neuronal cells to be used for AD model by different 
concentrations and time dependent okadaic acid 
incubation. Target metabolic pathway of okadaic acid 
stimulation is that protein phosphatase 1 and 2A 
inhibition in the neuronal cells, thus it increases 
intracellular tau phosphorylation and breaks glycogen 
metabolism (Aquilano et al. 2010; Li W et al. 2015). 

The amyloid-β is a toxic mutant metabolite of 
amyloid precursor protein cut by β- and γ-secretase 
enzymes. It can directly use by induction of amyloid 
toxicity to mimic AD type cell death and other cellular 
pathologies. Extracellular amyloid-β incubation initiates 
caspase enzyme activity, mitochondrial dysfunction and 
induces apoptosis in neuronal cells. Hence, as a toxic 
metabolite of AD, different length of amyloid-β 
fragments (i.e. 25-35, 1-40 and 1-42) used to induce 
experimental AD models in PC-12 and SH-SY5Y cell 
lines. 

 
ALS models 

Neurodegeneration in ALS is triggered by 
different endogenous and exogenous factors including 
production of ROS, excitotoxicity by glutamate, 
mitochondrial dysfunction and most of ALS cases are 
described with deposition of insoluble proteins by 
genetically mutations in cytoplasm of lower or upper 
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motor neurons (Liscic and Breljak 2011; Wada et al. 
2012). Incidence of ALS cases have been estimated 1-
2.6 person for each 100,000 peopled population (Talbott 
et al. 2016).  

Hence, researchers handle various methods for 
induction of NDs including genetically modifications. 
In some studies, genetic manipulation of diseases is 
more suitable and best way to induct an experimental 
model because mutant protein expression of cell lines is 
natively limited. Plasmid transfections are necessary to 
get cellular ALS model and so SOD1 and TDP-43 
expressing cell lines to make useful in studies. The 
Neuro-2a neuroblastoma and NSC-34 motor neuron cell 
lines mostly using to induce ALS model by SOD1 and 
TDP-43 mutant protein transfections. 

 
HD models 

The HD has monogenic autosomal dominant 
inherited character and in epidemiological studies, it 
was found that HD affected to 1 person in each 7300 
peopled western populations (Bates et al. 2015). 
Another example of mutant protein transfection is 
experimental HD model studies. Repeats of (CAG)n 
poly-nucleotide in exon 1 of HTT gene (lay in 
chromosome 4) directly uses to induce mHtt protein 
expression in neuronal cell lines. Researchers use most 
common cell lines rat PC-12 pheochromocytoma and 
SH-SY5Y human neuroblastoma as well as rarely found 
HC2S2 cells to have experimental HD model. However, 
in some studies, researchers can directly focus on 
mutant protein expression and they can only use non-
neuronal cell lines (COS-7, HEK-293 and HeLa) to 
investigate expression of mHtt protein. 

 
PD models 

PD is the second most prevalent ND type after 
AD, characterized by decrement of dopamine levels and 
loss of dopaminergic neurons in basal ganglia, 
especially in substantia nigra pars compacta neurons. 
The PD is affected by 1% of population above 60 years 
old (Tysnes and Storstein 2017). Most of PD patients 
acquire the disease non-hereditary (idiopathic or 
sporadic) multifactorial causes such as Lewy bodies’ 
formation, harmful effects of oxidative stress, and 
mitochondrial dysfunction, although small patients 
(approx. 5%) suffer from PD are classified under 
familial type. Some gene mutations are responsible from 

familial PD and neurodegeneration processes which 
encoding α-synuclein (SNCA), parkin (PARK2), 
Parkinson disease protein 7 (DJ-1), PTEN induced 
putative kinase 1 (PINK1), dardarin (LRRK2) and 
ATP13A2 (PARK9) (Yang YX et al. 2009; Korecka et 
al. 2013).  

Almost like all neurodegenerative diseases, 
oxidative stress and mitochondrial dysfunction are 
thought to major neuronal death cause to 
neurodegeneration in PD. It is also confirmed that 
mitochondrial complex 1 deficiency in some PD 
patients (Schapira 2008). Hence, the 1-methyl-4-
phenylpyridinium (MPP+), 6-hydroxydopamine (6-
OHDA) and rotenone are used to induce inhibitor effect 
on mitochondrial complex 1, thus a number of studies to 
be found about differentiated or undifferentiated model 
systems in PD research (Xie HR et al. 2010).  

The MPP+ is a toxic metabolite of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) which 
produced by enzymatic activity of mono amine oxidase 
type B (MAO-B) and selectively kills to dopaminergic 
neurons in substantia nigra. MPP+ breaks mitochondrial 
electron complex chain 1 and ATP synthesis, induces 
ROS production and neuronal apoptosis (Dauer and 
Przedborski 2003). Divalent cationic influx and 
intracellular magnesium deposition was observed MPP+ 
induced neurodegeneration and it seems to be a result of 
protection mechanisms of cellular metabolic functions 
(Shindo et al. 2015). Hence, MPP+ toxicity well-studied 
on PC-12 and SH-SY5Y dopaminergic cell lines and 
also called as experimental MPTP model of PD.  

 The 6-OHDA is a neurotoxic catecholamine 
analogue (dopamine and norepinephrine) which targeted 
to catecholaminergic neurons, it is used in vivo PD 
models, however it can’t across the blood-brain barrier 
to achieve directly injected into brain by stereotactic 
technique (Bove et al. 2005). It passes cell membrane 
through transporters of dopamine and epinephrine, 6-
OHDA incubation with cell culture medium is very 
suitable to induct in vitro PD models, because of its 
similar chemical structure to dopamine and epinephrine, 
and accumulates intracellular fluid (Simola et al. 2007). 
Enzymatically degradation of 6-OHDA by mono amine 
oxidase type A (MAO-A) or self-oxidation trigger 
neuronal apoptosis by the generation of ROS and 
Quinones (Jagmag et al. 2015). The low concentrations 
of 6-OHDA (10 µM) is non-toxic to cells and have 
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positive effects on cellular viability, although higher 
levels (50-100 µM) may cause intracellular calcium 
influx and ERK1/2 over phosphorylation that induce 
cell death (Park HJ et al. 2013). It was shown that 
optimal concentration level is very important for 
representative model studies to each neurotoxin. 

Rotenone is a tropical plant toxin and another 
mitochondrial electron transport chain complex 1 
inhibitor used to mimic PD. It can easily across the 
cellular membranes because of its lipophilic structure 
and also generates ROS production, alters mitochondrial 
membrane potential and induces apoptosis (Perier et al. 
2003). 

It is well known that SH-SY5Y and PC-12 cells 
can naturally express α-synuclein, but it is necessary to 
investigate the effectiveness of toxin models of PD, 
other neurodegenerative pathologies or drug targets on 
alteration of α-synuclein expression levels (Gomez-
Santos et al. 2002). Hence, transient or stable 
transfection methods not only restricted for HD and 
ALS research, but researchers also use to mimic in vitro 
PD models by α-synuclein overexpression. In SH-SY5Y 
cells mutant (A53T) or human wild type α-synuclein 
gene encoding plasmids widely using for PD and 
synucleinopathy models. There are some records about 
PC-12 cells which are suitable model system for PD 
studies by transfection of mutant A30T or A53T α-
synuclein genes (Zhou et al. 2009; Ito et al. 2010). 

 
Conclusion 

It is concluded that there were two different ways 
to form neurodegenerative disease models; one is 
differentiated and the other is undifferentiated cell line 
usage. Different kind of cell lines and differentiation 
methods were presented in Table 1. All of the 
neurodegenerative disorders and their models formed in 
the cell culture of these disorders mentioned above vary 
according to the cell type, the applied agents and the 
model to be created. It is also known that the reduction 
of FCS concentration is as a reason of differentiation. 
Hence, it is also important to use proper medium 
components in the cell culture. It is well known that SH-
SY5Y and PC-12 cell lines widely used for 
neurodegenerative disease models, PKC pathway is 
main target to induce differentiation of these neuronal 
cell lines. Analogues of differentiation inducers which 
target the same molecular pathways and players can also 

be assessed as candidate for the development of new 
differentiation strategies. 

While the AD is performed only with PC-12 and 
SH-SY5Y cell lines, that is, when the number of the 
models is restricted, there is a considerable variation in 
dose range. In AD models inducing by okadaic acid, the 
application differs greatly in terms of dose and duration. 
It is seen that researchers generally follow two main 
ways; 1) low dose and longtime course and 2) high dose 
and short time course incubation. In future studies, in 
order to develop highly representative and effective 
disease models, cross combinations of okadaic acid and 
Aβ inductions may try to AD models in both PC-12 and 
SH-SY5Y cell lines.  

The NSC-34 hybrid cell line is only comfortable 
model system for experimental ALS studies. Genetic 
complexity of the disease also reverberated to cellular 
models because of so many genes play role on the 
generation of ALS. Taken together, in ALS 
experiments, investigators mainly aim to mimic SOD1 
and TDP-43 genes overexpression by using transfection 
procedures. 

It is summarized that in Table 3, the HD has a 
wider range of models in terms of cellular diversity 
although other models are not so diverse. HD studies 
mostly focus on mutant HTT gene expression and based 
on transfection methodology as shown in Table 3. In 
HD researches, mutant protein expression levels can 
also be evaluated by non-neuronal originated cell lines 
such as COS-7, HEK-293 and HeLa.  

Researchers mostly preferred SH-SY5Y cell line 
to perform PD models. However, the neurotoxin 
diversity has a wide range for induction of PD models. 
Likewise, 6-OHDA, MPP+ and rotenone analogue 
chemicals such as piericidin A and amytal may be 
assessed as potential molecules for PD induction. The 
piericidin A is a member of acetogenins and a complex 
1 inhibitor of electron transport chain, act as rotenone, 
therefore, it has to be investigated that whether this 
antibiotic shows similar toxic effects on neurological 
cell lines to mimic PD model. Alike to piericidin A and 
amytal for novel PD researches other PP1 and PP2A 
inhibitors such as calyculin A, fostriecin and cytostatin 
acting like okadaic acid, may be tested for new 
candidate agents in the AD models by questioning 
whether they have similar effects or not.  
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Table 3. Different kinds of neuronal cell lines, neurodegeneration inducers, methods of induction, and duration of processes. 
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Another aspect of neurodegenerative disease 
progression is that cells tend to transfer their 
accumulated mutant proteins to another cell such as 
amyloid peptides, SOD1 and TDP-43, poly-glutamine 
and α-synuclein and it explains the disease spreading by 
the time in the target region of nervous system 
(Westergard et al. 2016). 

In conclusion, cellular model studies are still 
frequently used due to their ability to be easily modeled 
as they give similar results to in vivo and clinical 
findings related to neurodegeneration, spread and 
molecular mechanisms of diseases. This review includes 
informative explanations for neuroscience researches 
mostly interested in neurodegenerative disease models, 
cell lines, and molecular mechanism underlying disease 
and target pathways for model inducers. 

Collectively, it is very important to acquire 
improvement in cell culture studies that development of 
new neurotoxins and/or novel cell lines which naturally 
express mutant genes for modeling of diseases 
especially for ALS and HD studies. From this 
perspective, discovering new strategies and techniques 
may pave the way for new investigations and inspire the 
neuroscientists to explore novel methods for the other 
neurological diseases. 
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