Harmonic k-Uniformly Convex, k-Starlike Mappings and Pascal Distribution Series

Elif YAŞAR*

Abstract

In this paper, connections between various subclasses of harmonic univalent functions by using a convolution operator involving the Pascal distribution series are investigated. Furthermore, an example is provided, illustrating graphically with the help of Maple, to illuminate the convolution operator.

Keywords: Harmonic functions, Univalent functions, Pascal distribution.
AMS Subject Classification (2020): Primary: 30C45 ; Secondary: 30C80.
*Corresponding author

1. Introduction

Let \mathcal{H} denote the family of continuous complex valued harmonic functions of the form $f=h+\bar{g}$ defined in the open unit disk $\mathfrak{U}=\{z:|z|<1\}$, where

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { and } g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} \tag{1.1}
\end{equation*}
$$

are analytic in \mathfrak{U}.
A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathfrak{U} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in \mathfrak{U} (see [2],[3]).
Denote by $\mathcal{S H}$ the subclass of \mathcal{H} consisting of functions $f=h+\bar{g}$ which are harmonic, univalent and sensepreserving in \mathfrak{U} and normalized by $f(0)=f_{z}(0)-1=0$. One can easily show that the sense-preserving property implies that $\left|b_{1}\right|<1$. The subclass $\mathcal{S H} \mathcal{H}^{0}$ of $\mathcal{S H}$ consist of all functions in $\mathcal{S H}$ which have the additional property $b_{1}=0$. Note that $\mathcal{S H}$ reduces to the class \mathcal{S} of normalized analytic univalent functions in \mathfrak{U}, if the co-analytic part of f is identically zero.
Define $\overline{\mathcal{H}}^{i}(i=1,2)$ be the subclass of $\mathcal{S H}$ consisting of the functions $f=h+\bar{g}$ such that $h(z)$ and $g(z)$ are of the form

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \text { and } g(z)=(-1)^{i} \sum_{n=1}^{\infty}\left|b_{n}\right| z^{n} . \tag{1.2}
\end{equation*}
$$

Let $\operatorname{HUC}(k, \alpha)$ be a subclass of the functions $f=h+\bar{g}$ in $\mathcal{S H}$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\left(1+k e^{i \eta}\right) \frac{z^{2} h^{\prime \prime}(z)+\overline{2 z g^{\prime}(z)+z^{2} g^{\prime \prime}(z)}}{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}\right\} \geq \alpha \tag{1.3}
\end{equation*}
$$

for some $k(k \geq 0), \alpha(0 \leq \alpha<1)$ and $z \in \mathfrak{U}$. Define $\overline{H U C}(k, \alpha):=H U C(k, \alpha) \cap \overline{\mathcal{H}}^{1}$. A mapping in $H U C(k, \alpha)$ or $\overline{H U C}(k, \alpha)$ is called harmonic k-uniformly convex in \mathfrak{U}. These classes were studied in [5]. For $g \equiv 0, k=1$ and
$\alpha=0$, the class $H U C(k, \alpha)$ reduces to the class $U C$ of analytic uniformly convex functions defined by [4]. Let $H S^{*}(k, \alpha)$ be a subclass of the functions $f=h+\bar{g}$ in $\mathcal{S H}$ which satisfy the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{z^{\prime} f(z)}-\alpha\right\} \geq k\left|\frac{z f^{\prime}(z)}{z^{\prime} f(z)}-1\right|
$$

for some $k(k \geq 0), \alpha(0 \leq \alpha<1)$ and $z \in \mathfrak{U}$. Also define $\overline{H S}^{*}(k, \alpha):=H S^{*}(k, \alpha) \cap \overline{\mathcal{H}}^{2}$. These mappings are called harmonic k - starlike in \mathfrak{U}. For $\alpha=0$ these classes were studied in [7]. For $g \equiv 0, k=1$ and $\alpha=0$, the class $H S^{*}(k, \alpha)$ reduces to the class $U S^{*}$ of analytic uniformly starlike functions defined by [6].
The elementary distributions such as the Poisson, the Pascal, the Logarithmic, the Binomial have been partially studied in the Geometric Function Theory from a theoretical point of view (see [8], [9], [10],[11], [12], [13]). Let us consider a non-negative discrete random variable \mathcal{X} with a Pascal probability generating function

$$
P(\mathcal{X}=n)=\binom{n+r-1}{r-1} p^{n}(1-p)^{r}, \quad n \in\{0,1,2,3, \ldots\}
$$

where p, r are called the parameters.
Now we introduce a power series whose coefficients are probabilities of the Pascal distribution, that is

$$
\begin{equation*}
P_{p}^{r}(z)=z+\sum_{n=2}^{\infty}\binom{n+r-2}{r-1} p^{n-1}(1-p)^{r} z^{n} . \quad(r \geq 1,0 \leq p \leq 1, z \in \mathfrak{U}) \tag{1.4}
\end{equation*}
$$

Note that, by using ratio test we conclude that the radius of convergence of the above power series is infinity. Now, for $r, s \geq 1$ and $0 \leq p, q \leq 1$, we introduce the operator

$$
P_{p, q}^{r, s}(f)(z)=P_{p}^{r}(z) * h(z)+\overline{P_{q}^{s}(z) * g(z)}=H(z)+\overline{G(z)}
$$

where

$$
\begin{align*}
& H(z)=z+\sum_{n=2}^{\infty}\binom{n+r-2}{r-1} p^{n-1}(1-p)^{r} a_{n} z^{n} \tag{1.5}\\
& G(z)=b_{1} z+\sum_{n=2}^{\infty}\binom{n+s-2}{s-1} q^{n-1}(1-q)^{s} b_{n} z^{n}
\end{align*}
$$

and "*" denotes the convolution (or Hadamard product) of power series.
Example 1.1. Consider the harmonic polynomial $f_{1}(z)=z+\frac{1}{6} z^{2}+\frac{1}{6} \bar{z}^{4}$. If we take $r=7, s=7, p=0.1$ and $q=0.3$ then from (1.5), we have

$$
P_{p, q}^{r, s}\left(f_{1}\right)(z)=z+0.05 z^{2}+0.03 \bar{z}^{4} .
$$

Images of concentric circles inside \mathfrak{U} under the functions f_{1} and $P_{p, q}^{r, s}\left(f_{1}\right)$ are shown in Figure 1 and Figure 2.
In this paper, we deal mainly with connections between the classes harmonic starlike, harmonic convex, harmonic k -uniformly convex and harmonic k -starlike by using above convolution operator involving the Pascal distribution series.

2. Preliminary Lemmas

To prove our theorems we will use the following lemmas.
Lemma 2.1. [2] If $f=h+\bar{g} \in \mathcal{K} \mathcal{H}^{0}$ where h and g are given by (1.1) with $b_{1}=0$, then

$$
\left|a_{n}\right| \leq \frac{n+1}{2}, \quad\left|b_{n}\right| \leq \frac{n-1}{2} .
$$

Lemma 2.2. [5] Let $f=h+\bar{g}$ be given by (1.1). If $k \geq 0,0 \leq \alpha<1$ and

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n(k+1)-(k+\alpha))\left|a_{n}\right|+\sum_{n=1}^{\infty} n(n(k+1)+(k+\alpha))\left|b_{n}\right| \leq 1-\alpha, \tag{2.1}
\end{equation*}
$$

then f is harmonic, sense-preserving, univalent in \mathfrak{U} and $f \in \operatorname{HUC}(k, \alpha)$.

Figure 1. Image of $f_{1}(\mathfrak{U})$

Figure 2. Image of $P_{p, q}^{r, s}\left(f_{1}\right)(\mathfrak{U})$

Lemma 2.3. [1] Let $f=h+\bar{g} \in T^{1}$ be given by (1.2). Then $f \in \overline{H U C}(k, \alpha)$ if and only if the coefficient condition (2.1) is satisfied. Also, if $f \in \overline{H U C}(k, \alpha)$, then

$$
\left|a_{n}\right| \leq \frac{1-\alpha}{n(n(k+1)-(k+\alpha))}, \quad n \geq 2, \quad\left|b_{n}\right| \leq \frac{1-\alpha}{n(n(k+1)+(k+\alpha))}, \quad n \geq 1
$$

Lemma 2.4. [1] Let $f=h+\bar{g}$ be given by (1.1). If $k \geq 0,0 \leq \alpha<1$ and

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n(k+1)-(k+\alpha))\left|a_{n}\right|+\sum_{n=1}^{\infty}(n(k+1)+(k+\alpha))\left|b_{n}\right| \leq 1-\alpha \tag{2.2}
\end{equation*}
$$

then f is harmonic, sense-preserving, univalent in \mathfrak{U} and $f \in H S^{*}(k, \alpha)$.
Lemma 2.5. [1] Let $f=h+\bar{g} \in T^{2}$ be given by (1.2). Then $f \in \overline{H S}^{*}(k, \alpha)$ if and only if the coefficient condition (2.2) is satisfied. Also, if $f \in \overline{H S}^{*}(k, \alpha)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1-\alpha}{n(k+1)-(k+\alpha)}, \quad n \geq 2, \quad\left|b_{n}\right| \leq \frac{1-\alpha}{n(k+1)+(k+\alpha)}, \quad n \geq 1 \tag{2.3}
\end{equation*}
$$

Lemma 2.6. [2] If $f=h+\bar{g} \in S H^{*, 0}$ where h and g are given by (1.1) with $b_{1}=0$, then

$$
\left|a_{n}\right| \leq \frac{(2 n+1)(n+1)}{6}, \quad\left|b_{n}\right| \leq \frac{(2 n-1)(n-1)}{6}, n \geq 2
$$

3. Main Results

From now, throughout the main results, we will consider $0 \leq \alpha<1, k \geq 0, r, s \geq 1$, and $0 \leq p, q<1$.
Theorem 3.1. If the inequality

$$
\begin{align*}
& \frac{(k+1) r(r+1)(r+2) p^{3}}{(1-p)^{3}}+\frac{(4 k+5-\alpha) r(r+1) p^{2}}{(1-p)^{2}}+\frac{(2 k+4-2 \alpha) r p}{1-p} \\
& +\frac{(k+1) s(s+1)(s+2) q^{3}}{(1-q)^{3}}+\frac{(6 k+5+\alpha) s(s+1) q^{2}}{(1-q)^{2}}+\frac{(6 k+4+2 \alpha) s q}{1-q} \\
\leq & 2(1-\alpha)(1-p)^{r} \tag{3.1}
\end{align*}
$$

is hold, then $P_{p, q}^{r, s}\left(\mathcal{K} H^{0}\right) \subset H U C(k, \alpha)$.
Proof. Suppose $f=h+\bar{g} \in \mathcal{K} H^{0}$ where h and g are given by (1.1) with $b_{1}=0$. We need to show that $P_{p, q}^{r, s}(f)=$ $H+\bar{G} \in H U C(k, \alpha)$ where H and G are given by (1.5) with $b_{1}=0$. By Lemma 2.2, we need to establish that
$Q_{1} \leq 1-\alpha$, where

$$
\begin{aligned}
Q_{1}= & \sum_{n=2}^{\infty} n(n(k+1)-(k+\alpha))\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\left|a_{n}\right| \\
& +\sum_{n=2}^{\infty} n(n(k+1)+(k+\alpha))\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\left|b_{n}\right| .
\end{aligned}
$$

Using Lemma 2.2, we obtain

$$
\left.\begin{array}{rl}
Q_{1} \leq & \frac{1}{2}\left\{\sum_{n=2}^{\infty} n(n+1)(n(k+1)-(k+\alpha))\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\right. \\
& \left.+\sum_{n=2}^{\infty} n(n-1)(n(k+1)+(k+\alpha))\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\right\} \\
= & \frac{1}{2}\left\{(k+1) \sum_{n=2}^{\infty}(n-1)(n-2)(n-3)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\right. \\
& +(6 k+7-\alpha) \sum_{n=2}^{\infty}(n-1)(n-2)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +(6 k+10-4 \alpha) \sum_{n=2}^{\infty}(n-1)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +2(1-\alpha) \sum_{n=2}^{\infty}\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +(k+1) \sum_{n=2}^{\infty}(n-1)(n-2)(n-3)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1} \\
& +(6 k+5+\alpha) \sum_{n=2}^{\infty}(n-1)(n-2)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1} \\
& \left.+(6 k+4+2 \alpha) \sum_{n=2}^{\infty}(n-1)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\right\} \\
= & \frac{1}{2}\left\{(k+1) r(r+1)(r+2) p^{3}(1-p)^{r} \sum_{n=4}^{\infty}\binom{n+r-2}{r+2} p^{n-4}\right. \\
& +(4 k+5-\alpha) r(r+1) p^{2}(1-p)^{r} \sum_{n=3}^{\infty}\binom{n+r-2}{r+1} p^{n-3} \\
& +(2 k+4-2 \alpha) r p(1-p)^{r} \sum_{n=2}^{\infty}\binom{n+r-2}{r} p^{n-2} \\
& +(6 k+5+\alpha) s(s+1) q^{2}(1-q)^{s} \sum_{n=3}^{\infty}\binom{n+s-2}{s+1} q^{n-3} \\
& \left.+(6 k+4+2 \alpha) s q(1-q)^{s} \sum_{n=2}^{\infty}\binom{n+s-2}{s} q^{n-2}\right\} \\
& +(k+1) s(s+1)(s+2) q^{3}(1-q)^{s} \sum_{n=4}^{\infty}\binom{n+s-2}{s+2} q^{n-4} \\
r-p)^{r} \sum_{n=2}^{\infty}\binom{n+r-2}{r-1} p^{n-1} \\
& +(1-2) \\
r
\end{array}\right)
$$

$$
\begin{aligned}
= & \frac{1}{2}\left\{(k+1) r(r+1)(r+2) p^{3}(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r+2}{r+2} p^{n}\right. \\
& +(4 k+5-\alpha) r(r+1) p^{2}(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r+1}{r+1} p^{n} \\
& +(2 k+4-2 \alpha) r p(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r}{r} p^{n} \\
& +2(1-\alpha)(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r-1}{r-1} p^{n}-2(1-\alpha)(1-p)^{r} \\
& +(k+1) s(s+1)(s+2) q^{3}(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s+2}{s+2} q^{n} \\
& +(6 k+5+\alpha) s(s+1) q^{2}(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s+1}{s+1} q^{n} \\
& \left.+(6 k+4+2 \alpha) s q(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s}{s} q^{n}\right\} \\
= & \frac{1}{2}\left\{\frac{(k+1) r(r+1)(r+2) p^{3}}{(1-p)^{3}}+\frac{(4 k+5-\alpha) r(r+1) p^{2}}{(1-p)^{2}}+\frac{(2 k+4-2 \alpha) r p}{1-p}\right. \\
& +\frac{(k+1) s(s+1)(s+2) q^{3}}{(1-q)^{3}}+\frac{(6 k+5+\alpha) s(s+1) q^{2}}{(1-q)^{2}}+\frac{(6 k+4+2 \alpha) s q}{1-q} \\
& \left.+2(1-\alpha)-2(1-\alpha)(1-p)^{r}\right\} .
\end{aligned}
$$

The last expression is bounded above by $(1-\alpha)$ by the given condition (3.1). Thus the proof of Theorem 3.1 is complete.

Theorem 3.2. If the inequality

$$
\begin{equation*}
\frac{(k+1) r(r+1) p^{2}}{(1-p)^{2}}+\frac{(3 k+4-\alpha) r p}{1-p}+\frac{(k+1) s(s+1) q^{2}}{(1-q)^{2}}+\frac{(3 k+2+\alpha) s q}{1-q} \leq 2(1-\alpha)(1-p)^{r} \tag{3.2}
\end{equation*}
$$

is hold, then $P_{p, q}^{r, s}\left(\mathcal{K} H^{0}\right) \subset H S^{*}(k, \alpha)$.
Proof. Suppose that $f=h+\bar{g} \in \mathcal{K} \mathcal{H}^{0}$ where h and g are given by (1.1) with $b_{1}=0$. It suffices to show that $P_{p, q}^{r, s}(f)=H+\bar{G} \in H S^{*}(k, \alpha)$ where H and G are given by (1.5) with $b_{1}=0$ in \mathfrak{U}. Using Lemma 2.4, we need to show that $Q_{2} \leq 1-\alpha$, where

$$
\begin{aligned}
Q_{2}= & \sum_{n=2}^{\infty}(n(k+1)-(k+\alpha))\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\left|a_{n}\right| \\
& +\sum_{n=2}^{\infty}(n(k+1)+(k+\alpha))\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\left|b_{n}\right| .
\end{aligned}
$$

Using Lemma 2.2, we obtain

$$
\begin{aligned}
Q_{2} \leq & \frac{1}{2}\left\{\sum_{n=2}^{\infty}(n+1)(n(k+1)-(k+\alpha))\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\right. \\
& \left.+\sum_{n=2}^{\infty}(n-1)(n(k+1)+(k+\alpha))\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left\{(k+1) \sum_{n=2}^{\infty}(n-1)(n-2)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\right. \\
& +(3 k+4-\alpha) \sum_{n=2}^{\infty}(n-1)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +2(1-\alpha) \sum_{n=2}^{\infty}\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +(k+1) \sum_{n=2}^{\infty}(n-1)(n-2)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1} \\
& \left.+(3 k+2+\alpha) \sum_{n=2}^{\infty}(n-1)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\right\} \\
& =\frac{1}{2}\left\{(k+1) r(r+1) p^{2}(1-p)^{r} \sum_{n=3}^{\infty}\binom{n+r-2}{r+1} p^{n-3}\right. \\
& +(3 k+4-\alpha) r p(1-p)^{r} \sum_{n=2}^{\infty}\binom{n+r-2}{r} p^{n-2} \\
& +2(1-\alpha)(1-p)^{r} \sum_{n=2}^{\infty}\binom{n+r-2}{r-1} p^{n-1} \\
& +(k+1) s(s+1) q^{2}(1-q)^{s} \sum_{n=3}^{\infty}\binom{n+s-2}{s+1} q^{n-3} \\
& \left.+(3 k+2+\alpha) s q(1-q)^{s} \sum_{n=2}^{\infty}\binom{n+s-2}{s} q^{n-2}\right\} \\
& =\frac{1}{2}\left\{(k+1) r(r+1) p^{2}(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r+1}{r+1} p^{n}\right. \\
& +(3 k+4-\alpha) r p(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r}{r} p^{n} \\
& +2(1-\alpha)(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r-1}{r-1} p^{n}-2(1-\alpha)(1-p)^{r} \\
& +(k+1) s(s+1) q^{2}(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s+1}{s+1} q^{n} \\
& \left.+(2 k+2+\alpha) s q(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s}{s} q^{n}\right\} \\
& =\frac{1}{2}\left\{\frac{(k+1) r(r+1) p^{2}}{(1-p)^{2}}+\frac{(3 k+4-\alpha) r p}{1-p}+2(1-\alpha)-2(1-\alpha)(1-p)^{r}\right. \\
& \left.+\frac{(k+1) s(s+1) q^{2}}{(1-q)^{2}}+\frac{(3 k+2+\alpha) s q}{1-q}\right\} .
\end{aligned}
$$

The last expression is bounded above by $(1-\alpha)$ by the condition (3.2). Thus the proof of Theorem 3.2 is complete.

Theorem 3.3. If the inequality

$$
\begin{equation*}
(1-p)^{r}+(1-q)^{s} \geq 1+\frac{(2 k+1+\alpha)}{1-\alpha}\left|b_{1}\right| \tag{3.3}
\end{equation*}
$$

is hold, then $P_{p, q}^{r, s}(\overline{H U C}(k, \alpha)) \subset H U C(k, \alpha)$.

Proof. Suppose $f=h+\bar{g} \in \overline{H U C}(k, \alpha)$ where h and g are given by (1.2) with $i=1$. We need to establish that the operator

$$
\begin{aligned}
P_{p, q}^{r, s}(f)(z)= & z-\sum_{n=2}^{\infty}\binom{n+r-2}{r-1} p^{n-1}(1-p)^{r} a_{n} z^{n} \\
& -\left|b_{1}\right| \bar{z}-\sum_{n=2}^{\infty}\binom{n+s-2}{s-1} q^{n-1}(1-q)^{s}\left|b_{n}\right| \bar{z}^{n}
\end{aligned}
$$

is in $\operatorname{HUC}(k, \alpha)$ if and only if $Q_{3} \leq 1-\alpha$, where

$$
\begin{aligned}
Q_{3}= & \sum_{n=2}^{\infty} n(n(k+1)-(k+\alpha))\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\left|a_{n}\right| \\
& +(2 k+1+\alpha)\left|b_{1}\right|+\sum_{n=2}^{\infty} n(n(k+1)+(k+\alpha))\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\left|b_{n}\right|
\end{aligned}
$$

Using Lemma 2.4, we have

$$
\begin{aligned}
Q_{3} \leq & (1-\alpha)\left\{\sum_{n=2}^{\infty}\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\right. \\
& \left.+\sum_{n=2}^{\infty}\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\right\}+(2 k+1+\alpha)\left|b_{1}\right| \\
= & (1-\alpha)\left\{(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r-1}{r-1} p^{n}-(1-p)^{r}\right. \\
& \left.+(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s-1}{s-1} q^{n}-(1-q)^{s}\right\}+(2 k+1+\alpha)\left|b_{1}\right| \\
= & (1-\alpha)\left\{2-(1-p)^{r}-(1-q)^{s}\right\}+(2 k+1+\alpha)\left|b_{1}\right| \leq 1-\alpha .
\end{aligned}
$$

Then inequality (3.3) completes the proof.

Theorem 3.4. If the inequality

$$
\begin{align*}
& \frac{2(k+1) r(r+1)(r+2) p^{3}}{(1-p)^{3}}+\frac{(13 k+15-2 \alpha) r(r+1) p^{2}}{(1-p)^{2}}+\frac{(15 k+24-9 \alpha) r p}{1-p} \\
& +\frac{2(k+1) s(s+1)(s+2) q^{3}}{(1-q)^{3}}+\frac{(11 k+9+2 \alpha) s(s+1) q^{2}}{(1-q)^{2}}+\frac{(9 k+6+3 \alpha) s q}{1-q} \\
\leq & 6(1-\alpha)(1-p)^{r} \tag{3.4}
\end{align*}
$$

is hold, then $P_{p, q}^{r, s}\left(S H^{*, 0}\right) \subset H S^{*}(k, \alpha)$.
Proof. Suppose $f=h+\bar{g} \in S H^{*, 0}$ where h and g are given by (1.1) with $b_{1}=0$. We need to prove that $P_{p, q}^{r, s}(f)=$ $H+\bar{G} \in H S^{*}(k, \alpha)$. In view of Lemma 2.4, we need to prove that $Q_{4} \leq 1-\alpha$, where

$$
\begin{aligned}
Q_{4}: & =\sum_{n=2}^{\infty}(n(k+1)-(k+\alpha))\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\left|a_{n}\right| \\
& +\sum_{n=2}^{\infty}(n(k+1)+(k+\alpha))\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\left|b_{n}\right| .
\end{aligned}
$$

Referring Lemma 2.6, we observe

$$
\begin{aligned}
& Q_{4} \leq \frac{1}{6}\left\{\sum_{n=2}^{\infty}(2 n+1)(n+1)(n(k+1)-(k+\alpha))\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\right. \\
& \left.+\sum_{n=2}^{\infty}(2 n-1)(n-1)(n(k+1)+(k+\alpha))\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\right\} \\
& =\frac{1}{6}\left\{2(k+1) \sum_{n=2}^{\infty}(n-1)(n-2)(n-3)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1}\right. \\
& +(13 k+15-2 \alpha) \sum_{n=2}^{\infty}(n-1)(n-2)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +(15 k+24-9 \alpha) \sum_{n=2}^{\infty}(n-1)\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +6(1-\alpha) \sum_{n=2}^{\infty}\binom{n+r-2}{r-1}(1-p)^{r} p^{n-1} \\
& +2(k+1) \sum_{n=2}^{\infty}(n-1)(n-2)(n-3)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1} \\
& +(11 k+9+2 \alpha) \sum_{n=2}^{\infty}(n-1)(n-2)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1} \\
& \left.+(9 k+6+3 \alpha) \sum_{n=2}^{\infty}(n-1)\binom{n+s-2}{s-1}(1-q)^{s} q^{n-1}\right\} \\
& =\frac{1}{6}\left\{2(k+1) r(r+1)(r+2) p^{3}(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r+2}{r+2} p^{n}\right. \\
& +(13 k+15-2 \alpha) r(r+1) p^{2}(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r+1}{r+1} p^{n} \\
& +(15 k+24-9 \alpha) r p(1-p)^{r} \sum_{n=0}^{\infty}\binom{n+r}{r} p^{n} \\
& +6(1-\alpha) \sum_{n=0}^{\infty}\binom{n+r-1}{r-1}(1-p)^{r} p^{n}-6(1-\alpha)(1-p)^{r} \\
& +2(k+1) s(s+1)(s+2) q^{3}(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s+2}{s+2} q^{n} \\
& +(11 k+9+2 \alpha) s(s+1) q^{2}(1-q)^{s} \sum_{n=0}^{\infty}\binom{n+s+1}{s+1} q^{n} \\
& \left.+(9 k+6+3 \alpha) s q(1-q)^{s} \sum_{n=2}^{\infty}\binom{n+s}{s} q^{n}\right\} \\
& =\frac{1}{6}\left\{\frac{2(k+1) r(r+1)(r+2) p^{3}}{(1-p)^{3}}+\frac{(13 k+15-2 \alpha) r(r+1) p^{2}}{(1-p)^{2}}\right. \\
& +\frac{(15 k+24-9 \alpha) r p}{1-p}+6(1-\alpha)-6(1-\alpha)(1-p)^{r} \\
& +\frac{2(k+1) s(s+1)(s+2) q^{3}}{(1-q)^{3}}+\frac{(11 k+9+2 \alpha) s(s+1) q^{2}}{(1-q)^{2}} \\
& \left.+\frac{(9 k+6+3 \alpha) s q}{1-q}\right\} .
\end{aligned}
$$

The last expression bounded above by $(1-\alpha)$ by the given condition (3.4).
The proof of the following theorem is similar to those of the previous theorems so we state only the result.
Theorem 3.5. If the inequality $(1-p)^{r}+(1-q)^{s} \geq 1+\left|b_{1}\right|$ is hold, then $P_{p, q}^{r, s}\left(\overline{H S}^{*}(k, \alpha)\right) \subset H S^{*}(k, \alpha)$.

References

[1] Ahuja, O.P., Aghalary, R., Joshi, S.B.: Harmonic univalent functions associated with k-uniformly starlike functions. Math. Sci. Res. J. 9 (1), 9-17 (2005).
[2] Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3-25 (1984).
[3] Duren, P.: Harmonic Mappings in the Plane. Cambridge University Press. Cambridge (2004).
[4] Goodman, A.W.: On uniformly convex functions. Ann. Polon. Math. 56 (1), $87-92$ (1991).
[5] Kim, Y.C., Jahangiri, J.M., Choi, J.H.: Certain convex harmonic functions. Int. J. Math. Sci. 29 (8), 459-465 (2002).
[6] Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 118, 189-196 (1993).
[7] Rosy, T., Stephen, B.A., Subramanian, K.G., Jahangiri, J.M.: Goodman-Rønning-type harmonic univalent functions. Kyungpook Math. J. 41(1) 45-54 (2001).
[8] Altınkaya, Ş., Yalçın, S.: Poisson Distribution Series for Certain Subclasses of Starlike Functions with Negative Coefficients. Annals of Oradea University Mathematics Fascicola 2. 24 (2), 5-8 (2017).
[9] Porwal, S., Kumar, M.: A unified study on starlike and convex functions associated with Poisson distribution series. Afrika Matematika. 27 (5-6), 1021-1027 (2016).
[10] Porwal, S.: An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. Article ID 984135, 1-3 (2014).
[11] Nazeer, W., Mehmood, Q., Kang, S.M., Haq, A.U.: An application of Binomial distribution series on certain analytic functions. Journal of Computational Analysis and Applications. 26 (1), 11-17 (2019).
[12] Çakmak, S., Yalçin, S., Altınkaya, Ş.: Some connections between various classes of analytic functions associated with the power series distribution. Sakarya Univ. Jour. Science. 23 (5), 982-985 (2019).
[13] El-Deeb, M.S., Bulboaca, T., Dziok, J.: Pascal Distribution Series connected with certain subclasses of univalent functions. Kyunpook Math. J. 59, 301-314 (2019).

Affiliations

ELIF YAŞAR
Address: Bursa Uludag University, Faculty of Arts and Science, Dept. of Mathematics, 16059, Bursa-Turkey.
E-MAIL: elifyasar@yahoo.com
ORCID ID: 0000-0003-0176-4961

