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Abstract
In this paper, connections between various subclasses of harmonic univalent functions by using a
convolution operator involving the Pascal distribution series are investigated. Furthermore, an example
is provided, illustrating graphically with the help of Maple, to illuminate the convolution operator.
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1. Introduction
LetH denote the family of continuous complex valued harmonic functions of the form f = h+ g defined in the

open unit disk U = {z : |z| < 1} , where

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n (1.1)

are analytic in U.
A necessary and sufficient condition for f to be locally univalent and sense-preserving in U is that |h′(z)| > |g′(z)|
in U (see [2],[3]).
Denote by SH the subclass of H consisting of functions f = h + g which are harmonic, univalent and sense-
preserving in U and normalized by f(0) = fz (0)− 1 = 0. One can easily show that the sense-preserving property
implies that |b1| < 1. The subclass SH0 of SH consist of all functions in SH which have the additional property
b1 = 0. Note that SH reduces to the class S of normalized analytic univalent functions in U, if the co-analytic part of
f is identically zero.
DefineHi (i = 1, 2) be the subclass of SH consisting of the functions f = h+ g such that h(z) and g(z) are of the
form

h(z) = z −
∞∑
n=2

|an| zn and g(z) = (−1)i
∞∑
n=1

|bn| zn. (1.2)

Let HUC(k, α) be a subclass of the functions f = h+ g in SH which satisfy the condition

Re

{
1 +

(
1 + keiη

) z2h′′(z) + 2zg′(z) + z2g′′(z)

zh′(z)− zg′(z)

}
≥ α, (1.3)

for some k (k ≥ 0) , α (0 ≤ α < 1) and z ∈U. Define HUC(k, α) := HUC(k, α)∩ H1
. A mapping in HUC(k, α) or

HUC(k, α) is called harmonic k-uniformly convex in U. These classes were studied in [5]. For g ≡ 0, k = 1 and
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α = 0, the class HUC(k, α) reduces to the class UC of analytic uniformly convex functions defined by [4].
Let HS∗ (k, α) be a subclass of the functions f = h+ g in SH which satisfy the condition

Re
{
zf ′(z)

z′f(z)
− α

}
≥ k

∣∣∣∣zf ′(z)z′f(z)
− 1

∣∣∣∣
for some k (k ≥ 0) , α (0 ≤ α < 1) and z ∈U. Also define HS

∗
(k, α) := HS∗(k, α)∩ H2

. These mappings are called
harmonic k− starlike in U. For α = 0 these classes were studied in [7]. For g ≡ 0, k = 1 and α = 0, the class
HS∗(k, α) reduces to the class US∗ of analytic uniformly starlike functions defined by [6].
The elementary distributions such as the Poisson, the Pascal, the Logarithmic, the Binomial have been partially
studied in the Geometric Function Theory from a theoretical point of view (see [8] ,[9], [10],[11], [12], [13]).
Let us consider a non-negative discrete random variable X with a Pascal probability generating function

P (X = n) =

(
n+ r − 1

r − 1

)
pn (1− p)

r
, n ∈ {0, 1, 2, 3, ...}

where p, r are called the parameters.
Now we introduce a power series whose coefficients are probabilities of the Pascal distribution, that is

P rp (z) = z +

∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1 (1− p)

r
zn. (r ≥ 1, 0 ≤ p ≤ 1, z ∈ U ) (1.4)

Note that, by using ratio test we conclude that the radius of convergence of the above power series is infinity. Now,
for r, s ≥ 1 and 0 ≤ p, q ≤ 1, we introduce the operator

P r,sp,q (f)(z) = P rp (z) ∗ h (z) + P sq (z) ∗ g (z) = H (z) +G (z)

where

H(z) = z +

∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1 (1− p)

r
anz

n (1.5)

G(z) = b1z +

∞∑
n=2

(
n+ s− 2

s− 1

)
qn−1 (1− q)

s
bnz

n

and "∗" denotes the convolution (or Hadamard product) of power series.

Example 1.1. Consider the harmonic polynomial f1(z) = z+ 1
6z

2 + 1
6z

4. If we take r = 7, s = 7, p = 0.1 and q = 0.3
then from (1.5), we have

P r,sp,q (f1)(z) = z + 0.05z2 + 0.03z4.

Images of concentric circles inside U under the functions f1 and P r,sp,q (f1) are shown in Figure 1 and Figure 2.

In this paper, we deal mainly with connections between the classes harmonic starlike, harmonic convex, harmonic
k-uniformly convex and harmonic k-starlike by using above convolution operator involving the Pascal distribution
series.

2. Preliminary Lemmas

To prove our theorems we will use the following lemmas.

Lemma 2.1. [2] If f = h+ g ∈ KH0 where h and g are given by (1.1) with b1 = 0, then

|an| ≤
n+ 1

2
, |bn| ≤

n− 1

2
.

Lemma 2.2. [5] Let f = h+ g be given by (1.1) . If k ≥ 0, 0 ≤ α < 1 and
∞∑
n=2

n (n (k + 1)− (k + α)) |an|+
∞∑
n=1

n (n (k + 1) + (k + α)) |bn| ≤ 1− α, (2.1)

then f is harmonic, sense-preserving, univalent in U and f ∈ HUC(k, α).
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Figure 1. Image of f1(U) Figure 2. Image of P r,s
p,q (f1)(U)

Lemma 2.3. [1] Let f = h+ g ∈ T 1 be given by (1.2) . Then f ∈ HUC(k, α) if and only if the coefficient condition (2.1) is
satisfied. Also, if f ∈ HUC(k, α), then

|an| ≤
1− α

n (n (k + 1)− (k + α))
, n ≥ 2, |bn| ≤

1− α
n (n (k + 1) + (k + α))

, n ≥ 1.

Lemma 2.4. [1] Let f = h+ g be given by (1.1) . If k ≥ 0, 0 ≤ α < 1 and

∞∑
n=2

(n (k + 1)− (k + α)) |an|+
∞∑
n=1

(n (k + 1) + (k + α)) |bn| ≤ 1− α, (2.2)

then f is harmonic, sense-preserving, univalent in U and f ∈ HS∗(k, α).

Lemma 2.5. [1] Let f = h+ g ∈ T 2 be given by (1.2) . Then f ∈ HS∗(k, α) if and only if the coefficient condition (2.2) is
satisfied. Also, if f ∈ HS∗(k, α), then

|an| ≤
1− α

n (k + 1)− (k + α)
, n ≥ 2, |bn| ≤

1− α
n (k + 1) + (k + α)

, n ≥ 1. (2.3)

Lemma 2.6. [2] If f = h+ g ∈ SH∗,0 where h and g are given by (1.1) with b1 = 0, then

|an| ≤
(2n+ 1) (n+ 1)

6
, |bn| ≤

(2n− 1) (n− 1)

6
, n ≥ 2.

3. Main Results
From now, throughout the main results, we will consider 0 ≤ α < 1, k ≥ 0, r, s ≥ 1, and 0 ≤ p, q < 1.

Theorem 3.1. If the inequality

(k + 1)r (r + 1) (r + 2)p3

(1− p)
3 +

(4k + 5− α) r (r + 1) p2

(1− p)
2 +

(2k + 4− 2α) rp

1− p

+
(k + 1)s (s+ 1) (s+ 2)q3

(1− q)
3 +

(6k + 5 + α)s (s+ 1) q2

(1− q)
2 +

(6k + 4 + 2α) sq

1− q

≤ 2(1− α)(1− p)r (3.1)

is hold, then P r,sp,q
(
KH0

)
⊂ HUC(k, α).

Proof. Suppose f = h + g ∈ KH0 where h and g are given by (1.1) with b1 = 0. We need to show that P r,sp,q (f) =
H + G ∈ HUC(k, α) where H and G are given by (1.5) with b1 = 0. By Lemma 2.2, we need to establish that
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Q1 ≤ 1− α, where

Q1 =

∞∑
n=2

n (n (k + 1)− (k + α))

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1 |an|

+

∞∑
n=2

n (n (k + 1) + (k + α))

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1 |bn| .

Using Lemma 2.2, we obtain

Q1 ≤ 1

2

{ ∞∑
n=2

n (n+ 1) (n (k + 1)− (k + α))

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+

∞∑
n=2

n (n− 1) (n (k + 1) + (k + α))

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

}

=
1

2

{
(k + 1)

∞∑
n=2

(n− 1) (n− 2) (n− 3)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+(6k + 7− α)
∞∑
n=2

(n− 1) (n− 2)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+(6k + 10− 4α)

∞∑
n=2

(n− 1)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+2(1− α)
∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+(k + 1)

∞∑
n=2

(n− 1) (n− 2) (n− 3)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

+(6k + 5 + α)

∞∑
n=2

(n− 1) (n− 2)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

+(6k + 4 + 2α)

∞∑
n=2

(n− 1)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

}

=
1

2

{
(k + 1)r (r + 1) (r + 2)p3 (1− p)

r
∞∑
n=4

(
n+ r − 2

r + 2

)
pn−4

+(4k + 5− α)r (r + 1) p2 (1− p)
r
∞∑
n=3

(
n+ r − 2

r + 1

)
pn−3

+(2k + 4− 2α)rp (1− p)
r
∞∑
n=2

(
n+ r − 2

r

)
pn−2

+2(1− α)(1− p)r
∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1

+(k + 1)s (s+ 1) (s+ 2)q3 (1− q)
s
∞∑
n=4

(
n+ s− 2

s+ 2

)
qn−4

+(6k + 5 + α)s (s+ 1) q2 (1− q)
s
∞∑
n=3

(
n+ s− 2

s+ 1

)
qn−3

+(6k + 4 + 2α)sq (1− q)
s
∞∑
n=2

(
n+ s− 2

s

)
qn−2

}
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=
1

2

{
(k + 1)r (r + 1) (r + 2)p3 (1− p)

r
∞∑
n=0

(
n+ r + 2

r + 2

)
pn

+(4k + 5− α) r (r + 1) p2 (1− p)
r
∞∑
n=0

(
n+ r + 1

r + 1

)
pn

+(2k + 4− 2α) rp (1− p)
r
∞∑
n=0

(
n+ r

r

)
pn

+2(1− α)(1− p)r
∞∑
n=0

(
n+ r − 1

r − 1

)
pn − 2(1− α)(1− p)r

+(k + 1)s (s+ 1) (s+ 2)q3 (1− q)
s
∞∑
n=0

(
n+ s+ 2

s+ 2

)
qn

+(6k + 5 + α)s (s+ 1) q2 (1− q)
s
∞∑
n=0

(
n+ s+ 1

s+ 1

)
qn

+(6k + 4 + 2α) sq (1− q)
s
∞∑
n=0

(
n+ s

s

)
qn

}

=
1

2

{
(k + 1)r (r + 1) (r + 2)p3

(1− p)
3 +

(4k + 5− α) r (r + 1) p2

(1− p)
2 +

(2k + 4− 2α) rp

1− p

+
(k + 1)s (s+ 1) (s+ 2)q3

(1− q)
3 +

(6k + 5 + α)s (s+ 1) q2

(1− q)
2 +

(6k + 4 + 2α) sq

1− q

+2(1− α)− 2(1− α)(1− p)r} .

The last expression is bounded above by (1− α) by the given condition (3.1). Thus the proof of Theorem 3.1 is
complete.

Theorem 3.2. If the inequality

(k + 1)r (r + 1) p2

(1− p)
2 +

(3k + 4− α) rp
1− p

+
(k + 1)s (s+ 1) q2

(1− q)
2 +

(3k + 2 + α) sq

1− q
≤ 2(1− α) (1− p)

r (3.2)

is hold, then P r,sp,q
(
KH0

)
⊂ HS∗(k, α).

Proof. Suppose that f = h + g ∈ KH0 where h and g are given by (1.1) with b1 = 0. It suffices to show that
P r,sp,q (f) = H +G ∈ HS∗(k, α) where H and G are given by (1.5) with b1 = 0 in U. Using Lemma 2.4, we need to
show that Q2 ≤ 1− α, where

Q2 =

∞∑
n=2

(n (k + 1)− (k + α))

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1 |an|

+

∞∑
n=2

(n (k + 1) + (k + α))

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1 |bn| .

Using Lemma 2.2, we obtain

Q2 ≤ 1

2

{ ∞∑
n=2

(n+ 1) (n (k + 1)− (k + α))

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+

∞∑
n=2

(n− 1) (n (k + 1) + (k + α))

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

}
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=
1

2

{
(k + 1)

∞∑
n=2

(n− 1) (n− 2)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+(3k + 4− α)
∞∑
n=2

(n− 1)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+2(1− α)
∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+(k + 1)

∞∑
n=2

(n− 1) (n− 2)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

+(3k + 2 + α)

∞∑
n=2

(n− 1)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

}

=
1

2

{
(k + 1)r (r + 1) p2 (1− p)

r
∞∑
n=3

(
n+ r − 2

r + 1

)
pn−3

+(3k + 4− α)rp (1− p)
r
∞∑
n=2

(
n+ r − 2

r

)
pn−2

+2(1− α) (1− p)
r
∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1

+(k + 1)s (s+ 1) q2 (1− q)
s
∞∑
n=3

(
n+ s− 2

s+ 1

)
qn−3

+(3k + 2 + α)sq (1− q)
s
∞∑
n=2

(
n+ s− 2

s

)
qn−2

}

=
1

2

{
(k + 1)r (r + 1) p2 (1− p)

r
∞∑
n=0

(
n+ r + 1

r + 1

)
pn

+(3k + 4− α) rp (1− p)
r
∞∑
n=0

(
n+ r

r

)
pn

+2(1− α) (1− p)
r
∞∑
n=0

(
n+ r − 1

r − 1

)
pn − 2(1− α) (1− p)

r

+(k + 1)s (s+ 1) q2 (1− q)
s
∞∑
n=0

(
n+ s+ 1

s+ 1

)
qn

+(2k + 2 + α) sq (1− q)
s
∞∑
n=0

(
n+ s

s

)
qn

}

=
1

2

{
(k + 1)r (r + 1) p2

(1− p)
2 +

(3k + 4− α) rp
1− p

+ 2(1− α)− 2(1− α) (1− p)
r

+
(k + 1)s (s+ 1) q2

(1− q)
2 +

(3k + 2 + α) sq

1− q

}
.

The last expression is bounded above by (1− α) by the condition (3.2). Thus the proof of Theorem 3.2 is complete.

Theorem 3.3. If the inequality

(1− p)r + (1− q)s ≥ 1 +
(2k + 1 + α)

1− α
|b1| (3.3)

is hold, then P r,sp,q
(
HUC(k, α)

)
⊂ HUC(k, α).
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Proof. Suppose f = h+ g ∈ HUC(k, α) where h and g are given by (1.2) with i = 1. We need to establish that the
operator

P r,sp,q (f)(z) = z −
∞∑
n=2

(
n+ r − 2

r − 1

)
pn−1 (1− p)

r
anz

n

− |b1| z −
∞∑
n=2

(
n+ s− 2

s− 1

)
qn−1 (1− q)

s |bn| zn

is in HUC(k, α) if and only if Q3 ≤ 1− α, where

Q3 =

∞∑
n=2

n (n (k + 1)− (k + α))

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1 |an|

+(2k + 1 + α) |b1|+
∞∑
n=2

n (n (k + 1) + (k + α))

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1 |bn| .

Using Lemma 2.4, we have

Q3 ≤ (1− α)

{ ∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+

∞∑
n=2

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

}
+ (2k + 1 + α) |b1|

= (1− α)

{
(1− p)

r
∞∑
n=0

(
n+ r − 1

r − 1

)
pn − (1− p)r

+(1− q)
s
∞∑
n=0

(
n+ s− 1

s− 1

)
qn − (1− q)s

}
+ (2k + 1 + α) |b1|

= (1− α) {2− (1− p)r − (1− q)s}+ (2k + 1 + α) |b1| ≤ 1− α.

Then inequality (3.3) completes the proof.

Theorem 3.4. If the inequality

2(k + 1)r (r + 1) (r + 2)p3

(1− p)
3 +

(13k + 15− 2α) r (r + 1) p2

(1− p)
2 +

(15k + 24− 9α) rp

1− p

+
2(k + 1)s (s+ 1) (s+ 2)q3

(1− q)
3 +

(11k + 9 + 2α) s (s+ 1) q2

(1− q)
2 +

(9k + 6 + 3α) sq

1− q

≤ 6(1− α) (1− p)
r (3.4)

is hold, then P r,sp,q
(
SH∗,0

)
⊂ HS∗(k, α).

Proof. Suppose f = h+ g ∈ SH∗,0 where h and g are given by (1.1) with b1 = 0. We need to prove that P r,sp,q (f) =
H +G ∈ HS∗(k, α). In view of Lemma 2.4, we need to prove that Q4 ≤ 1− α, where

Q4 : =

∞∑
n=2

(n (k + 1)− (k + α))

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1 |an|

+

∞∑
n=2

(n (k + 1) + (k + α))

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1 |bn| .
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Referring Lemma 2.6, we observe

Q4 ≤ 1

6

{ ∞∑
n=2

(2n+ 1)(n+ 1) (n (k + 1)− (k + α))

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+

∞∑
n=2

(2n− 1)(n− 1) (n (k + 1) + (k + α))

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

}

=
1

6

{
2(k + 1)

∞∑
n=2

(n− 1) (n− 2) (n− 3)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+(13k + 15− 2α)

∞∑
n=2

(n− 1) (n− 2)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+(15k + 24− 9α)

∞∑
n=2

(n− 1)

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+6(1− α)
∞∑
n=2

(
n+ r − 2

r − 1

)
(1− p)

r
pn−1

+2(k + 1)

∞∑
n=2

(n− 1) (n− 2) (n− 3)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

+(11k + 9 + 2α)

∞∑
n=2

(n− 1) (n− 2)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

+(9k + 6 + 3α)

∞∑
n=2

(n− 1)

(
n+ s− 2

s− 1

)
(1− q)

s
qn−1

}

=
1

6

{
2(k + 1)r (r + 1) (r + 2)p3 (1− p)

r
∞∑
n=0

(
n+ r + 2

r + 2

)
pn

+(13k + 15− 2α)r (r + 1) p2 (1− p)
r
∞∑
n=0

(
n+ r + 1

r + 1

)
pn

+(15k + 24− 9α)rp (1− p)
r
∞∑
n=0

(
n+ r

r

)
pn

+6(1− α)
∞∑
n=0

(
n+ r − 1

r − 1

)
(1− p)

r
pn − 6(1− α) (1− p)

r

+2(k + 1)s (s+ 1) (s+ 2)q3 (1− q)
s
∞∑
n=0

(
n+ s+ 2

s+ 2

)
qn

+(11k + 9 + 2α)s (s+ 1) q2 (1− q)
s
∞∑
n=0

(
n+ s+ 1

s+ 1

)
qn

+(9k + 6 + 3α)sq (1− q)
s
∞∑
n=2

(
n+ s

s

)
qn

}

=
1

6

{
2(k + 1)r (r + 1) (r + 2)p3

(1− p)
3 +

(13k + 15− 2α) r (r + 1) p2

(1− p)
2

+
(15k + 24− 9α) rp

1− p
+ 6(1− α)− 6(1− α) (1− p)

r

+
2(k + 1)s (s+ 1) (s+ 2)q3

(1− q)
3 +

(11k + 9 + 2α) s (s+ 1) q2

(1− q)
2

+
(9k + 6 + 3α) sq

1− q

}
.
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The last expression bounded above by (1− α) by the given condition (3.4).

The proof of the following theorem is similar to those of the previous theorems so we state only the result.

Theorem 3.5. If the inequality (1− p)r + (1− q)s ≥ 1 + |b1| is hold, then P r,sp,q
(
HS
∗
(k, α)

)
⊂ HS∗(k, α).
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