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Abstract
Let R be a ring with identity and I(X, R) be the incidence ring of a locally finite partially
ordered set X over R. In this paper, we compute the socle and the singular ideal of the
incidence ring for some X in terms of the socle of R and the singular ideal of R, respectively.
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1. Introduction and preliminaries
The investigation of a ring or algebra R is usually enriched by understanding special

types of ideals or subspaces of R such as the Jacobson radical, the prime radical, the socle,
the singular ideal, the center, etc. Although incidence rings have been an object of study
for a few decades, there does not seem to be any results in the literature on the socle of
incidence rings.

In this paper, we will be computing the left socle and the left singular ideal of an
incidence ring I(X, R), however similar statements hold for right analogues by replacing
Min(X) by Max(X) and the upper finiteness by the lower finiteness condition.

The outline of the paper is as follows: we give preliminaries and easily computable
observations in the Introduction. In Section 2, we look at the singular ideal of particular
incidence rings. Theorem 2.4 states that for any locally finite partially ordered set X and
any ring R, FS(I(X, Singl(R))) ⊆ Singl(I(X, R)) ⊆ I(X, Singl(R)).

Proposition 2.7 states that the left singular ideal of I(X, R) is the incidence subring
of X over the left singular ideal of R, under the hypothesis that Min(X) is a maximal
antichain and κ(x) is finite for any x ∈ Min(X). Corollary 2.8 states that if X is finite,
then Singl(I(X, R)) = I(X, Singl(R)).

In Section 3, we look at the socle of incidence rings. Theorem 3.13 restricts the socle
of an incidence algebra between the following two sets:⊕

x∈Min(X)

⊕
A∈A

⊕
f∈S(x,R)

Af ⊆ Socl(I(X, R)) ⊆
⊕

x∈Min(X)
S(x, Socl(R)),

where A is the collection of all minimal left ideals of R. Theorem 3.2 states that if Min(X)
is a maximal antichain and κ(x) is finite for any x ∈ Min(X), then Socl(I(X, R)) =
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⊕
x∈Min(X) S(x, Socl(R)). Theorem 3.15 has the same conclusion when R is a commutative

ring with finitely many minimal ideals.
Proposition 3.5 affirms that Socl(I(X, R)) = {0} if Min(X) = ∅. Also, Theorem 3.8

states that Socl(I(X, R)) =
⊕

x∈Min(X) S(x, Socl(R)) under the assumption that R is an
Artinian and nonsingular ring, Min(X) is finite and κ(x) is finite for all x ∈ X. At the
end of the paper, we provide an example of an incidence ring with non-equal left and right
socles. We also state the necessary conditions for the left and right socles of I(X, R) to
be isomorphic in Proposition 3.20.

Throughout the article, R is a ring with unity and not necessarily commutative. We
assume X is a locally finite partially ordered set. Min(X) is the set of all minimal elements
of X, and Max(X) is the set of all maximal elements of X. Min(X), Max(X) may very
well be empty sets. For any set U , we will use |U | to denote the cardinality of U .

The socle Soc(M) of an R-module M is the sum of all its simple (minimal) submodules.
If we take M = R as a left R-module, then the sum of all minimal left ideals of R is the left
socle of R, denoted by Socl(R). Similarly the right socle of R, Socr(R) is defined as the
sum of all minimal right ideals of R. A left (right) essential ideal E of R is a left (right)
ideal which intersects any non-zero left (right) ideal of R non-trivially. It is well-known
that the left (right) socle of a ring is equal to the intersection of all left (right) essential
ideals.

For any subset E of R, let annl(E), (annr(E)) denote the left (right) annihilator of E
and for any a ∈ R, E : a = {r ∈ R : ra ∈ E}. If E is an ideal, then so is E : a.

A left dense ideal D of a ring R is a left ideal with the property that for any a ∈ R,
annr(D : a) = 0.

It is an easy exercise to show that any left (right) dense ideal is a left (right) essential
ideal. The intersection of any finite collection of left (right) essential (dense) ideals is
always left (right) essential (dense). However, the intersection of all the left (right) essential
ideals of the ring R is a left (right) essential ideal if and only if there is a minimal left
(right) essential ideal of R. Similarly, the intersection of all left (right) dense ideals is a
left (right) dense ideal if and only if there is a minimal left (right) dense ideal of R.

For any ring R,

Singl(R) = {x ∈ R : annl(x) is a left essential ideal of R}

is called the left singular ideal of R. A ring R is a left nonsingular ring if Singl(R) = 0.
Similar definitions can be given for right singular ideal Singr(R) of R.

Socr(R), Socl(R), Singl(R) and Singr(R) are all two-sided ideals of R.
Let X be a partially ordered set. For any x, z ∈ X with x ≤ z, the interval [x, z] is

defined as

[x, z] = {y ∈ X : x ≤ y ≤ z}.

If every interval of X is a finite set, then X is called a locally finite partially ordered set.
For a ring R and a locally finite partially ordered set X, the incidence ring I(X, R) is

the set of functions f : X × X → R such that f(x, y) = 0 unless x ≤ y, with the following
operations

(f + g)(x, y) = f(x, y) + g(x, y)
fg(x, y) =

∑
x≤z≤y

f(x, z)g(z, y)

for all f, g ∈ I(X, R) and x, y ∈ X. Also, if R is commutative, I(X, R) becomes an
R-algebra with the operation:

(rf)(x, y) = rf(x, y)
for any r ∈ R. The element δ ∈ I(X, R) which is defined as
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δ(u, v) =
{

1 if u = v
0 otherwise

is the identity element of I(X, R). For any (x, y) ∈ X × X with x ≤ y, we define
exy ∈ I(X, R) as

exy(u, v) =
{

1 if (u, v) = (x, y)
0 otherwise .

Let supp(g) = {(x, y) : g(x, y) ̸= 0} denote the support of g ∈ I(X, R). The set

FS(I(X, R)) = {g ∈ I(X, R) : |supp(g)| < ∞}

is a subring of I(X, R) which is called the finite support of I(X, R).
For a detailed discussion about incidence rings see [6].
A partially ordered set X is called upper finite if for each x ∈ X, U(x) := {y ∈ X | x ≤ y}

is finite. Similarly, X is called lower finite if for each x ∈ X, L(x) := {y ∈ X | y ≤ x} is
finite. For any x ∈ X, define κ(x) := |U(x)| and λ(x) := |L(x)|.

A subset S of X is called an antichain if any two elements in S are incomparable. An
antichain S is called a maximal antichain of X if S is not contained in any other antichain.
We first state a few easily deducible observations that will be used in the sequel.

Lemma 1.1. Assume X is a locally finite partially ordered set. Then

(i) Min(X) is a maximal antichain if and only if for each y ∈ X, there exists a
minimal element x ∈ Min(X) with x ≤ y.

(ii) If Min(X) is a maximal antichain and κ(x) is finite for all x ∈ Min(X), then X
is upper finite.

(iii) If X is an antichain, then Min(X) = Max(X).
(iv) If Min(X) = Max(X) and X is upper finite, then X is an antichain.

Proof. (i) Clearly, Min(X) is an antichain, as no two minimal elements are comparable.
Assume Min(X) is a maximal antichain. If there is a y ∈ X with no x ∈ Min(X) such
that x ≤ y, then x and y are incomparable, hence Min(X) ∪ {y} is an antichain. This
contradicts the maximality of Min(X).
Conversely, assume on the contrary that Min(X) is not a maximal antichain, hence there
exists an antichain Y properly contaning Min(X). Let y ∈ Y \Min(X), so y is incompa-
rable with any x ∈ Min(X) which contradicts the hypothesis.
(ii) Since Min(X) is a maximal antichain, by (i), for each y ∈ X, there exists a minimal
element x ∈ Min(X) with x ≤ y. As κ(y) ≤ κ(x), the result follows.
(iii) If X is an antichain, then every element in X, is both a maximal and a minimal
element. So Min(X) = Max(X) = X.
(iv) Assume X is not an antichain, then there exist two distinct elements x, y such that
x ≤ y. Since X is upper finite, U(x) = {z ∈ X : x ≤ z} is a finite set, say {y0 := x, y1 :=
y, ..., yn}. Notice that if yi ∈ U(x), for i ̸= 0, then U(yi) ( U(x). Then there exists
z ∈ U(x) (z ̸= x) which is also in Max(X). Since Max(X) = Min(X), z ∈ Min(X)
which is a contradiction to x ≤ z. �

Note that the converses of Lemma 1.1 (ii), (iii) are not true. For instance, the partially
ordered set X in Example 1.2 is upper finite, but Min(X) is not a maximal antichain.
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Example 1.2. Let X = {xi, yi : i ∈ N} be a partially ordered set with the relations
xi ≤ y1, yi+1 ≤ yi for all i ∈ N. The Hasse diagram of X is

•y1

•x1

lllllllllllllll •x2

zzzzzzzz
•y2 •x3

DDDDDDDD

•x4

RRRRRRRRRRRRRRR
· · ·

•y3

... .

Hence, Min(X) = {xi : i ∈ N} and Max(X) = {y1}. Now, Min(X) is a non-empty
antichain, which is not maximal, since Min(X)∪{yi} is a maximal antichain for any i ≥ 2.
Moreover, κ(x) is finite for all x ∈ X, that is X is upper finite.

Remark 1.3. When X is finite, for any y in X, there is x in Min(X) with x ≤ y. By
Lemma 1.1 (i), Min(X) is a maximal antichain.

Let X be a locally finite partially ordered set with a subset Y defined as:

Y = {y ∈ X : there is a x ∈ Min(X) with x ≤ y}.

Then, X = Y ⊔ (X\Y ) and let Z = X\Y . Now, we mention some properties of X, Y and
Z in Lemma 1.4.

Lemma 1.4. Let X be a locally finite partially ordered set, Y and Z be subposets defined
as above. Then X = Y ⊔ Z, (i.e., X is the disjoint union of Y and Z).

(i) Min(Y ) = Min(X) and Min(Z) = ∅.
(ii) Min(Y ) is a maximal antichain of Y .
(iii) Min(Y ) is a maximal antichain of X if and only if Z = ∅.

Proof. (i) Min(X) ⊆ Min(Y ) : Let β ∈ Min(X) ⊂ Y and assume that β /∈ Min(Y ). By
definition of the set Y , there exists a α ∈ Min(Y ) with α ≤ β. Since α ∈ Y , there exists
γ ∈ Min(X) with γ ≤ α ≤ β. This contradicts minimality of β. Hence β ∈ Min(Y ).

Min(Y ) ⊆ Min(X) : Let α ∈ Min(Y ). Since Min(Y ) ⊆ Y and using the result
Min(X) ⊆ Min(Y ), there exists β ∈ Min(X) with β ≤ α. Since β ∈ Min(X) it follows
that β ∈ Y . Hence β ≤ α and α ≤ β. That is α = β, then α ∈ Min(X).

Min(Z) = ∅ : Assume there exists an element z ∈ Min(Z). Since Min(Z) ⊆ Z,
z ∈ Z = X \Y , that is z /∈ Y . Note that z /∈ Min(X), so there exists x1 ∈ X with x1 ̸= z
such that x1 ≤ z.

We claim that x1 ∈ Z i.e x1 /∈ Y . Otherwise, if x1 ∈ Y , there exists x2 ∈ Min(X) such
that x2 ≤ x1 ≤ z which implies z ∈ Y , a contradiction.
(ii) Consider the definition of Y . For each y ∈ Y there exists a minimal element x ∈
Min(X) with x ≤ y. By (2), Min(Y ) = Min(X). So x ∈ Min(Y ). By Lemma 1.1 (i),
Min(Y ) is a maximal antichain of Y.
(iii) Assume Min(Y ) is a maximal antichain and on the contrary, that there is an element
z ∈ Z. So, Min(Y ) ∪ {z} is also an antichain by definition of Y . This is the desired
contradiction.

Assume Z = ∅. Then by (i), X = Y . Using the definition of Y , there exists x ∈ Min(X)
such that x ≤ y. Thus Min(X) ̸= ∅. Since X = Y , there exists y ∈ Y such that y ≤ x.
By Lemma 1.1 (i) Min(Y ) is a maximal antichain of Y = X. �
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2. Singular ideal of incidence rings
In this section, we will investigate the left singular ideal of an incidence ring. Moreover,

similar arguments that appear here can be used to achieve analogous results for the right
singular ideal.

We start by quoting some results that appeared in the literature. The following lemma
is from [2], we give the proof for completeness of the argument in the sequel.

Lemma 2.1. ([2, Lemma 11]) Assume r is a non-zero element of R, and x, y ∈ X with
x ≤ y. Then annl(rexy) is a left essential ideal of I(X, R) if and only if annl(r) is a left
essential ideal of R.

Proof. First, note that annl(rexy) = {g ∈ I(X, R) : g(u, x) ∈ annl(r) for all u ∈ X}.
Assume annl(r) is a left essential ideal of R. Take any non-zero f ∈ I(X, R).

Case 1: If f(u, x) = 0 for all u ∈ X, then f ∈ annl(rexy). Thus annl(rexy) ∩ I(X, R)f ̸=
{0}.

Case 2: Otherwise, there exists z ∈ X such that f(z, x) ̸= 0. Let S be the set of all z ∈ X
such that f(z, x) ̸= 0. Then annl(r) ∩ Rf(z, x) ̸= {0}. So there exists rz ∈ R such that
rzf(z, x) ∈ annl(r), rzf(z, x) ̸= 0. Now, construct g ∈ I(X, R) where

g(u, v) =
{

rz if u ≤ z and v = z
0 otherwise .

For any u ∈ X, S ∩ [u, x] is a finite set, as X is locally finite, so

gf(u, x) =
∑

t

g(u, t)f(t, x) =
∑

z∈S∩[u,x]
g(u, z)f(z, x) =

∑
z∈S∩[u,x]

rzf(z, x) ∈ annl(r).

So gf ∈ annl(rexy). Now, we show gf ̸= 0. There is a z ∈ S, and an interval [z, x] such
that S ∩ [z, x] = {z}. Then gf(z, x) = g(z, z)f(z, x) = rzf(z, x) ̸= 0.

Then gf ∈ annl(rexy) ∩ I(X, R)f. Hence annl(rexy) is a left essential ideal of I(X, R).

Conversely, assume annl(rexy) is a left essential ideal of I(X, R). Take any non-zero
a ∈ R. Then I(X, R)(aexx) ∩ annl(rexy) ̸= 0, so there exists f ∈ I(X, R) such that
faexx ̸= 0 and also faexx ∈ annl(rexy). Hence there exists u ∈ X such that f(u, x)a ̸= 0
and also f(u, x)a ∈ annl(r). Therefore, Ra ∩ annl(r) ̸= 0 and annl(r) is left essential. �

Now, we are ready to prove that for any X and R, the finite support of I(X, Singl(R))
is contained in the singular ideal of I(X, R).

Proposition 2.2. For any partially ordered set X and ring R,
FS(I(X, Singl(R))) ⊆ Singl(I(X, R)).

Proof. Let f be in the finite support of I(X, Singl(R))), then f =
∑

rxyexy where rxy ∈
Singl(R) and the sum is over finitely many entries (x, y) in X × X, x ≤ y. For any
(x, y) with x ≤ y, annl(rxy) is a left essential ideal of R. By Lemma 2.1 annl(rxyexy)
is left essential ideal of I(X, R), so rxyexy is in the left singular ideal of I(X, R). Hence,
f ∈ Singl(I(X, R)). �

For any X and R, Singl(I(X, R)) ⊂ I(X, Singl(R)), which is already proved in [2,
Theorem 12, Proposition 13]. We include the proof here for the completeness of the
argument.

Proposition 2.3. Assume X is a locally finite partially ordered set, R is any ring. Then
Singl(I(X, R)) ⊂ I(X, Singl(R)).
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Proof. Take f ∈ Singl(I(X, R)) and f ̸= 0, then annl(f) is left essential.

annl(f) =
∩

x∈X

annl(fexx) ⊆ annl(fexx) for all x ∈ X.

Hence, annl(fexx) is a left essential ideal for all x ∈ X.
Since f ̸= 0, there exists f(x, y) ̸= 0 for some (x, y) ∈ X × X. Let r ∈ R, r ≠ 0 be

arbitrary. Construct rexx ∈ I(X, R). Then
annl(feyy) ∩ I(X, R)(rexx) ̸= {0}.

So there exists h ∈ I(X, R) such that h(rexx) ̸= 0 and hrexx ∈ annl(feyy). That is, there
exists t ≤ x such that

(hrexx)(t, x) = h(t, x)r ̸= 0
and ∑

v≤z≤y

(hrexx)(v, z)f(z, y) = 0 for all v ≤ x.

For v = t,

0 =
∑

t≤z≤y

(hrexx)(t, z)f(z, y) = h(t, x)rf(x, y).

This implies h(t, x)r ∈ annl(f(x, y)). So h(t, x)r ∈ Rr ∩ annl(f(x, y)) ̸= {0}. Then
annl(f(x, y)) is left essential in R. So f(x, y) ∈ Singl(R). Hence f ∈ I(X, Singl(R)). �

Propositions 2.2 and 2.3 give the main result on the singular ideal of an incidence ring.

Theorem 2.4. For any locally finite partially ordered set X and any ring R,
FS(I(X, Singl(R))) ⊆ Singl(I(X, R)) ⊆ I(X, Singl(R)).

We turn our attention to sharpening the inclusion in Theorem 2.4 under some re-
strictions of X or R in the rest of this section. We analyze the conditions needed for
Singl(I(X, R)) = I(X, Singl(R)).

In [2, Theorem 12], it is shown that I(X, R) is (left) nonsingular if and only if R is left
non-singular. Although this result is a very simple observation, as we have quoted the
statement throughout the text, we will state it as a proposition.

Proposition 2.5. ([2, Theorem 12]) Singl(I(X, R)) = {0} if and only if Singl(R) = {0}.
Hence, in this case,

Singl(I(X, R)) = I(X, Singl(R)) = {0}.

Now, we consider the left singular ideal of the incidence ring over a partially ordered
set X with Min(X) a maximal antichain and κ(x) finite. We will need the dual version
of the following lemma from [1] that we restate here.

Lemma 2.6. ([1, Lemma 1, Lemma 2]) Assume A is a left ideal of I(X, R). For any
x, y ∈ X with x ≤ y,

(i) A(x, y) = {f(x, y) ∈ R : f ∈ A} is a left ideal of R.
(ii) For x ≤ y ≤ z in X, A(x, y) ⊂ A(x, z).
(iii) If A is an essential left ideal and x ∈ Min(X), then

C(x, y) = {f(x, y) ∈ R : f ∈ Rexy ∩A} is an essential left ideal of R and C(x, y) ⊂
A(x, y).

(iv) If A is an essential left ideal then there exists a family E of essential left ideals of
R such that for any x ∈ Min(X), and y ∈ X with x ≤ y, there exists Exy ∈ E

with Exyexy ⊂ A.
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(v) Assume Min(X) is a maximal antichain and κ(x) is finite for all x ∈ X. If there
exists a family E of essential left ideals of R such that for any x ∈ Min(X), and
y ∈ X with x ≤ y, there exists Exy ∈ E with Exyexy ⊂ A, then A is an essential
left ideal.

This result is a special case of Theorem 2.4, where the equality is achieved:

Proposition 2.7. Assume X is a locally finite partially ordered set where Min(X) is a
maximal antichain and κ(x) is finite for any x ∈ Min(X). Then, the left singular ideal
of I(X, R) is the incidence subring of X over the left singular ideal of R. That is,

Singl(I(X, R)) = I(X, Singl(R)).

Proof. By Proposition 2.3, one containment is satisfied.
For the converse, take a non-zero element f ∈ I(X, Singl(R)). We want to show that

annl(f) is a left essential ideal in I(X, R). By using Lemma 2.6, it is enough to show that
there exists a collection E = {Axy : x ∈ Min(X), x ≤ y} of left essential ideals in R, such
that Axyexy ⊂ annl(f) for all x ∈ Min(X), x ≤ y. Pick any x, y with x ∈ Min(X) and
x ≤ y. Define

Axy =
∩

v∈U(y)
annl(f(y, v)).

Since f(y, v) ∈ Singl(R), annl(f(y, v)) is left essential ideal of R for all v ∈ U(y). As,
|U(y)| = κ(y) is a finite set by Lemma 1.1 (ii), Axy is the finite intersection of left essential
ideals. Hence, Axy is left essential. Moreover, take any r ∈ Axy =

∩
annl(f(y, v)), to

complete the proof we show that rexy ∈ Axyexy is in the left annihilator of f . Take any
(u, v),

(rexyf)(u, v) =
{

rf(y, v) if u = x, y ≤ v

0 otherwise
=

{
0 if u = x, y ≤ v

0 otherwise
= 0.

Hence Axyexyf = 0 and Axyexy ⊂ annl(f). �

When X is finite, Min(X) is a maximal antichain by Remark 1.3. Clearly, any finite X is
upper finite. Hence, we get the following corollary which is already stated in [2, Proposition
13].

Corollary 2.8. Assume X is finite, then
Singl(I(X, R)) = I(X, Singl(R)).

Another proof of Corollary 2.8 is that the finite support of I(X, Singl(R)) is I(X, Singl(R))
itself, when X is finite. By Proposition 2.2, the result follows.

3. Socle of incidence rings
In this section, we will investigate the socle of an incidence ring. In order to calculate

the left socle, we will look at the essential ideals of an incidence ring, which are already
studied in [5]. Also, any dense ideal is essential, so the description of various dense ideals
of an incidence algebra defined in the paper [3] will be useful.

The following constructions are from [3].
For any x ∈ Min(X), fix a left ideal Ix of R and define a subset S(x, Ix) of I(X, R) as

S(x, Ix) = {f ∈ I(X, Ix) : f(u, v) = 0 if u ̸= x}.

Then the set
C(I(X, R)) :=

⊕
x∈Min(X)

S(x, Ix) =
⊕

x∈Min(X)
{f ∈ I(X, Ix) : f(u, v) = 0 if u ̸= x}
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is a two-sided ideal of I(X, R).

Lemma 3.1. Assume X is a locally finite partially ordered set where Min(X) is a maximal
antichain and {Ix : x ∈ Min(X)} is a collection of left essential ideals of R.

(i) C(I(X, R)) is a left essential ideal of I(X, R).
(ii) Let C be the intersection of all left essential ideals of the form C(I(X, R)). Then

C =
⊕

x∈Min(X)
S(x, Socl(R)).

(iii) Socl(I(X, R)) ⊂ C.

Proof. (i) Assume Min(X) is a maximal antichain. Then left ideals of the form C(I(X, R))
are left essential.

(ii) If f ∈ C, then f = fx1 + fx2 + · · · fxn where fxi ∈ S(xi, Di) for any left essen-
tial ideal Di where xi ∈ Min(X), i = 1, · · · , n. So, fxi ∈ S(xi, Socl(R)) and f ∈⊕

x∈Min(X) S(x, Socl(R)). Similarly, f ∈
⊕

x∈Min(X) S(x, Socl(R)) implies f is in any
left essential ideal of the form C(I(X, R)), so f ∈ C.

(iii) Since Socl(I(X, R)) is the intersection of all left essential ideals, the result follows. �
When we consider the assumption that Min(X) is a maximal antichain and κ(x) is

finite for any x ∈ Min(X), we achieve the equality, i.e.,

Socl(I(X, R)) =
⊕

x∈Min(X)
S(x, Socl(R)).

Theorem 3.2. Assume X is a locally finite partially ordered set where Min(X) is a
maximal antichain and κ(x) is finite for any x ∈ Min(X). Then,

Socl(I(X, R)) =
⊕

x∈Min(X)
S(x, Socl(R))

Proof. Assume Min(X) is a maximal antichain, then Lemma 3.1 (iii) gives one inclusion.
Also, by hypothesis κ(x) is finite for any x ∈ Min(X). Now, let f ∈

⊕
x∈Min(X) S(x, Socl(R)),

and K be any left essential ideal of I(X, R).
Let M be a subset of Min(X), say M = {x1, x2, ..., xn}. Now, f =

∑
x∈M

fx where

fx ∈ S(xi, Socl(R)) for some xi ∈ M , i = 1, · · · , n. Let x ∈ M then

fx =
∑
x≤y

αyexy where αy ∈ Socl(R).

Since κ(x) < ∞, this sum is finite. Then
C(x, y) = {r ∈ R : rexy ∈ Rexy ∩ K}

is a left essential ideal of R by Lemma 2.6 (iii). So Socl(R) ⊆ C(x, y). Since αy ∈
Socl(R) ⊆ C(x, y),

αyexy ∈ C(x, y)exy = Rexy ∩ K ⊆ K

and fx ∈ K, hence f ∈ K. For any left essential ideal K,⊕
x∈Min(X)

S(x, Socl(R)) ⊆ K,

and ⊕
x∈Min(X)

S(x, Socl(R)) ⊆
∩

all essential K

K = Socl(I(X, R)).

This completes the proof. �
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We provide an example for the previous theorem.

Example 3.3. The partially ordered set
∪

Cn is defined to be the set
X = {x11, x21, x22, x31, x32, x33, x41, · · · }

with the relation that xij ≤ xkl whenever i = k and j ≤ l. The set
∪

Cn is an example of
an unbounded partially ordered set with no infinite chain.

•x44

•x33 •x43

•x22 •x32 •x42

•x11 •x21 •x31 •x41 · · ·
By Theorem 3.2,

Socl(I(X, R)) =
⊕

x∈Min(X)
S(x, Socl(R)).

In [3, Lemma 4], for each n ∈ N, a collection of left dense ideals Zn is constructed as
follows:

Zn := {f ∈ I(X, R) : f(x, y) = 0 if |[x, y]| ≤ n, and x ̸∈ Min(X)}.

The following lemma is proved in [3, Lemma 4].

Lemma 3.4. Zn is a two-sided ideal of I(X, R).
(i) Zn is a left essential ideal of I(X, R).
(ii) Let Z be the intersection of all Zn. Then Socl(I(X, R)) ⊂ Z where

Z =
∩

n∈N
Zn = {f ∈ I(X, R) : f(x, y) = 0 for all y ∈ X, x ̸∈ Min(X)}

=
∏

x∈Min(X)
S(x, R).

(iii) If Min(X) is a finite set, then Z =
⊕

x∈Min(X)
S(x, R).

(iv) If Min(X) = ∅, then Z = {0}.

Proof. It is shown in [3, Lemma 4] that Zn is a left dense ideal of I(X, R). Any dense
ideal is essential. The rest is trivial. �
Proposition 3.5. Let R be any ring, X be a locally finite partially ordered set where
Min(X) = ∅. Then,

Socl(I(X, R)) = {0}.

Proof. By Lemma 3.4 (ii) and (iv), the result follows. �
In the following example, X is upper finite, but there are no minimal elements.

Example 3.6. Let X = Z−, R be any ring. Then Min(X) = ∅. By Proposition 3.5,
Socl(I(X, R)) = {0}.

Our next theorem will restrict R to calculate the socle of the incidence ring. Hence, we
define a collection of sets Dn as follows:

Dn := {f ∈ I(X, Socl(R)) : f(x, y) = 0 if |[x, y]| ≤ n, and x ̸∈ Min(X)}.
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Lemma 3.7. (i) For each n ∈ N, Dn is a two-sided ideal of I(X, R).
(ii) If R is Artinian and nonsingular, then for each n ∈ N, Dn is a left essential ideal

of I(X, R).
(iii) If R is Artinian and nonsingular, then for D =

∩
n∈N Dn we have Socl(I(X, R)) ⊂

D. More precisely,

D = {f ∈ I(X, Socl(R)) : f(x, y) = 0 for all y ∈ X, x ̸∈ Min(X)}

=
∏

x∈Min(X)
S(x, Socl(R)).

(iv) If R is Artinian and nonsingular and Min(X) is a finite set, then

D =
⊕

x∈Min(X)
S(x, Socl(R)).

Proof. (i) For any g ∈ I(X, R) and f ∈ Dn, (gf)(x, y) =
∑

x≤z≤y
g(x, z)f(z, y). For x /∈

Min(X) and |[x, y]| ≤ n, we also have f(x, y) = 0. For all z ≤ y, since z /∈ Min(X) and
|[z, y]| ≤ n we get f(z, y) = 0. Then (gf)(x, y) = 0 and gf ∈ Dn.

(ii) We first show that Dn is a left dense ideal. Let (l, z) ∈ X × X with l ≤ z.

Case 1: Assume that there exists x ∈ Min(X) such that x ≤ l ≤ z. For all α ∈
Socl(R), αexl ∈ Dn and for any g ∈ Annr(Dn),

(αexlg)(x, z) = 0,

then
0 = (αexlg)(x, z) =

∑
x≤y≤z

αexl(x, y)g(y, z) = αg(l, z).

Hence
g(l, z) ∈ Annr(Socl(R)).

Since R is nonsingular, Socl(R)) = R and Annr(Socl(R)) = 0. Hence,

g(l, z) = 0.

Case 2: Now assume that there in no x ∈ Min(X) with x ≤ l. For the case |[l, z]| > n,

take x1 ∈ X such that |[x1, l]| > n with g ∈ Annr(Dn) and for all α ∈ Socl(R),

(αex1lg)(x, z) = 0.

We again have

0 = (αexlg)(x, z) =
∑

x≤y≤z

αexl(x, y)g(y, z) = αg(l, z).

Then by the same manner
g(l, z) = 0.

Hence Annr(Dn) = 0 which means that Dn is a dense ideal of I(X, R))̇. Since a dense
ideal is essential, Dn is essential. Further, R is non-singular, hence all essential ideals are
dense.

(iii) & (iv) are obvious. �

Theorem 3.8. Let X be a locally finite partially ordered set. Assume that R is an Artinian
and nonsingular ring, Min(X) is finite and κ(x) is finite for all x ∈ X, then

Socl(I(X, R)) =
⊕

x∈Min(X)
S(x, Socl(R)).
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Proof. As Min(X) is a finite set, so by Lemma 3.7 (iii) and (iv),

Socl(I(X, R)) ⊆
⊕

x∈Min(X)
S(x, Socl(R)).

Also, by hypothesis κ(x) is finite for any x ∈ X. Now, let f ∈
⊕

x∈Min(X) S(x, Socl(R)),
and K be any left essential ideal of I(X, R). Let M be a subset of Min(X), say M =
{x1, x2, ..., xn}.

Now, f =
∑

x∈M

fx where fx ∈ S(xi, Socl(R)) for some xi ∈ M , i = 1, · · · , n. Let x ∈ M

then
fx =

∑
x≤y

αyexy where αy ∈ Socl(R).

Since κ(x) < ∞, this sum is finite. Then
C(x, y) = {r ∈ R : rexy ∈ Rexy ∩ K}

is a left essential ideal of R by Lemma 2.6 (iii). So Socl(R) ⊆ C(x, y). Since αy ∈
Socl(R) ⊆ C(x, y),

αyexy ∈ C(x, y)exy = Rexy ∩ K ⊆ K

and fx ∈ K, hence f ∈ K. For any left essential ideal K,⊕
x∈Min(X)

S(x, Socl(R)) ⊆ K,

and ⊕
x∈Min(X)

S(x, Socl(R)) ⊆
∩

all essential K

K = Socl(I(X, R)).

This completes the proof. �
Example 3.9. Let R be an Artinian nonsingular ring and X = Y ⊔ Z where Y =
{z1, y1, y2, y3, y4} and Z = {zi : i ∈ N, i ≥ 2} be a partially ordered set with the
relations yi ≤ z1, for 1 ≤ i ≤ 4 and zi+1 ≤ zi for all i ∈ N. The Hasse diagram of X is

•z1

•y1

mmmmmmmmmmmmmmmm •y2

zzzzzzzz
•z2 •y3

DDDDDDDD

•y4

QQQQQQQQQQQQQQQQ

•z3

...
Now, Min(X) = {y1, y2, y3, y4} and by Theorem 3.8,

Socl(I(X, R)) =
⊕

x∈Min(X)
S(x, Socl(R)) =

4⊕
i=1

S(yi, Socl(R)).

Now we will use the minimal left ideals of the ring to calculate the socle. Recall the
partially ordered sets we defined in Section 1 which we use in the proofs of the following
results. The proof of Lemma 3.10 is given by Eugene Spiegel in a private conversation.

Let X be a locally finite partially ordered set with a subset Y defined as:
Y = {y ∈ X : there is a x ∈ Min(X) with x ≤ y}.

Then, X = Y ⊔ (X\Y ) and let Z = X\Y .
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Lemma 3.10. Let X be a locally finite partially ordered set. If N is a minimal left ideal
of I(X, R), then N is of the form Rf for some f ∈ S(x, R) and x ∈ Min(X).

Proof. Assume N is a minimal left ideal of I(X, R). We first prove that for any f ∈ N ,
f(u, v) = 0 for all u ∈ Z. Assume on the contrary that there exists an f ∈ N such that
f(n, m) ̸= 0 for some n ∈ Z and m ∈ X. Since n ∈ Z, there does not exist x ∈ Min(X)
such that x ≤ n. So there exists t1 ∈ X such that t1 < n. Then t1 ∈ Z and Z does not have
any minimal elements. So t1 does not have any minimal element smaller than in the order,
otherwise n would have had the same minimal elements, contradicting the fact that n ∈ Z.
In a similar manner, there exists t2 ∈ Z such that t2 < t1 < n. Hence, we conclude that
there exists a non-terminating sequence {ti}i∈N with . . . < ti+1 < ti < . . . < t2 < t1 < n.
There are infinitely many t ∈ Z such that t ≤ n.

Take etn ∈ I(X, R) and let gt = etnf then

gt(x, y) = etnf(x, y) =
∑

x≤z≤y

etn(x, z)f(z, y) =
{

0 if x ̸= t or n � y
f(n, y) if x = t and n ≤ y

.

Notice that for any k ∈ X such that t < k ≤ m, gt(k, m) = etnf(k, m) = 0 since k ̸= t.
For k = t, gt(t, m) = etn(t, n)f(n, m) = f(n, m) ̸= 0.

Take any h ∈ ⟨gt⟩l, then h = h′gt for some h′ ∈ I(X, R). If t < k ≤ m, then

h(k, m) =
∑

k≤z≤m

h′(k, z)gt(z, m) = 0

since z ̸= t. So for h ∈ ⟨gt⟩l, h(k, m) = 0 for all k with t < k ≤ m. Hence, if h ∈
∩
t<n

⟨gt⟩l,

then h(u, m) = 0 for all u ≤ m.
On the other hand, gt ∈ ⟨f⟩l = N . Since N is a minimal left ideal, all nonzero elements

of N are generators. For all t < n, ⟨gt⟩l = ⟨f⟩l = N and f ∈ ⟨gt⟩l for all t. Hence,
f ∈

∩
t<n

⟨gt⟩l and f(n, m) ̸= 0, this is the desired contradiction.

Moreover, f ∈ I(Y, R) for all f ∈ N . If u ∈ Z then f(u, v) = 0 for all f ∈ N . So
N ⊆ I(Y, R). Then for some u ∈ Y , we get f(u, v) ̸= 0, that is there is x ∈ Min(X) with
x ≤ u. Take ex ∈ I(X, R) then exf ∈ I(X, R) and

exf(u, v) =
{

ex(x, x)f(x, v) if x = u
0 if x ̸= u

.

Then exf ⊆ S(x, R) and ⟨exf⟩l ∈ S(x, R). As N is a minimal left ideal of I(X, R), we get
⟨exf⟩l = N = ⟨f⟩l. Thus f ∈ ⟨exf⟩l ⊆ S(x, R) and N = ⟨f⟩l = Rf . �

Lemma 3.11. Assume A is a minimal left ideal of R, x ∈ Min(X) and f ∈ S(x, R).
Then any non-zero Af is a minimal left ideal of I(X, R).

Proof. Let A be a minimal left ideal of R and f ∈ S(x, R) for some x ∈ Min(X).
Consider Af = {af : a ∈ A} with Af ̸= 0. Then for any g ∈ I(X, R),

g(af)(u, v) =
{

g(x, x)af(x, v) if u = x
0 if u ̸= x

.

Hence g(af) = (g(x, x)a)f ∈ Af as A is a left ideal of R. Af is clearly a left ideal of
I(X, R).

Take a, b ∈ A such that af and bf are non-zero elements of Af . Now, A is a minimal
left ideal so ⟨af⟩ = ⟨bf⟩ = A. Then there exist r, s ∈ R such that a = rb and b = sa.
So af = (rb)f = (rex)(bf) ∈ ⟨bf⟩l, which implies ⟨af⟩l ⊆ ⟨bf⟩l. Similarly, bf = (sa)f =
(sex)(af) ∈ ⟨af⟩l, which implies ⟨bf⟩l ⊆ ⟨af⟩l. Hence ⟨bf⟩l = ⟨af⟩l. Any nonzero element
of Af is a generator, that is Af is a minimal left ideal of I(X, R). �



The singular ideal and the socle of incidence rings 465

Lemma 3.12. Assume N is a minimal left ideal of I(X, R), then N is a minimal left
ideal of I(Y, R).

Proof. Asuume that N is a minimal left ideal of I(X, R), then N = Rf where f ∈ S(x, R),
for some x ∈ Min(X) by Lemma 3.10. Since for all g ∈ I(Y, R) we have gN ⊆ N , clearly
N is a left ideal of I(Y, R).

Pick any non-zero af ∈ N for some a ∈ R. Then the left ideal generated in I(Y, R) is
⟨af⟩I(Y,R) ⊆ N . Since f ∈ S(x, R), for all h ∈ I(Y, R) we get

⟨af⟩I(Y,R) = {haf : h ∈ I(Y, R)} = {(h(x, x)a)f : h(x, x) ∈ R} = R(af) = (Ra)f.

Similarly,

⟨af⟩I(X,R) = {haf : h ∈ I(X, R)} = {(h(x, x)a)f : h(x, x) ∈ R} = (Ra)f.

So, the left ideal generated by ⟨af⟩ in I(Y, R) is equal to the the left ideal generated by
⟨af⟩ in I(X, R). As N is a minimal left ideal of I(X, R), N = ⟨af⟩I(X,R) = ⟨af⟩I(Y,R).
Hence, N is a minimal left ideal in I(Y, R). �

Let M be the collection of all minimal left ideals of I(X, R) and N be the collection of
all minimal left ideals of I(Y, R). By Lemma 3.12, M ⊆ N and

Socl(I(X, R)) =
⊕

N∈M

N ⊆
⊕

N∈N

N = Socl(I(Y, R)).

Moreover, by Lemma 1.4, Min(Y ) = Min(X) is a maximal antichain in Y and by Lemma
3.1

Socl(I(Y, R)) ⊆
⊕

x∈Min(X)
S(x, Socl(R)).

Thus,
Socl(I(X, R)) ⊆

⊕
x∈Min(X)

S(x, Socl(R)). (3.1)

Let A be the collection of all minimal left ideals of R. By Lemma 3.11, for any minimal
left ideal A of R with x ∈ Min(X) and f ∈ S(x, R), any non-zero Af is a minimal left
ideal of I(X, R). Hence,

⊕
x∈Min(X)

⊕
A∈A

⊕
f∈S(x,R)

Af ⊆ Socl(I(X, R)). (3.2)

Combining (3.1) and (3.2) gives the following result:

Theorem 3.13. Let X be a locally finite partially ordered set and R be a ring with unity.
Then ⊕

x∈Min(X)

⊕
A∈A

⊕
f∈S(x,R)

Af ⊆ Socl(I(X, R)) ⊆
⊕

x∈Min(X)
S(x, Socl(R)).

where A is the collection of all minimal left ideals of R.

We further assume that R is a commutative ring.

Lemma 3.14. Let R be a commutative ring and A be a minimal ideal of R. Let X be a
locally finite partially ordered set with x ∈ Min(X). Then for any g ∈ S(x, A), the left
ideal generated by g is a minimal left ideal of I(X, R). Moreover⊕

g∈S(x,A)
⟨g⟩l = S(x, A).
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Proof. Consider g ∈ S(x, A), where x ∈ Min(X),f or any u, v ∈ X,

g(u, v) =
{

av if u = x, v ≥ u

0 if u ̸= x

where av ∈ A. We would like to show that the left ideal generated by g is a minimal left
ideal of I(X, R). One can write the left ideal generated by g as:

⟨g⟩l = {f ∈ I(X, R) : f = ag for some a ∈ R}

Fix some f ∈ ⟨g⟩l. That is, f = ag for some fixed a ∈ R. Then for any u, v ∈ X,

f(u, v) =
{

aav if u = x, v ≥ u

0 if u ̸= x
where av = g(x, v) ∈ A.

Now, for any v, av ∈ A and A is an (minimal) ideal of R, implies that aav ∈ A. Clearly,
⟨aav⟩ ⊆ A. If aav is non-zero, then by the minimality of A, we get ⟨aav⟩ = A,

⟨aav⟩ = A = ⟨av⟩ = ⟨aw⟩.

For each non-zero av ∈ A, we can generate A with ⟨av⟩. That is, there exists r0 ∈ R
such that av = r0aav, and there exists rw ∈ R such that aw = rwav. For any g ∈ S(x, A),
g(x, v) = av = r0aav = r0f(x, v). Since R is commutative, g(x, w) = aw = rwav =
rw(r0a)av = (r0a)rwav = (r0a)aw = r0(aaw) = r0f(x, w). Hence

g(x, v) = r0f(x, v) for all v,
g(u, v) = 0 = r0f(u, v) if u ̸= x.

So g = r0exxf ∈ ⟨f⟩l. Thus
⟨g⟩l ⊆ ⟨f⟩l ⊆ ⟨g⟩l.

That is ⟨f⟩l = ⟨g⟩l. Hence we proved the left ideal generated by g is a minimal left ideal
of I(X, R). �

When R is a commutative ring, by Lemma 3.14, we conclude that⊕
A∈A

⊕
x∈Min(X)

S(x, A) ⊆ Socl(I(X, R)).

Thus, Theorem 3.13 becomes⊕
A∈A

⊕
x∈Min(X)

S(x, A) ⊆ Socl(I(X, R)) ⊆
⊕

x∈Min(X)
S(x, Soc(R)).

Theorem 3.15. Assume R is a commutative ring with finitely many minimal ideals and
X is a locally finite partially ordered set. Then

Socl(I(X, R)) =
⊕

x∈Min(X)
S(x, Soc(R)).

Proof. By Theorem 3.13, Socl(I(X, R)) ⊆
⊕

x∈Min(X) S(x, Soc(R)). For the converse
inclusion, we use Lemma 3.14. Since Socl(I(X, R)) is the sum of all minimal left ideals of
I(X, R), ⊕

x∈Min(X)

⊕
A

S(x, A) ⊆ Socl(I(X, R))

where A ranges over all minimal ideals of R.
If R has finitely many minimal ideals {Ai}n

i=1, then
⊕n

i=1 Ai = Soc(R). Now, we will
prove that for any x ∈ Min(X)

S(x, Soc(R)) =
n⊕

i=1
S(x, Ai)
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and hence deduce ⊕
x∈Min(X)

S(x, Soc(R)) ⊆ Socl(I(X, R)).

Fix x ∈ Min(X). Given any f ∈ S(x, Soc(R)) and y ∈ X, we have f(x, y) ∈ Soc(R) =⊕n
i=1 Ai. That is

f(x, y) =
n∑

i=1
ay

i ,

where ay
i ∈ Ai. Define the functions fi ∈ I(X, R) for i = 1, ..., n as:

fi(u, y) =
{

0 if u ̸= x

ay
i if u = x,

for any y ∈ X.

So fi ∈ S(x, Ai), hence f =
∑n

i=1 fi ∈
⊕n

i=1 S(x, Ai). Clearly,
⊕n

i=1 S(x, Ai) is contained
in S(x, Soc(R)). This completes the proof. �

We want to state that when R is chosen to be a field or a commutative ring with finitely
many minimal ideals, or Z, socle and singular ideal are easy to compute.

Example 3.16. Let X = Z+, then Min(X) = {1} is a singleton and Min(X) is a
maximal antichain, but κ(x) is not finite for any x.

• if R = Z, Sing(Z) = {0} = Soc(Z).
By Proposition 2.5, Sing(I(X,Z)) = {0} and by Lemma 3.1,

Socl(I(X,Z)) ⊂ S(1, Soc(Z)) = {0}.
• R = F is a field, then Sing(F ) = {0}, Soc(F ) = F .

By Proposition 2.5, Sing(I(X, F )) = {0} and since F has a unique minimal ideal
F itself by Teorem 3.15,

Socl(I(X, F )) = S(1, F ).
• R is a commutative ring with finitely many minimal ideals, Then Socl(I(Z+, R)) =

S(1, Soc(R)) by Theorem 3.15.

We conclude this section by describing the right socle of I(X, R) and give an example
of an incidence ring having the same left and right socle.

For any x ∈ Max(X), fix a right ideal Ix of R and define T (x, Ix) as
T (x, Ix) = {f ∈ I(X, Ix) : f(u, v) = 0 if v ̸= x}.

Then, we form

B(I(X, R)) :=
⊕

x∈Max(X)
T (x, Ix) =

⊕
x∈Max(X)

{f ∈ I(X, Ix) : f(u, v) = 0 if v ̸= x}

which is a two-sided ideal of I(X, R).
Equivalent to Lemma 3.1, we have the following results.

Lemma 3.17. Assume X is a locally finite partially ordered set where Max(X) is a
maximal antichain and {Ix : x ∈ Max(X)} is a collection of right essential ideals of R.

(1) B(I(X, R)) is a right essential ideal of I(X, R).
(2) Let B be the intersection of all right essential ideals of the form B(I(X, R)). Then

B =
⊕

x∈Max(X)
T (x, Socr(R)).

(3) Socr(I(X, R)) ⊂ B.

Under the assumption that Max(X) is a maximal antichain and λ(x) is finite for any
x ∈ Max(X), the description of the right socle follows.
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Theorem 3.18. Assume X is a locally finite partially ordered set where Max(X) is a
maximal antichain and λ(x) is finite for any x ∈ Max(X). Then,

Socr(I(X, R)) =
⊕

x∈Max(X)
T (x, Socr(R)).

When X is a finite partially ordered set, the hypotheses of Theorem 3.2 and Theorem
3.18 are satisfied. As an immediate corollary, the left and the right socle of the incidence
ring are given explicitly as

Socl(I(X, R)) =
⊕

x∈Min(X)
S(x, Socl(R)),

Socr(I(X, R)) =
⊕

x∈Max(X)
T (x, Socr(R)).

This leads to constructing examples of incidence rings with distinct left and right socles.
Example 3.19. Let X = {x, y, z} be a partially ordered set with the non-reflexive rela-
tions x ≤ y, x ≤ z. Hence, Hasse diagram of X is

•y •z

•x

BBBBBBBB

}}}}}}}}
.

By mapping each f ∈ I(X, R) to

 f(x, x) f(x, y) f(x, z)
0 f(y, y) 0
0 0 f(z, z)

,

I(X, R) is isomorphic to the R-algebra R R R
0 R 0
0 0 R

 .

By Theorem 3.2, Socl(I(X, R)) =

 Socl(R) Socl(R) Socl(R)
0 0 0
0 0 0

 . By Theorem 3.18,

Socr(I(X, R)) =

 0 Socr(R) Socr(R)
0 Socr(R) 0
0 0 Socr(R)

 .

Hence, Socl(I(X, R)) ̸= Socr(I(X, R)).
It is well-known that the left singular ideal of any ring is contained in the right annihi-

lator of its left socle. Moreover, when the ring is left Artinian, then the left singular ideal
of the ring is exactly the right annihilator of the left socle (eg. see [4, Proposition 2.1.4]).
In [6, Chapter 8, p.305], it is stated that I(X, R) is left Artinian if and only if X is finite
and R is left Artinian. In view of all these results, let R be an Artinian ring, thus we
further provide an example such that Singl(I(X, R)) = annr(Socl(I(X, R))).

By Corollary 2.8,

Singl(I(X, R)) = I(X, Singl(R)) =

 Singl(R) Singl(R) Singl(R)
0 Singl(R) 0
0 0 Singl(R)

 .

Note that Socl(I(X, R))Singl(I(X, R)) = 0.

Let X be a partially ordered set with order ≤, then we can create a new partially
ordered set Xop = X with order ≤op defined as

x ≤ y if and only if y ≤op x.
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This (Xop, ≤op) is called the opposite (dual) partially ordered set of (X, ≤). Hence, X
and Xop are anti-isomorphic partially ordered sets. It is easy to verify that there is a
one-to-one correspondence between left ideals of I(X, R) and right ideals of I(Xop, R)
via the map that sends f to fop where fop(y, x) = f(x, y) for any x, y ∈ X. Hence,
Socl(I(X, R)) ∼= Socr(I(Xop, R)).

We call X a self-dual partially ordered set, if X is isomorphic to Xop. The next propo-
sition gives the necessary conditions for the left and the right socle of an incidence ring to
be isomorphic.

Proposition 3.20. Let R be any ring and X be a self-dual locally finite partially ordered
set with Min(X) is maximal antichain and κ(x) is finite for all x ∈ Min(X). Then
if Soc(R) := Socl(R) = Socr(R) then Socl(I(X, R)) ∼= Socr(I(X, R)). Moreover, in this
case, the left/right socle of I(X, R) is

Soc(I(X, R)) =
⊕

x∈Min(X)
Soc(R).

Proof. Assume Soc(R) := Socl(R) = Socr(R) and X is a self-dual partially ordered set.
Then Min(X) and Max(X) are isomorphic, hence both are maximal antichains and κ(x)
and λ(y) are finite for all x ∈ Min(X) and y ∈ Max(X).

By Proposition 3.2 and Proposition 3.18,

Socl(I(X, R)) =
⊕

x∈Min(X)
{f ∈ I(X, Soc(R)) : f(u, v) = 0 if u ̸= x}

=
⊕

x∈Min(X)
S(x, Soc(R)) ∼=

⊕
y∈Max(X)

T (y, Soc(R))

=
⊕

y∈Max(X)
{f ∈ I(X, Soc(R)) : f(u, v) = 0 if v ̸= x} = Socr(I(X, R)).

�

Example 3.21. Consider the partially ordered set X = {x1, x2, x3, x4} with the relation
that x1 ≤ xk and x2 ≤ xk whenever k = {3, 4}. The Hasse diagram of X is

•x3

DD
DD

DD
DD

•x4

zz
zz
zz
zz

•x1

zzzzzzzz
•x2

DDDDDDDD

Notice that X is a finite and self-dual partially ordered set, that is X is isomorphic to its
opposite (dual) partially ordered set, Xop. Also κ(x) is finite for all x ∈ Min(X). Hence
the right and the left socle of I(X, R) are viewed as:

Socl(I(X, R)) =


Socl(R) 0 Socl(R) Socl(R)

0 Socl(R) Socl(R) Socl(R)
0 0 0 0
0 0 0 0



Socr(I(X, R)) =


0 0 Socr(R) Socr(R)
0 0 Socr(R) Socr(R)
0 0 Socr(R) 0
0 0 0 Socr(R)

 .

Furthermore, when Socr(R) = Socl(R),

Socr(I(X, R)) ∼= Socl(I(X, R)).
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Remark 3.22. Note that the left and right socle of the incidence algebra are the same for
the following trivial case: Assume Soc(R) := Socl(R) = Socr(R) and X is an antichain.
Then I(X, R) is just the direct product of |X|-many copies of R, I(X, R) ∼=

∏
x∈X R and

the socle of I(X, R) is
⊕

x∈X Soc(R).
Another example is when Min(X) = ∅. Consider the case X = Z. Since Min(X) = ∅

by Lemma 3.4, Socl(I(X, R)) = {0} and analogously Max(X) = ∅, Socr(I(X, R)) = {0} .
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