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ABSTRACT. In this paper, we study Fekete-Szego problem for certain subclass of analytic functions with complex
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1. INTRODUCTION

Let A denote the class of functions of the form:
(1.1) fz)=2z+ Z apz®
k=2

which are analytic in the open unit disk U = {z € C: |z| < 1}. If f and g are analytic in U, we
say that f is subordinate to g, written as f < gin U or f(z) < g(z) (z € U), if there exists a
Schwarz function w, which (by definition) is analytic in U with w (0) = 0 and |w (2)| < 1 (2 € U)
such that f(z) = g(w(2)) (z € U). Furthermore, if the function g is univalent in U, then we have
the following equivalence holds (see [12] and [7]):

f(2) < g(2) < f(0) = g(0) and [f(U) C g(U).

For function f € A given by (1.1) and 0 < ¢ < 1, the g—derivative of a function f is defined by
(see [10, 9] and [6])

flgz)—f(2)
(12) qu(z) = { (g—1)z %2 ?é 0

£(0) ,2=0
provided that f'(0) exists and D2 f(z) = Dg(Dqyf(2)). We note from (1.2) that

1"

lim D, f(2) = () and lim Dgf (z)=1 (2).

q—1— q—1—
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It is readily deduced from (1.1) and (1.2) that

(1.3) = Z ak,z s
k=2
where
k
_¢ -1
(1.4) [k]q_ 1

Aldweby and Darus [1] defined g—analogue of Ruscheweyh operator R) : A — A as follows:

k+5—1
*Z+Z kzk (6=>-1),

where [i] ! is given by

[il,! = { [li]q [ —1],..-[1], :Z iI;T ={1,2,3,..}
We note that
Rgf (z)=f(2) and R}If (2) = 2Dy f(2).

From the definition of Rg we observe thatif ¢ — 17, we have
k + 0 — 1
. 5 k
lim Ry f (2) = z+ E K2

where R° is Ruscheweyh differential operator defined by Ruscheweyh [16].
It is easy to check that

9], [9]

q—;’Rgf (2).

(1.5) 2Dy (RYf (2)) = (1+ )7ﬁ+v()—

If ¢ — 17, the equality (1.5) implies

2(ROF(2) = (14RO (2) — 6RO f (2)

which is the well known recurrence formula for Ruscheweyh differential operator.
By making use of the g—analogue of Ruscheweyh operator R and the principle of subordi-
nation, we now introduce the following subclass of analytic functions of complex order.

Definition 1.1. Let P be the class of all functions ¢ which are analytic and univalent in U and for
which ¢ (U) is convex with ¢ (0) = 1 and R (z) > 0 for z € U. A function f € Ais said to be in the
class K2, (v, @) if it satisfies the following subordination condition:

1
b

(1-7) ZDngf(Z) + 'VZDq(ZDngf(Z))
(L =) RS (2) + 72Dy Ry f(2)

(1.6) 1+

—1]<¢@)@eCﬂ.

We note that:
(i) limg_y1 - K9, (7, 6) = K (7, 0) (b € C*)

2 () 4922 (=) R
T 07+ 72 () 1]“’”}’

1
b

—{fé.Azl-i-
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(1) K2 (o) oio o (0.6) = 82 (0:0) (J0] < 5.0 < o < 1)
" e? 21;(1(,32) —acost —isinf
=y /e (1 —a)cos® <o)

(iii) K0 Ye—10 cos 6 (1,¢) = Cg (o 9) (|9| < g,o <a< 1)

q,(1—a
p ci0 PaCDIE) — o cos 0 — isin g
— = N =
f (1 —a)cosd o

(iv) K21 (0,¢) = 85 (¢) and K7 ; (1, ¢) = CJ (¢) (Alweby and Darus [3]),

(V) K2, (0,¢) =S4 (¢) and KT, (1, ¢) = Cq.p, (¢) (Seoudy and Aouf [18]),

(vi) K91 (0,¢) = 84 (¢) and K ; (1,) = C, (¢) (Alweby and Darus [2]),

(vii) limg_,1- K2, (0,¢) = Sy (¢) and limg_,1- K, (1,¢) = Cs (¢) (Ravichandran et al. [15]),
(viii) limg_,1- K 1 (0,¢) = §* (¢) and limy_,,- K7 ; (1,¢) = C (¢) (Ma and Minda [11]),

1+(1-2a)z . ) 1+(1-2a)z
12) = S (b) and lim,_,;- /Cgb (1, — )= Ca (D)

(ix) limg_yq- icg,b 0,
(0 < a < 1) (Frasin [8]),

1
(%) limg_,1 - /Cg’b (0, j i) = §* (b) (Nasr and Aouf [14]),

1

1—+—z> =C (b) (b € C*) (Nasr and Aouf [13] and Wiatrowski [19]),
z

(xi) limg_, ;- ICg’b <1, T

- 1+2 . . 1+2
(xii) limg,1- K1, (0, 1—7;) = 8" (a) and limg_,,- K0, (17 1—2’) =C(a) 0 <a<]l)
(Robertson [17]),
1 1
(ﬂﬁ)ﬁnwﬁlng_mmm9<O“ltz> - 89@)andhanlng_wum9<1tltz> — ¢ (b)

(10| < g) (Al-Oboudi and Haidan [4] and Aouf et al. [5]).
In order to establish our main results, we need the following lemma.
Lemma 1.1. [11] If p(z) = 1 + c12 + 22 + ... is a function with positive real part in U and y is a
complex number, then
|lc2 — pef| < 2max{1; [2u — 1]}
The result is sharp for the functions given by

14 22 142
=7 i p(e) =

Lemma 1.2. [11]Ifp(2) = 1 + c12 + 22 + ... is an analytic function with a positive real part in U,

then
—4v+2 if v<0
e —vei| < Q2 if 0<v<l,
dv — 2 if v>1
when v < 0 or v > 1, the equality holds if and only if p(z) is (1 + z)/(1 — z) or one of its rotations.

If0 < v < 1, then the equality holds if and only if p(z) is (1 + 22)/(1 — 22) or one of its rotations. If
v = 0, the equality holds if and only if

14A\ 142 [1-A\1-z
_ <A<l
p(z) ( 2 )1—z+( 2 >1+z OsAs<1)

p(2)
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or one of its rotations. If v = 1, the equality holds if and only if p is the reciprocal of one of the functions
such that equality holds in the case of v = 0.

Also the above upper bound is sharp, and it can be improved as follows when 0 < v < 1:
1
|02—ch|+1/|cl|2§2 <0<1/<2>

and
1
oo —vel|+ (1 —v) e’ <2 (2§u§1).

In the present paper, we obtain the Fekete-Szegt inequalities for the class KCg s (7, ¢). The
motivation of this paper is to generalize previously results. Unless otherwise mentioned, we
assume throughout this paper that the function0 < ¢ < 1, b € C*, 0 <~y <1, ¢ € P, [k] q is
givenby (1.4) and z € U.

Theorem 1.1. Let ¢ (2) = 1 + Byz + B22? + ... with By # 0. If f given by (1.1) belongs to the class
Kaqp (7, 0), then

bB1 | By

7)oz = po3| < gD, max {17 ‘ BT (1

Proof. If f € ICf;b (v, ¢), then there is a Schwarz function w, analytic in U with w (0) = 0 and
|w (2)] < 1in U such that

o (1 =7) 2DgRy f(2) + 72Dq(2Dg Ry f(2)) .
b (1 =) Ref (2) + 72D R f(2)

Define the function p (2) by

_ [4va(e+D)] [6+2], ) Bib
(1+~9)® [6+1], q

The result is sharp.

(1.8)

1+ w(z)
Cl-w(2)

Since w is a Schwarz function, we see that ®p (z) > 0 and p (0) = 1. Therefore,

o) = ¢ (p()l)

(1.9 p(z) =14ciz+coz® +....

p(z) +1
1 c? 3\ .
= (;5(2 [cler <02 21) z2+ <63C162+41) z3+..}>
. By By i Baci] »
(1.10) = 1+ 2 z+[2 (022 + 1|7 + ...

Now, by substituting (1.10) in (1.8), we have

. (1 —9) 2DgRy f(2) + 72Dg(2Dg R f(2)) .
b (1 =) Ryf (2) + 72D RS f(2)

Blcl B1 C% BQC% 2
= 1 —_— — = — e
+ B z+ [ 5 <62 5 + 1|7 +

From the above equation, we obtain

1

1 B101
EQ(l‘*"YQ) [0 +1],a2 = 5
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and

2 4 4

or, equivalently,
B 1C1 b

as =
T 21+ [6+ 1],

and
bB,

“3:2u+vﬂq+nmw+agw+uq{@‘§{L‘ﬁf‘éf}%}'

Therefore, we have

bB;
(1.11) as — ua§ - 2q [1 +vq(q + 1)} [5 + 2]q [5 T 1]q {02 - I/C%} )
where
(1.12) L, Ll _B: Bib 17[1+7q(q+21)][5+2}qu |
2 Boa (1479 [5 +1],

Our result now follows from Lemma 1.1. The result is sharp for the functions

1 _(1 -) ZDngf(Z) + VZDq(ZDngf(Z)) ] . 2
N e oy i TS B A
and i
1|(1=7) quRgf(z) + 'yqu(quRgf(z)) -
YT Ao RIF G DRI )
This completes the proof of Theorem 1.1. O

Taking v = 0 and b = 1 in Theorem 1.1, we obtain the following corollary which improves
the result of Aldweby and Darus [3, Theorem 6].

Corollary 1.1. Let ¢ (z) = 1 + Byz + Bo2? + ... with By # 0. If f given by (1.1) belongs to the class
82 (¢), then

Taking v = b = 1 in Theorem 1.1, we obtain the following corollary which improves the
result of Aldweby and Darus [3, Theorem 7].

2 |B1] .| B [6+2], \ B
’ag fua2| < mmax{l, ’Ff+ (17 RS 71

The result is sharp.

Corollary 1.2. Let ¢ (z) = 1 + Byz + Bo2? + ... with By # 0. If f given by (1.1) belongs to the class
K2 (), then

Taking v = § = 0 and b = 1 in Theorem 1.1, we obtain the following corollary which
improves the result of Aldweby and Darus [2, Theorem 2.1].

By | (1 _ [4q(g+D][6+2], ) B;b

2 | B1] .
|as — pa3| < g Fa(arD][o+2], o], X {1’ ‘ By [6+1],(1+4)

The result is sharp.
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Corollary 1.3. Let ¢ (z) = 1+ Byz + Boz® + ... with By # 0. If f given by (1.1) belongs to the class
S, (¢), then

Taking v = b = 1 and § = 0 in Theorem 1.1, we obtain the following corollary which
improves the result of Aldweby and Darus [2, Theorem 2.2].

Corollary 1.4. Let ¢ (2) = 1 + B1z + Boz? + ... with By # 0. If f given by (1.1) belongs to the class
Kq (@), then

Taking v = § = 0 and ¢ — 17 in Theorem 1.1, we obtain the following corollary which
improves the result of Ravichandran et al. [15, Theorem 4.1].

Corollary 1.5. Let ¢ (2) = 1 + B1z + Boz? + ... with By # 0. If f given by (1.1) belongs to the class
Sb (¢) ) then

Theorem 1.2. Let ¢ (2) =1+ Byz + Byz? + ... with By > 0 and By > 0. Let
(1+~9)* [0+ 1], [bB? + ¢ (B2 — By)]

B
|as — pa3| < 2 maX{l; ‘%’j +(1—(g+1)p) 2

The result is sharp.

By (1 _ [14g(g+1)] ) B
B (1+q) q

2 |B1] .
|as — pa3| < Jrpitterery max {1’

The result is sharp.

|a3 —ua§| < |B21b|max{1;

By
— 1—2u)Bib
B1+( ) B

The result is sharp.

(1.14) (1+79)*[6+1], [bB} + 4 (B2 + B1)]
| " 1+7q(q+D][5+2],bB7
2 2
(1.15) S (1+~q)" [6 + 1], (bB? + ¢B2)

[1+~q(qg+1)][6+2],bB7
If f given by (1.1) belongs to the class K2 , (v, ) with b > 0, then

q,b
(1.16)

b B2b [1+vq(g+1)][6+2]

e, | B+ 2 (1- T, )] s

bB
|as — pa3| < TEEaEEOIF, I, oL pS 02

b B2b [1+yq(g+D)][6+2],

a[l+vq(q+D)][+2], [0+1], —B— =~ (1 (1971, )} P2 02

Further, if o1 < p < o3, then

9 q(1+vq)?[6+1] B2b [1+~vq(g+1)][6+2] 2
|ag — pa3| + T va(at 15521, BZ6 [Bl — B (1 - Wwﬂ}qq”)} ja2]

bB;

17) S+ DP+2,p+1],

I_f0'3 SIU/SUQ, then

) q(1++q)*[5+1], B3b [1+7q(q+1)][5+2] p 2
|az — pa3| + M +va(a+DIP+2], B2 {Bl + By + 7 (1 B W) il
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bB;

(1.18) gL +yala+ DB+, b+1],

The result is sharp.

Proof. Applying Lemma 1.2 to (1.11) and (1.12), we can obtain our results asserted by Theorem
1.2. a

Taking v = 0 and b = 1 in Theorem 1.2, we obtain the following corollary which improves
the result of Aldweby and Darus [3, Theorem 10].

Corollary 1.6. Let ¢ (2) = 1+ Byz + Bo2? + ... with By > 0 and By > 0. Let
[6+1], [B? +4q Bngl)]

_ q
X1 = ’

[6+2],B
o+, [BE+al( BQ+Bl)]
X2 = [0+2],B ’
[0 +1], (B + qu)
X3 = 6 +2], B?

If f given by (1.1) belongs to the class S3 (¢), then

1 B2 [6+2]
q[5+2]§[6+1]q {32 + 71 (1 - 7[5+1]:M)} < X1
|a3 - MG§| < q[6+2]q1[6+1]q X1 S < X
1 B? [6+2],
a[3+2], 5+, {*32 - (1 - m#)] > X2
Further, if o1 < p < o3, then

alo+1], 5 5+2], 2 5
|as — na3| + giar 52 {Bl — B (1 ~ o, “)] la2|” < gl o, -

If o3 < < oy, then

o alo+1], Bt [5+2], 2 B,
las — pa3| + Bra, b7 [31 + By + l (1 - M})} las|” < gl6+2], [6+1], "

The result is sharp.

Taking v = b = 1 in Theorem 1.2, we obtain the following corollary which improves the
result of Aldweby and Darus [3, Theorem 11].

Corollary 1.7. Let ¢ (2) = 1+ Byz + Bo2? + ... with By > 0 and By > 0. Let

2 ]2[5+1] [32‘“}(32 — By)]

1

3,16 +2], B ’
5+1q[B2+q BQ+Bl)]
& 3,16 +2], B !
25+ (B2+qu)
S qumq
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If f given by (1.1) belongs to the class K (¢), then

e, [P+ (- giren)| <o
laz — pa3| < m 1 S S o
s, B (U lsien)| ez
Further, if ey < p < z3, then

[2] [0+1], B? (3],[6+2], 2 B
| ”a2| 1 [5+2] B? [Bl — By — (1 212[6+1], “)} |az|” < q[3]q[5+2L[5+1]q'

If 505 < p1 < 525, then

2 q[2]2[6+1] B? 3], [6+2], 2 B
Jas — e + 7 or gz B+ B+ G (1= )| loal” < Gt

The result is sharp.

Remark 1.1. Putting § = ~v = 0 in Theorems 1.1 and 1.2, respectively, we deduce the corresponding
results derived by Seoudy and Aouf [18, Theorems 1 and 3, respectively].

Remark 1.2. Putting § = 0 and v = 1 in Theorems 1.1 and 1.2, respectively, we deduce the corre-
sponding results derived by Seoudy and Aouf [18, Theorems 2 and 4, respectively].

Remark 1.3. For different choices of the parameters b, 0, q,~y and ¢ in Theorems 1.1 and 1.2, we can
deduce some results for the classes Ky (vy, ), Sg (a; ), Cg (5 0), Sq(9),Cq (9), Sp(9),Cp (9), S* (¢),
C(9), Sk (b), Ca (b), S* (b), C (b), S* (), C (), S (b) and C? (b) which are defined in Section 1.
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