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Abstract

In this paper, we study the dynamical behavior of the positive solutions of the difference equation

yn+1 =
A+Byn

C+D∏
k
i=1 yqi

n−i
, n ∈ N0

where N0 = N∪{0}, the initial conditions and the parameters A, B are non-negative real numbers, the parameters C, D are positive real
numbers, qi for i ∈ {1,2, ...k} are fixed positive integers and 1≤ k.
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1. Introduction

Recently, difference equations have gained a great importance. Many phenomena are modelled with the help of difference equations. Most
of the recent applications of these equations have appeared in many scientific areas such as biology, ecology, physics, economics, etc.
Particularly, rational difference equations are important in practical classes of difference equations. So, it is very worthy to examine the
behaviour of solutions of rational difference equations and to discuss the stability character of their equilibrium points. In recent years, many
researchers have investigated global behaviour of solutions of non-linear difference equations, see the references [1] - [26].
In [1] Hamza et al. investigated the global behaviour and boundedness of the rational second-order difference equation

xn+1 =
a+bxn

A+Bxk
n−1

, n ∈ N0 (1.1)

with positive coefficients and non-negative initial conditions. Abo-Zeid [21] discussed the global stability and periodic nature of the positive
solutions of the difference equation

xn+1 =
A+Bxn−2k−1

C+D∏
k
i=l xn−2i

, n ∈ N0 (1.2)

where A, B are non-negative real numbers, C,D > 0 and l, k are non-negative integers such that l ≤ k. Belhannache et al. [11] investigated
the global asymptotic behaviour of the difference equation

A+Bxn−2k−1

C+D∏
k
i=l xmi

n−2i
, n ∈ N0 (1.3)

with non-negative initial conditions, the parameters A, B are non-negative real numbers, C,D are positive real numbers and k, l are fixed
non-negative integers such that l ≤ k and mi for i ∈ {1,2, ...k} are fixed positive integers.
Motivated by all above mentioned works, in this paper we study the dynamical behavior of the positive solutions of the difference equation

yn+1 =
A+Byn

C+D∏
k
i=1 yqi

n−i
, n ∈ N0 (1.4)
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where the initial conditions and the parameters A, B are non-negative real numbers, the parameters C, D are positive real numbers, qi for
i ∈ {1,2, ...k} are fixed positive integers and 1≤ k.
Note that Eq.(1.4) can be written as

xn+1 =
α +βxn

1+∏
k
i=1 xqi

n−i
, n ∈ N0 (1.5)

by the change of variables yn =
(

C
D

)1/γ

xn with α = A
C
(D

C
)1/γ , β = B

C and γ =
k
∑

i=1
qi. So, we will consider Eq.(1.5) instead of Eq.(1.4) for

the remaining part of the paper.

2. Preliminaries

Now we present some definitions and results which will be useful in our investigation, for more details we refer to [6, 19, 22, 24].

Definition 2.1. Let I be an interval of real numbers and let f : Ik+1→ I be a continuously differentiable function. Consider the difference
equation

xn+1 = f (xn,xn−1, ...,xn−k) , n ∈ N0 (2.1)

with x−k, ...,x0 ∈ I . Let x be an equilibrium point of Eq.(2.1).
The linearized equation of Eq.(2.1) about the equilibrium point x is

yn+1 = c1yn + c2yn−1+...+ c(k+1)yn−k, n ∈ N0 (2.2)

where

c1 =
∂ f
∂xn

(x, ...,x),c2 =
∂ f

∂xn−1
(x, ...,x), ...,c(k+1) =

∂ f
∂xn−k

(x, ...,x).

The characteristic equation of Eq.(2.2) is

λ
(k+1)− c1λ

k− c2λ
(k−1)− ...− ckλ − c(k+1) = 0. (2.3)

Definition 2.2. Let x be an equilibrium point of Eq.(2.1).

(i) The equilibrium point x is called locally stable if for every ε > 0 there exists δ > 0 such that for all x0,x−1, ...,x−k ∈ I with ∑
0
i=−k |xi−x|<

δ , we have

|xn− x|< ε for all n≥−k.

Otherwise, the equilibrium point x is called unstable.
(ii) The equilibrium point x is called locally asymptotically stable if it is locally stable, and if there exists γ > 0 such that for all

x0,x−1, ...,x−k ∈ I with ∑
i=0
i=−k |xi− x|< δ , we have

lim
n→+∞

xn = x.

(iii) The equilibrium point x is called globally asymptotically stable relative to Ik+1 if it is locally asymptotically stable, and if for every
x0,x−1, ,x−k ∈ I, we have

lim
n→+∞

xn = x.

Theorem 2.3. Let x be an equilibrium point of Eq.(2.1). Then, the following statements are true

(i) If all roots of Eq.(2.3) lie inside the open unit disk |λ |< 1, then x is locally asymptotically stable.
(ii) If at least one root of Eq.(2.3) has absolute value greater than one, then x is unstable.

3. Main Results

3.1. Case α > 0

Lemma 3.1. The following statements are true

1. Assume that 1≤ β . Then, Eq.(1.5) has a unique equilibrium point in
(

γ

√
β−1
γ+1 ,+∞

)
.

2. Assume that β < 1. Then, the following statements are true

(i) If α < γ

(
1−β

γ−1

) γ+1
γ , then Eq.(1.5) has a unique equilibrium point in

(
0, γ

√
1−β

γ−1

)
.

(ii) If γ

(
1−β

γ−1

) γ+1
γ

< α , then Eq.(1.5) has a unique equilibrium point in
(

γ

√
1−β

γ−1 ,+∞

)
.
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Proof. A point x is an equilibrium point of Eq.(1.5) if and only if x is a zero of the function

f (x) = xγ+1 +(1−β )x−α.

If we consider the above function, we get

f ′(x) = (γ +1)xγ +1−β .

1. If 1≤ β , then f is increasing on
(

γ

√
β−1
γ+1 ,+∞

)
. But,

f

(
γ

√
β −1
γ +1

)
< 0 and lim

x→+∞
f (x) = +∞.

Then f (x) has a unique zero in
(

γ

√
β−1
γ+1 ,+∞

)
.

2. Assume that β < 1. Then, f is increasing on (0,+∞) and

f

(
γ

√
1−β

γ−1

)
= γ

(
1−β

γ−1

) γ+1
γ

−α.

(i) If α < γ

(
1−β

γ−1

) γ+1
γ

, then f
(

γ

√
1−β

γ−1

)
> 0. Therefore, f (x) has a unique zero in

(
0, γ

√
1−β

γ−1

)
.

(ii) If γ

(
1−β

γ−1

) γ+1
γ

< α, then f
(

γ

√
1−β

γ−1

)
< 0. Therefore, f (x) has a unique zero in

(
γ

√
1−β

γ−1 ,+∞

)
.

Theorem 3.2. If β < 1 and α < γ

(
1−β

γ−1

) γ+1
γ

, then the equilibrium point x of Eq.(1.5) is locally asymptotically stable.

Proof. Let x the equilibrium point of Eq.(1.5). The linearized equation associated with Eq.(1.5) about x is

zn+1−
β

1+ xγ
zn +

q1xγ

1+ xγ
zn−1 + · · ·+

qkxγ

1+ xγ
zn−k = 0, n ∈ N0. (3.1)

The characteristic equaion associated with this equation is

λ
k+1− β

1+ xγ
λ

k +
q1xγ

1+ xγ
λ

k−1 + · · ·+ qkxγ

1+ xγ
= 0. (3.2)

Assume that β < 1. If α < γ

(
1−β

γ−1

) γ+1
γ

, then x ∈
(

0, γ

√
1−β

γ−1

)
. If we consider the functions

h1(λ ) = λ
k+1 and h2(λ ) =−

β

1+ xγ
λ

k +
q1xγ

1+ xγ
λ

k−1 + · · ·+ qkxγ

1+ xγ
.

We get

|h2(λ )| ≤
∣∣∣∣− β

1+ xγ

∣∣∣∣+ ∣∣∣∣ q1xγ

1+ xγ

∣∣∣∣+ . . .+

∣∣∣∣ qkxγ

1+ xγ

∣∣∣∣ , λ ∈ C : |λ |= 1.

But∣∣∣∣− β

1+ xγ

∣∣∣∣+ ∣∣∣∣ q1xγ

1+ xγ

∣∣∣∣+ · · ·+ ∣∣∣∣ qkxγ

1+ xγ

∣∣∣∣= β + γxγ

1+ xγ
< 1 = |h1(λ )| .

By Rouché’s Theorem all roots of Eq.(3.2) lie in the open unit disk, i.e. |λ |< 1, and the result follows from Theorem 2.3.

Lemma 3.3. Let {xn}∞

n=−k be a solution of Eq.(1.5). Then,

xn <
n−1

∑
i=0

αβ
i +β

nx0, ∀n ∈ N. (3.3)

Proof. We prove the theorem by induction for n. For n = 1, (3.3) holds. Now, suppose that n > 1 and our assumption holds for n. That is;

xn <
n−1

∑
i=0

αβ
i +β

nx0. (3.4)

Then,

xn+1 =
α +βxn

1+∏
k
i=1 xqi

n−i
< α +βxn.

Using (3.4) we obtain

xn+1 < α +β

(
n−1

∑
i=0

αβ
i +β

nx0

)
=

n

∑
i=0

αβ
i +β

n+1x0,

hence (3.3) holds and the proof is completed by induction.
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Corollary 3.4. Assume that β < 1. Then, every solution of Eq.(1.5) is bounded and persists.

Lemma 3.5. Suppose that β < 1 and let {xn}∞
n=−k be a solution of Eq.(1.5). If Λ = lim

n→+∞
sup(xn) and λ = lim

n→+∞
inf(xn), then Λ and λ

satisfy the following inequalities

α +βλ

1+Λγ
≤ λ ≤ Λ≤ α +βΛ

1+λ γ
. (3.5)

Proof. Let β < 1. From Corollary 3.4, the solution {xn}∞
n=−k is bounded. Then, for every ε ∈ (0,λ ), there exists n0 ∈ N0 such that

λ − ε ≤ xn ≤ Λ+ ε for every n≥ n0,

so,

α +β (λ − ε)

1+(Λ+ ε)γ
≤ xn+1 ≤

α +β (Λ+ ε)

1+(λ − ε)γ
for every n≥ n0 + k.

Therefore,

α +βλ

1+Λγ
≤ λ ≤ Λ≤ α +βΛ

1+λ γ
.

Theorem 3.6. Assume that β < 1. If α < γ

(
1−β

γ−1

) γ+1
γ , then the positive equilibrium point x ∈

(
0, γ

√
1−β

γ−1

)
is globally asymptotically

stable.

Proof. Let {xn}∞

n=−kbe a solution of Eq.(1.5). From β < 1, the solution {xn}∞

n=−k is bounded. Let Λ = lim
n→∞

sup(xn) and λ = lim
n→∞

inf(xn).

Using Lemma 3.5 we have

α +βλ

1+Λγ
≤ λ ≤ Λ≤ α +βΛ

1+λ γ
.

This implies that

(1−β )Λγ −αΛ
γ−1 ≤ (1−β )λ γ −αλ

γ−1.

Now, consider the function

h(x) = (1−β )xγ −αxγ−1.

Hence

h′(x) = xγ−2(γ(1−β )x−α(γ−1)),

and the h(x) is increasing on
(

α(γ−1)
γ(1−β )

,∞
)
. As α < γ

(
1−β

γ−1

) γ+1
γ

, we get x ∈
(

α(γ−1)
γ(1−β )

, γ

√
1−β

γ−1

)
. In view of inequalities (3.5), we have a

contradiction. Therefore, λ = Λ = x and so x is a global attractor. By combining this result with the local asymptotic stability of x we get the

global asymptotic stability of x when α < γ

(
1−β

γ−1

) γ+1
γ

.

3.2. Case α = 0

When α = 0, Eq.(1.5) becomes

xn+1 =
βxn

1+∏
k
i=1 xqi

n−i
, n ∈ N0. (3.6)

Clearly, x = 0 is always an equilibrium point for Eq.(3.6) and if β > 1, then Eq.(3.6) has also the positive equilibrium point x = γ
√

β −1.
We summarize the main results for this particular equation.

Lemma 3.7. Assume that β < 1. Then, every solution of Eq.(3.6) is bounded.

Proof. {xn}∞
n=−k be a solution of the Eq.(3.6). It is clear that

xn < β
nx0, ∀n ∈ N. (3.7)

If β < 1, then

xn < x0, ∀n ∈ N. (3.8)

Theorem 3.8. The zero equilibrium point of Eq.(3.6) is globally asymptotically stable if β < 1 and it is unstable if β > 1.
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Proof. The linearised equation associated with Eq.(3.6) about the equilibrium point x = 0 is

zn+1 = β zn, n ∈ N0.

Its characteristic equation is

λ −β = 0,

then λ = β . Therefore, the equilibrium point x = 0 is locally asymptotically stable if β < 1 and it is unstable if β > 1.
On the other hand (3.7) implies that

lim
n−→+∞

xn = 0,

then x = 0 is globally asymptotically stable.

3.3. Numerical Examples

In this section, we give some numerical examples to support our theoretical results related to Eq.(1.5) with some restrictions on the
parameters.

Example 3.9. When k = 2, Eq.(1.5) becomes

xn+1 =
α +βxn

1+ xq1
n−1xq2

n−2
, n ∈ N0. (3.9)

We visualize the solutions of Eq.(3.9) in figures 3.1-3.6 for the initial conditions x−2 = 2.4, x−1 = 0.4, x0 = 1.3.

Figure 3.1: α = 0.4, β = 0.5, q1 = 2, q2 = 3. Figure 3.2: α = 0.7, β = 0.5, q1 = 2, q2 = 3. Figure 3.3: α = 0.12, β = 0.8, q1 = 3, q2 = 1.

Figure 3.4: α = 0.5, β = 0.8, q1 = 3, q2 = 1. Figure 3.5: α = 0, β = 0.99, q1 = 2, q2 = 3. Figure 3.6: α = 0, β = 2, q1 = 2, q2 = 3.
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