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Gültaç EROĞLU İNAN

Department of Statistics, Faculty of Science, Ankara University, Ankara, TURKEY.

Abstract. In this paper, a change constrained optimization programming prob-
lem is studied under the assumption that the model coeffi cients in the inequalities
defined as random variables are independent and assumed to be Normal, t; Non
Normal Skew distributions; Skew Normal and Skew t distributions. The Hulkursar
method transform the stochastic programming problem into a non-linear determin-
istic problem is used in the study. The most common distribution in CCSP is the
Normal Distribution; but the real world problems always may not include normality.
Therefore; in the practice stage, an application that the aij technologic coeffi cient
and the bi right side values in the inequalities have both Normal, t; Skew Normal
and Skew t distributions is given. Finally the obtained results have been compared.

1. Introduction

Practically, when the initial data is insuffi cient in a simple problem, making
decisions with the data obtained is a rule. In the classical linear programming
problem, model coeffi cients are defined as deterministic values. But many real life
problems which are modelled as linear programming problems where coeffi cients
appear as random variables. In the similar complex cases like that; the initial
data is not known exactly (data uncertainty), there is a lack of data choosing
deterministic models instead of stochastic models is more suitable. In this case,
such problems are called as stochastic programming problem. The classical linear
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programming problem is formulated as;

max z(x) =
∑n
j=1 cjxj∑n

j=1 aijxj ≤ bi i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

(1)

where;
aij : Technologic coeffi cient
bi : Right side value
cj : Objective function coeffi cient
i = 1, . . . ,m, j = 1, . . . , n
In the classical problem all coeffi cients are deterministic. In the Stochastic Pro-

gramming model, some or all model coeffi cients are described by random variables
have known distributions rather than deterministic. Generally these distributions
are assumed to be normal. There are many studies about stochastic programming
in the literature. For a comprehensive survey of stochastic programming the reader
is directed to I.M.Stancu [12].The stochastic programming problem should be trans-
formed into a deterministic problem and then the basic deterministic model can be
solved easily with the known methods. Change Constrained Programming (CCSP)
and the Two Stage Programming are the most used methods for the model transfor-
mation. CCSP has first modelled by Charnes and Cooper [8].They have developed
a new temporary planning of optimal stochastic decision rule under uncertainty. In
the change constrained model, each constraints are defined by the certain probabil-
ity. For a comprehensive survey of change constraint stochastic programming the
reader is directed to Atalay [6], Yılmaz [15] are handled the Chi-Square type change
constraints. Yılmaz [16] are handled the Gamma type chance constraints. In Ata-
lay [6], the technologic coeffi cients aij are assumed to be independent with Gamma
Distribution. The deterministic constraints are obtained with the Essen Inequal-
ity. In the numerical experiments, Gamma and Normal Distribution approaches
are compared. Yılmaz [17] are handled three methods are used to transform the
change constraints into their equivalent deterministic constraints when the techno-
logic coeffi cients are exponential random variables. These methods are based on
the Central Limit Theorem. The fourth and the fifth methods are proposed for the
deterministic equivalent of chance constraint. In the fourth method the exact distri-
bution is used. In the last method, the exponential variates are transformed into the
chi-squared variates. In an example, the five methods are compared to each other.
Gamma, Exponential and Chi-Square are always positive distributions. But; there
may not always be positivity. The most common distribution in statistics is the
Normal Distribution; but the real world problems always may not include normal-
ity. Therefore, in the practice, the non-normal Distributions are more common than
the Normal Distributions. In this study, for the skewness and the negativity, Skew
Normal Distribution and Skew t Distribution are used. The degree of distortion of
symmetry in the normal distribution is called skewness. The Skew Distributions
are obtained by the method add to skewness parameters in the known distributions.
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The Skew distributions family was first presented in the literature by Azzalini [1,
2].In this paper, the most used skew distributions the Skew Normal Distribution
and the Skew t Distributions proposed by the related study are used. The Skew-
Normal distribution shows variation depending on the skewness parameter. For the
negative values of the λ skewness parameter, the distribution is skewed to the right
for the positive values of the λ skewness parameter, the distribution is skewed to
the left. If the skewness parameter is zero, the distribution becomes to standard
normal distribution. For the details of the Skew Normal Distribution, the reader
is directed to Azzalini [4], Azzalini [7]. The Skew-Normal density has very short
tails. The Skew-Normal may be unsuitable where the distributions of the data have
heavy tails. In this case; The Skew t distribution may be more suitable with heav-
ier tails. The distribution shows variation depending on the skewness parameter
similar to Skew Normal Distribution. For the details of the Skew t Distribution,
the reader is directed to Azzalini [4], Arslan [5]. The reason for using the Skew-
Normal distribution in this study is that; providing flexibility to the application
with modelling the normal and the close to normal distributions. The reasons for
using the Skew t distribution in this study are that; it has Normal Distribution,
Skew Normal Distribution, Student’s-t Distribution; it is a good alternative to nor-
mal distribution. This remainder of this paper is organized as follows: In Section 2,
the change constrained stochastic programming is introduced. And then four cases
where the model coeffi cients are defined as random variables are handled. For each
cases; the deterministic equivalent of the stochastic model is given. In Section 3,
Skew Normal and Skew t distributions and statistical properties are introduced. In
Section 4, two CCSP problems where the model coeffi cients are random variables
have the Normal, Skew Normal and Skew t distributions are solved. This is the first
study handle the CCSP where the model coeffi cients aij , cj , bi are given as random
variables have the skewness distributions: Skew Normal and Skew t. The motiva-
tion of this paper comes from the fact that; the real World problems always not
include normality. We try to compare the Normal, t and non-normal Skew distrib-
utions for the CCSP. To the best of our knowledge this is the first study include the
Skew Normal and Skew t instead of Normal Distribution for CCSP. In the CCSP
problems; in the literature it is usually assumed that the aij , bi random variables
have normal distribution. The problems are handled with the different µ, σ2 pame-
ter values and their effects are investigated. To the best of our knowledge, there is
no previous work assuming Skew Distributions as a constraint distribution in the
context of CCSP. The Skew distributions are essential in CCSP because the nor-
mality assumptions may not always be provided in the Real World problems. The
normal distributions symmetry property becomes problem and skewness is present
and important issue in the real applications. The skewness and the tick tail effects
can be investigated by the skew distributions in CCSP. The advantages of using
the Skew Normal distribution in CCSP is that; they provides us flexibility for the
random variables aij , bi have the normal distribution shape but with skewness. SN
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is considered as an the alternative of the normal distribution have different values of
skewness and kurtosis. The advantages of using these Skew t distribution in CCSP
is that; the distribution include the alternative distributions of normal distribution
with the skewness and the heavier tails. In practice Skew Distributions are very
useful distributions because of their properties. Therefore; in this study we want
to show the usability of the Skew Distributions in the CCSP. We want to handle
the CCSP with the µ, σ2 and the λ skewness parameters.

2. Change-constrained Stochastic Programming

The measured gene expression levels may be modeled as

max(min)z(x) =
∑n
j=1 cjxj

P
[∑n

j=1 aijxj ≤ bi
]
≥ 1− ui

xj ≥ 0 j = 1, . . . , n
uiε(0, 1), i = 1, . . . ,m

(2)

where; aij , cj , bi random variables, P
[∑n

j=1 aijxj ≤ bi
]
≥ 1−ui the i. th change

constraint, 1− ui : lower bound for the i. change constraint (specified probability),
xj : decision variable i = 1, . . . ,m, j = 1, . . . , n.
In the model it is assumed that; aij , cj , bi are normally distributed random vari-

ables with known mean and variances, xj decision variables are deterministic. In
Hulsurkar [11], There are seven case may be occurred are handled. These cases are
given as;
Only aij , only cj or only bi are random variables (three cases).
Together aij , bi are random variables.
Together aij , cj are random variables.
Together cj , bi are random variables.
Together aij , cj , bi are random variables.
The deterministic equivalents of the probabilistic programming problems are

given in the study for the fourth cases. The other ones can be easily obtained as
similar.
Case 1 : Only aij coeffi cients are random variables.
Let’s the covariance between aij and akl random variables are known.
Random variable di is given as;

di =

n∑
j=1

aijxj , i = 1, . . . ,m (3)

where, ai1, . . . , ain normal random variables and x1, . . . , xn decision variables. The
expected values and the variance of di random variable are obtained as blow;

E (di) =

n∑
j=1

E (aijxj) , i = 1, . . . ,m (4)
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Var (di) = XTViX, i = 1, . . . ,m (5)

The deterministic non-linear equivalent of the probabilistic programming prob-
lem. ∑n

j=1E (aij)xj +Kui

√
XTViX ≤ bi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n
(6)

where; Kui is the value of standard normal variable and Φ (Kui) : 1− ui. If the aij
random variables are independent the inequalities constraint(6) can be written as:

n∑
j=1

E (aij)xj +Kui

√
Var (aij)x2

j ≤ bi i = 1, . . . ,m (7)

Case 2 : Only bi coeffi cients are random variables, the deterministic equivalent
model of the stochastic model is given as;

max(min)z(x) =
∑n
j=1 cjxj∑n

j=1 aijxj ≤ E (bi) +Kui

√
Var (bi) i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

(8)

Case 3: Only cj coeffi cients are random variables, the deterministic equivalent
model of the stochastic model is given as;

max(min)E(z(x)) =

n∑
j=1

E (cj)xj (9)

Case 4: aij and bi coeffi cients are together random variables, the deterministic
equivalent model of the stochastic model is given as;

max(min)(z(x)) =
∑n
j=1 (cj)xj

E
(∑n

j=1 aijxj − bi
)

+Kui

√
Var

(∑n
j=1 aijxj − bi

)
≤ 0 i = 1, . . . ,m

(10)

For the proofs the reader is directed to Hulsurkar [11].

3. Skew Distributions

3.1. Skew Normal Distribution. Normal Distribution is a preferred distribu-
tion through the analytic case in the studied, connection with central limit theory,
collability and the other advantage properties. However, there are many situations
in which the normal distribution assumption is not provided in practice. As it is
a symmetrical distribution, the usage area of the normal distribution becomes lim-
ited. Therefore, the problem of deviation from symmetry in the normal distribution
has been tried to be solved in some of these distributions. One such as distribution
is skew normal distribution.
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While the normal distribution can only determine a shape and scale parameter,
the skew normal distribution also has a shape parameter in addition to these pa-
rameters. This parameter is also called the skewness parameter. The parameter
determines the skewness of the distribution. In practice this is a very useful distri-
bution because of this property. Because skewness is present in almost in real data.
However the skew normal distribution includes many features found in the normal
distribution.
Skew-Normal distribution was first mentioned in the study O’Hagan and Leon-

hard [14].Then Azzalini [1,2] extended the theory of the skew normal distribution.
Skew normal distribution include the normal distribution. At the same time; it is
ease to operate with the skew normal distribution. For these reasons the distribu-
tion is widely used in the literature. If a random variable Z has density function

f(z;λ) = 2f(z)F (λz) −∞ < z <∞ (11)

where; f : the standard normal density and distribution function, F : the standard
normal distribution function, λ : skewness parameter, Z is a skew-normal random
variable with parameter λ; it is denoted Z ∼ SN(λ).
General Form of (11)

Y = µ+ σZ
f(y) = 2

σf
(
y−µ
σ

)
F
(
λ
(
y−µ
σ

)) (12)

where: µ ∈ R : location parameter σ ∈ R+ : scale parameter. If the random
variable Y has SN distribution with the parameters; µ, σ, λ; it is denoted as Y ∼
SN(µ, σ, λ). The expected value and the variance of the Y is given as;

E(Y ) = µ+
√

2
π δλδ

Var(Y ) =
(
1− 2

π δ
2λ
)
σ2

(13)

where;

δλ =
λ√

1 + λ2
(14)

The skewness and the kurtosis of the Z ∼ SN(λ) are obtained as;

γ1 =
√

2(4−π)λ3

(π+(π−2)λ2)
3
2

γ2 = 3 + 8(π−3)λ4

(π+(π−2)λ2)2

(15)

Lin et al. [13] The skewness and the kurtosis values of the SN distributions for
some λ values was obtained as below;
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Table 1. The skewness and the kurtosis values of SN(λ)

λ 0 0.1 0.5 0.9 1
γ1 0 0.0002 0.0239 0.1079 0.1369
γ2 3 3 3.0060 3.0449 3.0617

3.2. Skew tDistribution. Let Y random variable has the Skew t distribution with
the µ location parameter, σ2ε(0,∞) scale parameter, skewness parameter and with
vε(0,∞) degree of freedom improved by Gupta et al [9], Azzalini and Capitanio [3]
and Gupta [10]. Y random variable is defined as;

Y =
X√
V
v

(16)

where; X, Skew Normal Distribution with parameter λ V, χ2(v) Y and V are inde-
pendent each other’s, v : the degree of freedom. The probability density function
of Skew t distribution is defined as;

fst(y;λ) = 2tv(x)Tv+1

(
λx

√
v + 1

x2 + v

)
(17)

where

x =
y − µ
σ

(18)

tv : The probability density function of t distribution with t degree of freedom.
Tv+1 : The distribution function of t distribution with v + 1 degree of freedom. λ :
Skewness parameter.
If Y random variable has the pdf (17) it is denoted as Y ∼ Stv

(
µ, σ2, λ, v

)
. The

expected value and the variance of Y ∼ Sty
(
µ, σ2, λ, v

)
are obtained as follows;

E(Y ) = µ+

((√
v
π

λΓ( v−12 )√
λ2+1Γ( v2 )

)
σ

)
, v > 1 (19)

V (Y ) =
(

v
v−2 − c

2
)
σ2, v > 2 (20)

c =
√

v
π δλ

(
Γ( v−12 )
Γ( v2 )

)
δλ = λ√

λ2+1

(21)

Azzalini and Capitanio [3].
The skewness and the kurtosis of the St are obtained as



CHANGE-CONSTRAINED STOCHASTIC PROGRAMMING PROBLEM 187

γ1 = c

(
v(3−δ2λ)
v−3 − 3v

v−2 + 2c2
)(

v
v−2 − c

2
)− 3

2

v > 3

γ2 =

(
3v2

(v−2)(v−4)−
4c2v(3−δ2λ)

v−3 + 6c2v
v−2 −3c4

)
( v
v−2−c2)

2 − 3, v > 4

(22)

where

δλ = λ√
1+λ2

c = δλ(v/π)
1
2

Γ( v−12 )
r( v2 )

(23)

The skewness and the kurtosis values of the St distributions for some λ, v values
were obtained in Table 2 .

Table 2. The skewness and the kurtosis values of the Stv(0, 1, λ)

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
υ γ1γ2 γ1γ2 γ1γ2 γ1γ2 γ1γ2

3 - - - - - - - - - -
5 0 9 0.1103 9.0324 0.5527 9.8020 0.9776 11.4330 1.0758 11.9208
10 0 4 0.0333 4.0017 0.1839 4.0560 0.3736 4.2285 0.4243 4.2909

4. Numerical Example

Let’s define the CCSP model as follows;

maxZ = 7x1 + 2x2 + 4x3

P (a11x1 + a12x2 + a13x3 ≤ 8) ≥ 0.95
P (5x1 + x2 + 6x3 ≤ b2) ≥ 0.10

x1, x2, x3 ≥ 0

(24)

By using the inequality constraint (2.6), (2.7) in the Case 1 and Case 2 , the
deterministic equality of the problem 24 is written as generally form.

maxZ = 7x1 + 2x2 + 4x3

E (a11)x1 + E (a12)x2 + E (a12)x2 +K0.95x
2
4 ≤ 8

5x1 + x2 + 6x3 ≤ E (b2) +K0.10

√
Var (b2)

Var (a11)x2
1 + Var (a12)x2

2 + Var (a13)x2
3 − x2

4 = 0
x1, x2, x3, x4 ≥ 0

(25)

where, K0,00 = 1.285 and K0,95 = 1.645.
Now, we assume that aij , j = 1, 2, 3 and b2 are independent Normal Random

Variables with the following randomly means and variances
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E (a11) = 4 Var (a11) = 4
E (a12) = 4 Var (a12) = 8
E (a13) = 6 Var (a13) = 12
E (b2) = 7 Var (b2) = 9

For these values, the problem 25 turns into the following deterministic problem

max z = 7x1 + 2x2 + 4x3

4x1 + 4x2 + 6x3 + 1.645x2
4 ≤ 8

5x1 + x2 + 6x3 ≤ 10.855
4x2

1 + 8x2
2 + 12x2

3 − x2
4 = 0

x1, x2, x3, x4 ≥ 0

(26)

By Lingo package program, the solution of the problem 26 is obtained as:

X∗ =


1.097394

0
0

2.194787

 Z∗ = 7.681754

Now we assume that; aij , j = 1, 2, 3 and b2 are independent Skew Normal Ran-
dom Variables with the λ skewness parameter.

Table 3. The Expected values and the variances of the aij random
variables for each λ values for Skew Normal Distribution.

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
E (a11) 4 4.1588 4.7136 5.0675 5.1284
E (a12) 4 4.2246 5.0093 5.5097 5.5998
E (a13) 6 6.2750 7.2361 7.8490 7.9544

Var (a11) 4 3.9748 3.4907 2.8604 2.7268
Var (a12) 8 7.9495 6.9813 5.7207 5.4534
Var (a13) 12 11.9244 10.4721 8.5812 8.1803
E (b2) 7 7,2382 8,0705 8,6013 8,6926

Var (b2) 9 8,9433 7,8541 6.4359 6,1352

In Table 3 and Table 4 ; for some values of λ the expected values and the
variances of the aij , bi random variables and the right side values of the constraint
2 of the problem 25 are given. It is assumed that the skewness parameter is known.
The optimal solutions of the problem 25 under the Skew Normal Distribution

assumption for each skewness values are given in Table 5.
In this step, we assume that; aij , i = 1, j = 1, 2, 3 and b2 are independent Skew-

t random variables with the λ, v parameters. The expected values, variances of the
random variables and the right hand values of the second constraint of the problem
25 are given in Table 6 and Table 7. The degree of freedom v is known in the study.
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Table 4. The expected values and the variances of the bi random
variables and the right side values of the second constraint of the
problem (25)

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
E (b2) 7 7.2382 8.0705 8.6013 8.6926

Var (b2) 9 8.9433 7.8541 6.4359 6.1352
Right side values of constraint 2 10.855 11.081 11.6717 11.8612 11.8755

Table 5. The optimal solution of the problem (25) for each λ values

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
X1 1.0973 1.0754 1.0273 1.0191 1.0197
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 2.1947 2.1442 1.9194 1.7236 1.6839

MaxZ = 7.6817 7.5284 7.1914 7.1348 7.1340

Table 6. The Expected values and the variances of the aij random
variables for each λ and v values for the Skew-t distribution

v = 3
λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1

E (aµ) 4 4.2194 4.9862 5.4753 5.5594
E (a12) 4 4.3103 5.3948 6.0863 6.2053
E (a13) 6 6.3801 7.7082 8.5553 8.7009

Var (a11) 12 11.9518 11.0273 9.8236 9.5683
Var (a12) 23.9995 23.9032 22.0542 19.6467 19.1362
Var (a13) 36 35.8555 33.0819 29.4706 28.7048

v = 5
λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1

E (aµ) 4 4.1889 4.8488 5.2697 5.3421
E (a12) 4 4.2671 5.2004 5.7956 5.8980
E (a13) 6 6.3271 7.4702 8.1992 8.3246

Var (a11) 6.6667 6.6310 5.9462 5.0545 4.8654
Var (a12) 13.3331 13.2617 11.8921 10.1088 9.7306
Var (a13) 20 19.8930 17.8385 15.1634 14.5962

v = 10
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λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
E (a11) 4 4.1721 4.7734 5.1569 5.2228
E (a12) 4 4.2434 5.0937 5.6361 5.7294
E (a12) 6 6.2980 7.3396 8.0038 8.1180

Var (a11) 5 4.9704 4.4019 3.6616 3.5046
Var (a12) 9.9998 9.9406 8.8035 7.3231 7.0091
Var (a13) 15 14.9112 13.2056 10.9848 10.5139

v = 100
λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1

E (a11) 4 4.1600 4.7191 5.0756 5.1369
E (a12) 4 4.2263 5.0169 5.5211 5.6078
E (a12) 6 6.2771 7.2454 7.8630 7.9692

Var (a11) 4.0816 4.0560 3.5646 2.9247 2.7890
Var (a12) 8.1631 8.1119 7.1290 5.8493 5.5779
Var (a13) 12.2449 12.1681 10.6938 8.7741 8.3671

Table 7. The expected values and the variances of the b2 random
variables and the right side values of the second constraint of the
problem (25) for the Skew- t distribution.

v = 3
λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1

E (b2) 7 7.3292 8.4794 9.2129 9.3391
Var (b2) 27 26.8917 24.8115 22.1030 21.5287

Right side values 13.6771 13.9929 14.8801 15.2542 15.3014
v = 5

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
E (b2) 7 7.2833 8.2732 8.9046 9.0132

Var (b2) 15 14.9197 13.3789 11.3726 10.9472
Right side values 11.9768 12.2467 12.9734 13.238 13.2648

v = 10
λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1

E (b2) 7 7.2581 8.1601 8.7353 8.8343
Var (b2) 11.25 11.1834 9.9042 8.2386 7.8854

Right side values 13.31 11.5553 12.2041 12.4236 12.4427
v = 100

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
E (b2) 7 7.24 8.0786 8.6134 8.7054

Var (b2) 9.1837 9.1261 8.0203 6.5806 6.2753
Right side values 10.8941 11.1219 11.7177 11.9098 11.9244
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The optimal solutions of the problem (25) under the Skew-t distribution assump-
tion for each skewness values are given in Table 8 .

Table 8. The optimal solution of the problem (25) for each v, λ values

v = 3
λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1

X1 0.8248 0.8075 0.7656 0.7525 0.7513
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 2.8574 2.7918 2.5424 2.3585 2.3240

MaxZ = 5.774 5.6529 5.3594 5.2675 5.2592
v = 5

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
X1 0.9700 0.9495 0.9029 0.8920 0.8918
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 2.5045 2.4452 2.1017 2.0055 1.9671

MaxZ = 6.790 6.6469 6.3204 6.2444 6.2426
v = 10

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
X1 1.0418 1.0204 0.9726 0.9633 0.9635
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 2.3297 2.2750 2.0407 1.8433 1.8038

MaxZ = 7.2932 7.1432 6.8087 6.7450 6.7432
v = 100

λ = 0 λ = 0.1 λ = 0.5 λ = 0.9 λ = 1
X1 1.0923 1.0705 1.0223 1.0140 1.0147
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 2.2069 2.1559 1.9302 1.7342 1.6945

Max Z = 7.6467 7.4936 7.1566 7.1026 7.0986

5. Conclusions

In this study problem, it is assumed that randomly selected aij(t = 1, j =
1, 2, 8), bi(i = 2) model coeffi cients in the inequality constraints of the stochastic
problem have Normal, ti Skew Normal and Skew-t distributions. Lingo 9.0 has been
used to solve the deterministic equivalent problems of the stochastic problems. As
a result; the solutions are compared to according to the decision variables and the
objective function values of the deterministic problems.
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We compared the Normal distribution with Skew Normal distribution; t distri-
bution with Skew t distribution to investigate the skewness effect; t distribution
with Normal distribution to investigate the tick tail effect; Skew-t distribution with
Skew Normal distribution to investigate the tick tail and skewness effect.
In Table 5; it is seen that for Normal distribution (λ = 0) the objective function

has the highest value z∗ = 7.68, for the skewness effect we can say that; as the
value of the skewness parameter λ. increases the value of the objective function
decreases.
In Table 8; it is seen that for t distribution (λ = 0) the objective function has the

highest values z∗ = 5.774, 6.790, 7.2932, 7.6467 for each v = 3, 5, 10, 100 degree of
freedom values. As the value of the skevness parameter λ increases the value of the
objective function decreases. For two cases: Skew Normal and Skew- t distributions,
we can see the skewness effect on the objective function values.
In Table 8; it is seen that; the objective function value for the Normal distribution

(λ = 0) is z∗ = 7.68; the objective function values for the t distribution (λ = 0, v =
3.5, 10, 100) is respectively z∗ = 5.774, 6.790, 7.2932, 7.6467. For the tick tail effect,
it can be said that that, for constant λ = 0, the objective function has the closest
value (Z ′ = 7.6467) to normal distribution (z∗ = 7.68) at v = 100 degree of freedom
value.
Finally, for both the skewness and the tick tail effects; when we compare the Skew

Normal and Skew-t distributions; for constant λ values, the objective function has
the highest values at v = 100. It can be said that for the tick tail effect; as the
value of the v increases the value of the objective function increases. For the large
values of v, the objective function values of the models having Skew Normal and
Skew-t distributions are closed to each other.
As a result, under the normality assumption; the CCSP problems can be solved

with the different expected and the variance values. The solutions can be compared
and µ, σ2 parameters effects can be invertigated. By the Skew Distributions are
considered to be an extension of normal distribution; the skewness parameter and
the tick tailness are included in the problem. So it can be seen the skewness and
the tick tail effects. The Distributions was compared by the solutions. The Skew
Distributions are very useful in the practise. They are the advantages in the CCSP.
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