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Abstract: The problems encountered in the analysis of data sets with undersized sample mainly arise from the singular 
covariance structure. As a solution to this problem, non-singular Hybrid Covariance Estimators (HCEs) have been proposed in 
the literature. Several multivariate statistical techniques where HCEs are used continue to be developed and introduced. One 
of these is the Hybrid Regression Model (HRM). Thanks to HCEs, since there is no longer the rank problem in covariance 
matrix, in HRM analysis the regression coefficients can be estimated as many as the number of variables. However, determining 
the best predictors in regression model is one of the biggest problems for researchers since the number of variables increases 

and there is insufficient knowledge about the model. Therefore, some numerical optimization techniques and strategies are 
required to explain such a wide solution space where the number of alternative subsets of candidate models of predictors can 
reach millions. In this paper, we introduced a new and alternative approach to variable selection for undersized sample data by 
using the Genetic Algorithm (GA) and Information Complexity Criteria (ICOMP) as a fitness function in the HRM analysis. 
To demonstrate the ability of proposed method, we carried out the Monte Carlo simulation study with correlated and undersized 
data sets. We compared our method with Elastic Net (EN) modeling. According to results, the proposed method can be 
recommended as an alternative approach to select variable in undersized sample data. 
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Cılız Örneklem Problemine Sahip Veri Setlerinde Hibrit Regresyon Modellemesi Kullanarak 

Değişken Seçimine Alternatif Bir Yaklaşım   

 
Öz: Cılız örneklem problemine sahip veri setlerinin analizinde karşılaşılan problemler temel olarak singüler kovaryans 
matrisinden kaynaklanmaktadır. Bu probleme bir çözüm olarak literatürde Hibrit Kovaryans Tahmin Edicileri (HCE) 
önerilmiştir. HCE’lerin kullanıldığı bazı çok değişkenli istatistiksel yöntemler geliştirilmeye ve tanıtılmaya devam etmektedir. 
Bunlardan biri Hibrit Regresyon Modeli’dir (HRM). HCE sayesınde kovaryans matrisinde artık singülerlik problemi olmadığı 
için, HRM ile değişken sayısı kadar regresyon katsayısı tahmin edilebilir. Bununla birlikte, değişken sayısı çok fazla olduğu 
ve model hakkında yetersiz bilgiye sahip olunduğu için, regresyon modelindeki en iyi tahmin edicileri belirlemek araştırmacılar 
için en büyük problemlerden biridir. Bu nedenle tahmin edicilerin alternatif modellerinin alt küme sayısının milyonları 
bulabildiği böyle geniş bir çözüm uzayını açıklamak için bazı nümerik optimizasyon tekniklerine ve stratejilerine ihtiyaç vardır. 

Bu çalışmada, ICOMP’ın uygunluk fonksiyonu olarak kullanıldığı bir Genetik Algoritma yapısı ile HRM analizi yapılarak cılız 
örneklemli veri setleri için değişken seçimine alternatif bir yaklaşım önerilmiştir. Önerilen yaklaşımın kullanılabilirliğini 
göstermek için korelasyonlu ve cılız örneklemli veri setlerinin kullanıldığı bir Monte Carlo simulasyon çalışması yapılmıştır . 
Karşılaştırma amacıyla Elastik Net modellemesi kullanılmıştır. Elde edilen sonuçlara göre, önerilen yaklaşımın cılız örneklemli 
veri setlerinde değişken seçimi için alternatif bir yaklaşım olarak kullanılabileceği söylenebilir.  
 
Anahtar kelimeler: Genetik algoritma, hibrit regresyon modeli, bilgi karmaşıklığı kriterleri, değişken seçimi, cılız örneklem 
problemi 

 

1. Introduction 

 

According to statistical viewpoint, if inferences about data are required, it is expected that the number of 

samples should increase exponentially against the number of variables. Nowadays, even if there are many 

observations, the number of variables may increase radically. In this case, a single observation can have thousands 

or even millions of dimensions whereas the number of observations that can be reached for the study is expressed 

as ten or hundred. The traditional techniques in statistics are not capable for analyzing such data sets [1].  

Statisticians sometimes say “Big p, Small n” for this problem. Another definition is “the undersized sample 

problem” or “extremely small sample problem” [2,3].  
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The problems encountered in the analysis of data sets with undersized sample mainly arise from the singular 

covariance structure. As a solution of this problem, for the first time by [4], non-singular Hybrid Covariance 

Estimators (HCEs) is proposed by hybridizing the Maximum Likelihood Estimator (MLE) with smoothed 

covariance structures after the stabilization stage of eigenvalues.  

Since HCEs overcome the singularity in covariance matrix, the analysis of undersized or high-dimensional 

data sets with multivariate statistical methods for 𝒏 <<  𝒑 problem has become possible. Several multivariate 

statistical techniques in where HCEs are used continue to be developed and introduced [4,5,6]. One of these is the 

Hybrid Regression Model (HRM) in which HCEs is used as covariance input [7]. When the HRM is performed in 

case 𝒏 <<  𝒑, the regression coefficients can be obtained as many as the number of variables even if they are 

hundreds or thousands. The next stage is to determine the best predictors that have the most effect on the response 
variable, i.e. the variable selection stage. This is one of the biggest problems for researchers when the number of 

predictors increases and there is insufficient or no prior knowledge about the model.  

Model selection is basically a process of finding the best model from the subset of competing or candidate 

models by revealing which variables are effective on the response variable. Since the early 1970s, it has been 

possible to come across many studies on the model selection algorithm and criteria. These include classical 

methods for the model selection and the methods based on information criteria. The classical methods are generally 

performed by hypothesis testing. An arbitrary level of confidence is selected in a hypothesis testing process by the 

researcher to decide whether the variables are included in final model or not. However, most statisticians and other 

scientists have emphasized that the level of confidence used in the selection of classical models is baseless [8]. 

Some scientists have stated that the hypothesis testing approach does not have a theoretical accuracy and it is 

generally insufficiently valid [9]. Although almost all popular statistical packages have many classical model 
selection procedures based on hypothesis testing, such as Forward Selection, Backward Elimination, and Stepwise 

techniques, these selection methods do not deal with the dependency structure between variables. Also, since they 

contain the limitations of the hypothesis testing, these methods are criticized by Boyce et al. (1974, p:16) with the 

following words “These approaches do not guarantee optimal results”. Therefore, the selection of the best 

predictors involves randomness. He mentioned that also “An exhaustive search would examine 𝟐𝒑 possible 

equations” [10]. 

The shortcomings in the classical procedures for model selection impose limitations on the selection of the 

best or near-best model subsets. Although some statisticians and researchers propose to choose from all possible 

subsets, in many cases this method is not producible in terms of calculation and is also not possible in terms of 

time and cost [11]. For example, if we have p=20, the number of the subsets of the candidate models are             

𝟐𝟐𝟎 = 𝟏𝟎𝟒𝟖𝟓𝟕𝟔. Therefore, some numerical optimization techniques and strategies are required to explain such 

a wide solution space.  

In general, two components are needed to use numerical techniques in a subset selection problem. 

 An algorithm to effectively scan wide solution space 

 A measure for comparison of candidate models 
In this study, for the HRM, it is constructed a Genetic Algorithm (GA) structure where the variables in the 

model assigned as ‘1’ and the others variables assigned as ‘0’. By using ICOMP criterion as the fitness function, 

it is compared the candidate regression models in population for transferring to the next generation.  

The sketch of paper is given by following orders. In Section 2.1, HRM and its background will be introduced. 

In Section 2.2, the GA structure will be presented in order to explain how to determine the variables exist in the 

model by using the GA in the HRM. In Section 2.3, we briefly introduce the Elastic Net (EN) modeling. In Section 

3, we provide our Monte Carlo simulation study.  The last part is divided to conclusion and brief discussion. 

 

2. Material and Methods  

 

2.1. Hybrid regression model (HRM) with information complexity and hybrid covariance estimators  

 
 Let us consider the multiple linear regression model in matrix form given by  

 

𝑦 = 𝑋𝛽 + 𝜀 (1) 
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where 𝑦𝑛𝑥1 is vector of observaitons on a response variable, 𝑋𝑛𝑥𝑝 is full rank matrix of variable, 𝛽𝑝𝑥1  is regression 

coefficient vector and 𝜀𝑛𝑥1~𝑁(0, 𝜎2) is random error vector. The maximum likelihood estimates of 𝛽𝑝𝑥1  are given 

by 

 

�̂�𝑀𝐿𝐸 = (𝑋′𝑋)−1𝑋′𝑦 (2) 

  

As is seen in equation (2), the Gram matrix (𝑋′𝑋) must be non-singular and invertible in order to obtain the 

estimate of �̂�𝑀𝐿𝐸. In case of undersized sample, i.e. 𝑛 ≪ 𝑝, it is clear that the 𝑋𝑛𝑥𝑝 is not full rank matrix and the 

Gram matrix is not invertible. As a solution to this problem, in the framework of the regression analysis it has been 

proposed Hybrid Covariance Estimators (HCEs) as a well-conditioned and non singular covariance estimate 

instead of using Gram matrix [4]. In the following section, HCEs will be introduced. 
 

2.1.1. Smoothed covariance structures  

 

For a covariance matrix, the Condition Number (CN) defined as the largest eigenvalue 𝜆𝑚𝑎𝑥 divided by the 

smallest eigenvalue 𝜆𝑚𝑖𝑛 is given by 

 

𝐶𝑁 = 𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 (3) 

 

The inverse of CN can be used for the definition of singularity of covariance matrix [12] and it is defined as follow,  
 

𝜅(𝛴) =
1

𝐶𝑁
   

(4) 

 

If 𝜅(Σ) is near to zero, the covariance matrix is close to the singularity. As a solution to singularity, shrinkage 

estimators that will shrunk eigenvalues of Σ to a central value have been developed. The main idea of these 

estimators is to take the convex combination of the maximum likelihood estimation of the sample covariance, i.e. 

Σ̂𝑀𝐿𝐸 , and a target diagonal matrix �̂� (i.e., taking the weighted average). Then, the shrinkage or smoothed 

covariance estimator is given by 

 

�̂�𝑆 = (1 − 𝜌)�̂�𝑀𝐿𝐸 + 𝜌�̂�    (5) 

 

where, 𝜌 ∈ [0,1] is estimate of the optimal shrinkage coefficient 𝜌, The �̂�  matrix is called as shrinkage target 

matrix and its naive form is as follow, 

 

 �̂� =
𝑡𝑟(�̂�𝑀𝐿𝐸)

𝑝
𝐼𝑝 = (

1

𝑝
∑𝜆𝑗

𝑝

𝑗=1

)𝐼𝑝 = �̅�𝐼𝑝  (6) 

 

where 𝑡𝑟(. ) represents the trace of matrix, 𝜆𝑗 , 𝑗 = 1,2,… , 𝑝 are eigenvalues of sample covariance matrix and �̅� =

∑ 𝜆𝑖/𝑝
𝑝
𝑖=1  is arithmetic mean of eigenvalues. By using the weighted average in equation (5), it is placed to a lower 

weight on extremely large or small eigenvalues. Thus, the effect of these eigenvalues is reduced and a smoothed 

estimator is obtained.  

The smoothed or regularized covariance estimators under linear or quadratic loss functions have been 

introduced in the literature. Some of them: Empirical Bayes Estimator (EB)[13], Stipulated Ridge Estimator 

(SRE)[14], Stipulated Diagonal Estimator (SDE)[14], Convex Sum Estimator (CSE)[15,16], Bozdogan’s Convex 

Sum Estimator (BCSE)[17], Oracle Approximation (OAS)[18], Ledoit-Wolf Estimator (LW)[19] are given in 
Table 1.  
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Table 1. Smoothed or regularized covariance estimators 

Σ̂𝑆 Form* �̂� 

Σ̂𝐸𝐵 Σ̂𝑀𝐿𝐸 + 𝜌𝐸𝐵𝐷𝑝 
𝑝 − 1

𝑛(Σ̂𝑀𝐿𝐸)
 

Σ̂𝑆𝑅𝐸 Σ̂𝑀𝐿𝐸 + 𝜌𝑆𝑅𝐸𝐷𝑝 𝑝(𝑝 − 1)[2𝑛𝑡𝑟(Σ̂𝑀𝐿𝐸)]
−1

 

Σ̂𝑆𝐷𝐸 (1 − 𝜌𝑆𝐷𝐸)Σ̂𝑀𝐿𝐸 + 𝜌𝑆𝐷𝐸𝐷𝑝 𝑝(𝑝 − 1) [2𝑛𝑡𝑟 (Σ̂𝑀𝐿𝐸

−1
) − 𝑝]

−1

 

Σ̂𝐶𝑆𝐸 𝜌𝐶𝑆𝐸Σ̂𝑀𝐿𝐸 + (1 − 𝜌𝐶𝑆𝐸)𝐷𝑝 

𝑛

𝑛+𝑚
 where 0 < 𝑚 <

2[𝑝(1+𝛽)−2]

𝑝−𝛽
,          

𝛽 =
𝑡𝑟(Σ̂)

2

𝑡𝑟(Σ̂2)
   for 𝑝 ≥ 2 dimensions. 

Σ̂𝐵𝐶𝑆𝐸 𝜌𝐵𝐶𝑆𝐸Σ̂𝑀𝐿𝐸 + (1 − 𝜌𝐵𝐶𝑆𝐸)𝐷𝑝 
1

𝛼
 , where 𝛼 =

1

𝑛−1
∑ 𝜎𝑗𝑗

𝑝
𝑗=1  

Σ̂𝑂𝐴𝑆 (1 − 𝜌𝑂𝐴𝑆)Σ̂𝑀𝐿𝐸 + 𝜌𝑂𝐴𝑆𝐷𝑝 𝑚𝑖𝑛 (
(1 −

2
𝑝
) 𝑡𝑟(Σ̂2) + (𝑡𝑟Σ̂)2

(𝑛 + 1 −
2
𝑝
) [𝑡𝑟(Σ̂2) −

(𝑡𝑟Σ̂)2

𝑝
]

, 1) 

Σ̂𝐿𝑊 (1 − 𝜌𝐿𝑊)Σ̂𝑀𝐿𝐸 + 𝜌𝐿𝑊𝐷𝑝 𝑚𝑖𝑛 (
∑ ‖𝑥𝑖′𝑥𝑖 − 𝑆‖2

𝐹
𝑛
𝑖=1

𝑛2 [𝑡𝑟(Σ̂2) −
(𝑡𝑟Σ̂)2

𝑝
]

, 1) 

*: n is number of observations, 𝑝 is number of variables in data, 𝐷𝑝 is target matrix 

 

2.1.2. Hybrid covariance estimators (HCEs) 

 

Since the problem of interest of this study is able to perform regression analysis in data sets with undersized 
sample, it is clear that the maximum likelihood estimates of covariance matrices of these data sets is singular 

and/or ill conditioned. It is important to obtain a well-conditioned and non-singular covariance structure. From 

this point, Pamukcu et al. (2015) [4] developed Hybrid Covariance Estimators-HCEs by using following 

eigenvalue stabilization algorithm defined by Thomaz [20] 

 Step-1: Calculate the eigenvalues  𝜆𝑗  and their eigenvectors  𝑣𝑗  of Σ̂𝑀𝐿𝐸, where  𝑗 = 1,2,… , 𝑝 and 𝑝 is the number 

of variables of the data. Σ̂𝑀𝐿𝐸 represents the maximum likelihood covariance estimator. 

 Step-2: Calculate the arithmetic mean of eigenvalues by using: �̅� =
1

𝑝
∑ 𝜆𝑗

𝑝
𝑗=1  

 Step-3: Produce the following matrix of eigenvalues based on largest dispersion values:  

 

 𝛬∗ = [
𝑚𝑎𝑥(𝜆1, �̅�)  0 ⋯ 0

⋮ ⋱ ⋮
           0         0 ⋯ 𝑚𝑎𝑥 (𝜆𝑝, �̅�)

] (7) 

 

 Step-4: The new stabilized covariance matrix is given by: 

 

�̂�𝑀𝐿𝐸_𝑆𝑇𝐴 = 𝑉𝛬∗𝑉 (8) 

 

where 𝑉 is matrix of eigenvectors 𝑣𝑗 of Σ̂𝑀𝐿𝐸. As is seen, the algorithm stabilizes eigenvalues by expanding only 

the smaller and consequently less reliable eigenvalues of the covariance matrix and by keeping its larger 
eigenvalues unchanged. Then, one can obtain HCEs by following two stage process: 

 

 Stage-1: Perform the stabilization algorithm above 

 Stage-2: Produce the stabilized-smoothed covariance estimators in Table 1. 



Esra PAMUKÇU 

5 

 

For example, Σ̂𝐻𝐶𝐸 = Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐵𝐶𝑆𝐸 is defined as follow 

 

�̂�𝑀𝐿𝐸_𝑆𝑇𝐴_𝐵𝐶𝑆𝐸 = (1 − 𝜌𝐵𝐶𝑆𝐸)�̂�𝑀𝐿𝐸_𝑆𝑇𝐴 + 𝜌𝐵𝐶𝑆𝐸𝐷𝑝 (9) 

  
For more on this we refer the readers to [4,21]. 

The logical and mathematical theme of using Stabilization + Regularization is to achieve positive definition 

with respect to shrunk and to expand the less appropriate and smaller eigenvalues by using stabilizing. Considering 

Table 1, there are several forms of HCEs which can be used. It is an important problem which one is optimal 

covariance for a researcher who wants to use them. For this reason, it is investigated for the choosing optimal 

covariance structure by [4,5,6,21] especially in the framework of regression analysis and observed that 

Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐶𝑆𝐸 and Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐵𝐶𝑆𝐸  have superior performance on the others. Therefore, in our simulation study, we 

use Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐶𝑆𝐸 and Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐵𝐶𝑆𝐸  covariance structures and their model are represented by HRM1 and HRM2, 

respectively.  

 

2.1.3. Information complexity criteria (ICOMP) for model selection 

 

In the literature, Akaike [22,23] Information Criterion (AIC) is widely used for statistical model selection. 

This is given by 
 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿(𝜃) + 2𝑘        (10) 

 

where 𝑙𝑜𝑔𝐿(𝜃) is log likelihood function of 𝜃 parameter in a probability density function, 𝑘 is the number of 

parameters. ICOMP (I; Information-COMP; Complexity) are criteria developed by Bozdogan (1988) for the model 

selection in multivariate linear and nonlinear models [24]. Wheras the AIC is only intended to strike a balance 

between the lack of fit and the penalty terms, ICOMP aims to establish this balance by taking into account a 

complexity measure that measures how the parameters in the model relate to each other. Therefore, instead of 

directly penalizing the number of parameters, it penalizes the covariance complexity of the model introduced by 

[24]. ICOMP is given by 
  

𝐼𝐶𝑂𝑀𝑃 = −2𝑙𝑜𝑔𝐿(𝜃) + 2𝐶1(𝛴)       (11) 

 

The second part of equation 11 is called the measure of complexity of model. It is given as follow:  

 

𝐶1(𝛴) =
𝑝

2
𝑙𝑜𝑔 [

𝑡𝑟(𝛴)

𝑝
] −

1

2
𝑙𝑜𝑔|𝛴|        (12) 

 

where |Σ| represents determinant of Σ and 𝑝 is dimension of Σ. As seen, 𝐶1(Σ) include two simplest scales of 

multivariate scattering called determinant and trace in a single function. There are several forms ICOMP criteria, 

for more about this we refer the reader to [11,25,26,27]. For these criteria, the model which has minimum value 

of criteria is called as the best model.  

 

2.1.4 Hybrid regression model 

 

In the case of undersized sample, i.e. 𝑛 << 𝑝, where the sample variance covariance matrix is singular, we 

can analyze the data with HRM by using following steps: 

 

 Step-1: Σ̂𝐻𝐶𝐸𝑠 = Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐶𝑆𝐸  and Σ̂𝐻𝐶𝐸𝑠 = Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐵𝐶𝑆𝐸 are estimated for the data set  

 Step-2: Σ̂𝐻𝐶𝐸𝑠 are used instead of Gram matrix in multiple regression analysis 

 Step-3: The model which has minimum value of information criteria is determined as the best model among the 

candidate models created with different Σ̂𝐻𝐶𝐸𝑠. 

 

Indeed, AIC, BIC [28] and Consistent Akaike Information Criterion (CAIC) [29] may be used as information 

criteria for model selection tool. Specifically, we prefer to use ICOMP in our computations since it is demonstrated 
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that ICOMP has superior performance on the other criteria. Also, it has been demonstrated that they tend to select 

more variables that may be related to each other since their penalty terms are not deal with correlation structure 

between variables [11,17,21,26,27]. The derived form of ICOMP in HRM is defined as follows: 

 

𝐼𝐶𝑂𝑀𝑃𝑀𝑖𝑠𝑠(𝐻𝑅𝑀) = 𝑛𝑙𝑜𝑔(2𝜋) + 𝑛𝑙𝑜𝑔(�̂�2) + 𝑛 + 2𝐶1 (𝐶𝑜𝑣(�̂�𝐻𝑅𝑀)
𝑀𝑖𝑠𝑠𝑠𝑝𝑒𝑐

)        (13) 

 

where  𝐶𝑜𝑣(�̂�𝐻𝑅𝑀)
𝑀𝑖𝑠𝑠𝑠𝑝𝑒𝑐

= ℱ̂−1ℛ̂ℱ̂−1is called the “sandwiched covariance” estimator. ℱ̂−1 and ℛ̂ represent the 

inverse of Fisher information matrix and outer-product form of Fisher information matrix, respectively. These are 

given by 

 𝐶𝑜𝑣(�̂�𝐻𝑅𝑀)
𝑀𝑖𝑠𝑠𝑠𝑝𝑒𝑐

=

[
 
 
 
�̂�2

𝑛
0

0
2�̂�4

𝑛 ]
 
 
 
[

𝑛

�̂�2

𝑛𝑆𝑘

2�̂�3

𝑛𝑆𝑘

2�̂�3

𝑛(𝐾𝑡 − 1)

4�̂�4

]

[
 
 
 
�̂�2

𝑛
0

0
2�̂�4

𝑛 ]
 
 
 

       (14) 

 

is called Sandwich covariance matrix and where  

 𝑆𝑘 = 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
(
1
𝑛

∑ 𝜀�̂�
3𝑛

𝑖=1 )

�̂�3
        (15) 

𝐾𝑡 = 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
(
1
𝑛

∑ 𝜀�̂�
4𝑛

𝑖=1 )

�̂�4
      (16) 

 

where �̂�2 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1 and 𝑛 is the number of observations. When the model is correct we get ℱ̂−1 = ℛ̂ and 

the formula reduces to the usual inverse Fisher information matrix 

 

2.2. Genetic algorithm for hybrid regression model 

 
After performing HRM to undersized sample data, since the regression coefficients are obtained as many as 

the number of variables, many of these could be irrelevant or redundant variables. So, the performance of the HRM 

can be evaluated after they are detected and sorted.  

Let 𝑝 be the number of variables in HRM. If the 𝑝 increases, the number of subsets of candidate models can 

reach millions or even billions. Therefore, an effective algorithm is necessary to effectively scan the such a wide 

solution space. For this purpose, we prefer to use the principles of GA in order to select best predictors in HRM.  

The GA is an evolutionary search algorithm that borrows concepts from biological evolution and is a 

stochastic optimization method inspired by the principles of evolution in nature. The search method is based on 

the principle of survival of the best. To this end, we begin to work with a community of potential solutions to the 

problem to be solved. It is called as initial population. Each individual in a population is a potential solution and 
is coded as chromosomes in accordance with the nature of the problem being studied. 

For the variable selection problem in HRM analysis with GA, our implementation basically follows 

Goldberg’s GA (1988) [30]. For a detailed information we refer the readers to [30,31]. 

Considering in the framework of the regression analysis, the length of the chromosomes is equal to the 

number of all the variables in data set. Let 𝑘 be the number of the variables. Assuming that there are 10 variables 

in the data set, i.e. 𝑘 =  10. In this case, a chromosome is a sequence of 𝑘 units. Each unit on the chromosome is 

called a “gene” and each unit can have a value of ‘0’ or ‘1’. ‘0’ on the chromosome represents that the 

corresponding variables are not included in the regression model and ‘1’ represents the included variables in the 

regression model. A chromosome sample is given below for the regression model in which the variables 1,2,4,5,6,8 

and 10 are included [11,27]. 
Variables    1 2 3 4 5 6 7 8 9 10 

   Chromosome                  1 1 0 1 1 1 0 1 0 1 

The general procedure in the GA is straightforward and it is summarized as follow:   

1. Generate the initial population of chromosomes 

2. Calculate the fitness value for each chromosome in the population: The fitness value of the ith member is 

𝑓 (𝑖𝑡ℎ) which is the value of the objective function 𝑓 at that point [32]. For each chromosome, there is a 
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numerical fitness value that is proportional to the use or ability of the solution represented by the 

chromosome. This information guides the selection of more appropriate solutions for each generation. In this 

study, ICOMP is our fitness function. Firstly, a chromosome will be modeled by using HRM and the 

performance of the model will be measured by ICOMP. Since the model which has minimum value of ICOMP 

is defined as probably good model, the chromosomes will be transferred to the next generation. 

3. Determine how current population is matched for the next generation: Firstly, it is sorted current population 

according to the values of fitness function. In our case, the most popular chromosomes which has minimum 

ICOMP values come to in the beginning of the list. Chromosomes in the list are mated by using a sequential 

pairs (pair (1,2), pair (3,4)...etc.). 

4. Perform the GA operations: By changing the structure of chromosomes with the genetic processes such as 

mutation and crossover, it is provided to investigate the space of all possible solutions. There are three 
crossover techniques such as single, multiple and uniform crossover. However, these are related to the 

processing of the GA and no further details will be given.  

5. Pass on offspring to new generation.  

6. Loop back to step 2 until stopping criteria met: These steps given above are performed only for one 

generation. After we reach to a certain number of generations or to optimal value of fitness function, the 

process is terminated. In our case, there is no an optimal value for the fitness function, i.e. ICOMP, therefore 

the algorithm continue until the number of generations is reached. 

Note that, each iteration in the GA is called as generation. The chromosome with the highest fitness in the 

final generation is proposed as a solution to the problem. It is expected that this proposed solution is optimal or 

near to the optimal solution. 

 

2.3 Elastic net modeling 

 

Let us recall the multiple regression model in matrix form given equation (1). The objective function of the 

vanilla matrix representation of EN is defined by 

 

𝐿(𝛽, 𝜆1, 𝜆2) = ‖𝑦 − 𝑋𝛽‖2 + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2      
2     (17) 

 

where ‖𝛽‖1 = ∑|𝛽| is the 𝐿1 norm penalty (the LASSO penalty) and ‖𝛽‖2 
2 = ∑𝛽2 is the 𝐿2 norm penalty (the 

ridge penalty) To avoid the double shrinkage in equation (17), one can undo the penalty by scaling up the estimates 

from the vanilla matrix representation of EN. Then an improved estimator is 

 

 �̂� = √1 + 𝜆2�̃�    (18) 

 

Further, one can show that the improved estimates in matrix form are given by [33] 

 

�̂�𝐸𝑁 = 𝑎𝑟𝑔min
𝛽

[𝛽′ (
𝑋′𝑋 + 𝜆2𝐼

1 + 𝜆2

)𝛽 − 2𝑦′𝑋𝛽 + 𝜆1‖𝛽‖1]          (19) 

 

It is clear that 

 

(
𝑋′𝑋 + 𝜆2𝐼

1 + 𝜆2

) =
1

1 + 𝜆2

𝑋′𝑋 +
𝜆2

1 + 𝜆2

𝐼 (20) 

 
We can write the equation (20) equivalently as 

 

(
𝑋′𝑋 + 𝜆2𝐼

1 + 𝜆2

) = (1 − 𝜌𝐸𝑁)𝑋′𝑋 + 𝜌𝐸𝑁𝐼 (21) 

 

where 𝜌𝐸𝑁 =
𝜆2

1+𝜆2
 𝜖 (0,1) is shrinkage coefficient and 𝑋′𝑋 is the Gram matrix. 
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3. Results 

 

3.1. Monte Carlo simulation study 

 

 In this part, we present a Monte Carlo simulation study on correlated data sets with undersized sample. 

According to explanations about HCEs performance in Section 2.1.2, we study two different HCEs in HRM to 

able to select the best predictors by using GA and ICOMP. For comparison, we study EN modeling with different 

three 𝜆2 tuning parameters as grid values. These are given in Table 2. 

 

Table 2. Compared Models in Simulation Study 

 

Models     With 

HRM1 Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐶𝑆𝐸  

HRM2 Σ̂𝑀𝐿𝐸_𝑆𝑇𝐴_𝐵𝐶𝑆𝐸  

EN1 𝜆2 = 0.001 
EN2 𝜆2 = 0.01 

EN3 𝜆2 = 0.1 

   

The simulation protocol for generating correlated data sets with undersized sample is below: 

 𝑝  : Number of variables=30, 40, 50, 60 

 𝑛   : Number of observations=10, 20, 30 

 𝑋(𝑛𝑥𝑝) : The data set 

 𝑟   : Correlation between the correlated variables = fixed as 0.5 

 𝜎  : Error variance = fixed as 0.01 

 𝜀  : Error 

Note that the data sets are derived from the multivariate normal distribution with zero mean and Σ covariance 

matrix, i.e. 𝑀𝑉𝑁(0, Σ).For 𝑟 = 0.5  and 𝑝 = 5,  an example to calculate the variance-covariance matrix Σ is as 

follow: 
 

 𝛴 =

[
 
 
 
 
 
 
 
 
 1 𝑟

𝑟

2

𝑟

4

𝑟

8

𝑟 1 𝑟
𝑟

2

𝑟

4
𝑟

2
𝑟 1 𝑟

𝑟

2
𝑟

4

𝑟

2
𝑟 1 𝑟

𝑟

8

𝑟

4

𝑟

2
𝑟 1]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
1 0.500 0.250 0.125 0.062
0.500 1 0.500 0.250 0.125
0.250 0.500 1 0.500 0.250
0.125 0.250 0.500 1 0.500
0.062 0.125 0.250 0.500 1]

 
 
 
 

 (22) 

 

As is seen, the covariance structure in equation (22) provides correlation between sequential variables.  We 
generate the data sets with different samples and variables size. After having the data sets, we use following steps 

in order to show the performance of detection of true variables of proposed method and EN modeling, for 

comparison.  

 We generate the response variable by using   𝑦 = 5 + 3𝑋1 − 2𝑋2 + 6𝑋3 + 𝜎𝜀.  So, the variables 
{𝑋0, 𝑋1, 𝑋2, 𝑋3} are important variables which have effect on response variable.  

 ‘elasticnet’ module in MATLABR2015a  is used to perform EN modeling. It can be easily found in 

https://in.mathworks.com/matlabcentral/mlcdownloads/downloads/submissions/58182/versions/2/previews/

elasticnet.m/index.html 

 To perform GA with HRM and ICOMP, a graphical user interface GUI is written by the author following the 

steps in Section 2.2. 

 In order to compare the performance of detection of true variables of models, we use the average value of 

True Positive Rate (TPR) [34] given by  
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𝑇𝑃𝑅 =
1

𝑟
∑ 𝑇𝑃𝑅𝑞     

𝑟

𝑞=1

 (23) 

  

where 𝑇𝑃𝑅𝑞 =
#𝑡𝑟𝑢𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
  for the models in 𝑞𝑡ℎ  run and 𝑟 is replication number.  

We note that the 𝑇𝑃𝑅 value is equal to 1, if the list of total selected variables is  {𝑋0, 𝑋1, 𝑋2, 𝑋3}, otherwise 

𝑇𝑃𝑅𝜖[0,1). If it is added an unimportant variable to model, then the 𝑇𝑃𝑅 value is equal to 4/5=0.8. 

Additionally, we use following GA parameters in Table 3 in our simulation study. This process for all data 

sets with different size is repeated 100 times. The simulation results are given in Table 4:  

 

Table 3. GA parameters 

 

Parameter Value 

Generation number 10 

Population size 50 

Generation seeding Sorted 

Probability of crossover 0.75 

Type of crossover Two-points 

Probability of mutation 0.1 

Objective functions ICOMP  

 

Table 4. The Simulation results according to 𝑇𝑃𝑅 values 

 

Data size HRM1 HRM2 EN1 EN2 EN3 CPU time (sec) 

10x30 0.1723 0.2643 0.1664 0.1697 0.1814 42.1 

10x40 0.1116 0.1582 0.0994 0.1017 0.1373 44.5 

10x50 0.0862 0.1283 0.1003 0.0933 0.1323 47.9 

20x30 0.2748 0.2054 0.1067 0.1040 0.1575 42.9 

20x40 0.2423 0.1776 0.1165 0.1151 0.1242 47.1 

20x50 0.1333 0.1478 0.0895 0.0911 0.0946 48.2 

30x40  0.2078 0.1712 0.0837 0.0848 0.0875 45.4 

30x50 0.1396 0.1475 0.0894 0.0861 0.0921 52.5 

30x60 0.0330 0.0541 0.0727 0.0742 0.0740 52.1 

 

We note that the highest 𝑇𝑃𝑅 value the models are indicated as bold in the Table 4. According to results, we 

observe that our proposed method has superior performance against EN modeling. It is clear that the performance 

of EN modeling depend on the 𝜆2 tuning parameter. How to choose the 𝜆2 tuning is an important problem in EN. 

In practice, it is difficult to assign which value of the 𝜆2  tuning parameter is appropriate. Often the 𝜆2 tuning 

parameter is fixed arbitrarily at the beginning. In the literature cross-validation (CV) (5-fold, or 10-fold) has been 

used which is a time consuming operation. To avoid time consuming operation, we used some grid values for 

𝜆2 tuning parameter. Otherhand, the computation of the HCEs covariance matrix and to perform HRM analysis 

with GA is fast in terms of the CPU time and it is not heavy. We should emphasize the values of CPU time in 
Table 4 are belong to whole simulation study. Compared to EN modeling, which is current and frequently used 

method, the HRM yields better results and it can be suggested as an alternative approach in variable selection for 

undersized sample data. 

 

4. Conclusion and Brief Discussion 

 

The variable selection is important as much as modeling. In the literature, GA has been proposed in different 

ways for variable selection in regression analysis [33-37]. But none of them is related to the solution of the 
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undersized sample problem, i.e. 𝑛 <<  𝑝. As mentioned before, if the number of the variable is equal to 𝑝, the 

number of subset of candidate model is 2𝑝 − 1. For example, if we have 𝑝 = 20, the number of the subset of 

candidate models are equal to 220 = 1048576. Therefore it is difficult to determine which model is the best among 

these models without an effective search tool such as GA.  

In this paper it was proposed a new andalternative approach to variable selection for undersized data by using 

HRM with HCEs and GA. We introduced the GA structure where ICOMPMiss used as a fitness function in order to 

select the best model from such a wide solution space.  To demonsrate the effectiveness and utility of the proposed 

method, the Monte Carlo simulation study was performed on correlated and undersized data sets. The results were 

compared with Elastic Net (EN) modeling. 

EN is a hybrid regression model between Ridge Regression (RR) and Least Absolute Shrinkage and Selection 

Operator (LASSO) [38]. It is claimed that it can be used for simultaneous modeling and variable selection in high 

dimensional or undersized data in [38]. However, in our simulation study ,we observed that EN modeling has poor 
performance to detect true variables when compared with our method. This has demonstrated the success of HCEs 

covariance matrices used in HRM analysis. 

Nowadays, data sets can have radically increasing dimensions. In order to cope with these data sets, it is 

necessary dimension reduction or feature selection or to increase the number of samples. It may not always be 

possible to reach the number of samples required to be able to perform classical statistical methods. Therefore the 

methods that work well are required even if the sample size is too small. According to the results, it can be 

recommended that the proposed approach based on HRM and GA can be used in the analysis of these data sets. 

 

Acknowledgments: I would like to thank to referees and the editor for their thoughtful and constructive 

suggestions that greatly improved the paper. I wish to thank to my supervisor Prof. Dr. Hamparsum Bozdogan 

from University of Tennessee since he introduced and guided to me in this interesting problem area and continued 
support.  

 

Abbreviations: The following abbreviations are used throughout the text:  

AIC   Akaike Information Criterion  

BCSE   Bozdogan’s Convex Sum Estimator  

BIC   Bayesian Information Criterion  

CAIC    Consistent Akaike Information Criterion 

CN   Condition Number  

CSE   Convex Sum Estimator  

EB   Empirical Bayes Estimator 

EN   Elastic Net  

GA   Genetic Algorithm  
HCEs   Hybrid Covariance Estimators  

HRM   Hybrid Regression Model  

HRM1   HRM model with MLE_STA_CSE covariance matrix 

HRM2   HRM model with MLE_STA_BCSE covariance matrix 

ICOMP   Information Complexity Criteria  

ICOMPMiss   Information Complexity Criterion under misspecification 

LASSO   Least Absolute Shrinkage and Selection Operator 

LW   Ledoit-Wolf Estimator  

MLE   Maximum Likelihood Estimator   

MLE_STA_BCSE Maximum Likelihood Stabilized Bozdogan’s Convex Sum Estimator  

MLE_STA_CSE  Maximum Likelihood Stabilized Convex Sum Estimator  
OAS   Oracle Approximation Estimator  

RR   Ridge Regression 

SRE   Stipulated Ridge Estimator 

SDE   Stipulated Diagonal Estimator  

TPR   True Positive Rate 
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