ABO₃-tipi Perovskitlerin Süper İletken Manyetik Histerezis Davranışları

Serkan GÜLDAL¹*

ÖZET: ABO₃-tipi perovskitlerin süperiletken manyetik histerezis özellikleri Kaneyoshi tarafından geliştirilen etkin alan teorisi ile incelendi. ABO₃’un merkez atomu (B) kabuk atomları (A ve O) ile antiferromanyetik etkileştiğinde tip II süperiletken davranışı gösteriyor. Böylece, B atomunun manyetik histerezis eğrisi iki zorlayıcı alan noktasına sahip oluyor (düşük zorlayıcı nokta; Hc₁ ve yüksek zorlayıcı nokta; Hc₂). B atomu H<Hc₁ olduğunda Meissner durumda, Hc₁<H<Hc₂ olduğunda vorteks (Abrikosov-Subnikov) ve H>Hc₂ olduğunda normal durumdadır. Sonuçlarımızda göre ABO₃-tipi perovskitlerin süperiletkenlik özellikleri kabuk (O) ve merkez (B) atomlarının antiferromanyetik etkileşmesinin bir sonucudur.

Anahtar Kelimeler: ABO₃-tipi perovskitler, meissner, vortex, süperiletken, etkin alan teorisi

ABSTRACT: Superconducting magnetic hysteresis properties of the ABO₃-type Perovskites are investigated by the effective field theory. It is found that the core (B) atom of the ABO₃ exhibits type II superconducting hysteresis behaviors when it interacts antiferromagnetically with the shell (A and O) atoms. Therefore, the magnetic hysteresis curve of B atoms in the ABO₃ has binary coercive field points (lower coercivity; Hc₁, and upper coercivity; Hc₂). B atoms have a Meissner state at H<Hc₁, vortex (or Abrikosov-Subnikov) state at Hc₁<H<Hc₂, and normal state at H>Hc₂. Our results indicate that the superconducting properties of the ABO₃-type Perovskites result from the antiferromagnetic interaction between the shell (O) and core (B) atoms.

Keywords: ABO₃-type perovskites, meissner, vortex, superconductivity, effective field theory

¹ Serkan GÜLDAL (Orcid ID: 0000-0002-4247-0786), Fizik Bölümü, Fen-Edebiyat Fakültesi, Adıyaman Üniversitesi, 02040 Adıyaman
*Sorumlu Yazar/Corresponding Author: Serkan GÜLDAL, e-mail: sguldal@adiyaman.edu.tr

Geliş tarihi / Received: 15-07-2019
Kabul tarihi / Accepted: 07-11-2019
INTRODUCTION

Perovskites are typically largely ionic compounds and have the general formula ABO$_3$, is definite ideal cubic perovskite structure, where the eight A cations are located at the cube corners, the B cation is located at the body center of the cube, and the six anions are located at the face centers (Dongxue and Liu, 2017; O. El Rhazouani et al., 2015; Kim et al., 2014; Lang et al., 2014a; Luo and Daoud, 2015; R. Mitchell, 2002; R. H. Mitchell et al., 2000; Pandu, 2014; Tolman, 2016). After discovering this kind of perovskites which have been investigated experimentally firstly after that theoretically. Experimentally, perovskites have been synthesized and characterized to find most useful applications such as solid oxide fuel cells (Ullmann et al., 2000), sensors (Moradi et al., 2018), lasers (Weber et al., 1971), solar cells (Assadi et al., 2018), and superconductors (Cava et al., 1988; Ihringer et al., 1991; Sampathkumar et al., 1994). On the other hand, contrary to experimental studies, theoretically, fewer studies were presented. Magnetic properties of perovskites were investigated by using the Monte Carlo method (O El Rhazouani et al., 2016; El Yadari et al., 2013; Labrim et al., 2015; Masrour et al., 2016; Ngantso et al., 2016; Slassi, 2017), the Density Functional Theory and Mean Field Approximation (Dang and Millis, 2013; Keskin et al., 2008; Keskin and Polat, 2009; Lamrani et al., 2013; Zhandun and Zinenko, 2016; Zhu et al., 2017), Effective Mass Model (Yu, 2016), Mean Field Approximation (Arejdal et al., 2015; Brey et al., 2006; O El Rhazouani et al., 2014), Effective Spin Model (Deviren et al., 2011; Sanyal and Majumdar, 2009; Şarlı et al., 2015), and Green Functions Techniques (Estrada et al., 2018).

In this work, we focus on the superconducting properties of the ABO$_3$-type Perovskites, and we investigate the origin of the superconducting properties that perovskites by using Effective Field Theory (Braga et al., 2016; Kantar, 2017; Şarlı and Keskin, 2019a, 2019b). In this study, antiferromagnetic interaction between the shell (A and O) and core (B) atoms.

Effective Field Theory (EFT), developed by Kaneyoshi (Kaneyoshi, 1993), is a successful method to obtain the superconducting properties (type II) of the magnetic systems (Şarlı and Keskin, 2019a). Such as, superconductor core effect of the body-centered orthorhombic nanolattice structure (Şarlı, 2015), Surface superconductivity in Ni$_{50}$Mn$_{36}$Sn$_{14}$ Heusler Alloy (Duran, 2018), superconducting phase diagram of the yttrium, barium, and YBa core in YBa$_2$Cu$_3$O$_{7-δ}$ (Keskin and Şarlı, 2018), effects of the copper and oxygen atoms of the CuO-plane on magnetic properties of the YBCO (Şarlı and Keskin, 2019b), coexistence of ferromagnetism and superconductivity in NiBi binary alloy (Şarlı and Keskin, 2019a), superconductivity-like phenomena in antiferrimagnetic endohedral fullerene with diluted magnetic surface (Padilha et al., 2013) and thermodynamic properties of copper-oxide superconductors (Kantar, 2017). In these studies, the superconducting properties (Meissner, vortex (or Subnikov and Abrikosov) and normal states) and superconducting magnetic hysteresis properties are successfully obtained by using EFT. However, superconductivity properties of Perovskites crystal system have not been investigated. Therefore, in this work, the superconductivity properties of the ABO$_3$-type Perovskites are investigated by using EFT.

MATERIAL AND METHOD

Since ABO$_3$ type perovskite is modeled and its EFT formulations are obtained as shown in Figure 1 (Dongxue and Liu, 2017; Lang et al., 2014b; Luo and Daoud, 2015; Pandu, 2014), we shall follow the same procedures as given by as follows. In this paper, we focus on the effects of the antiferromagnetic interactions between the shell (A and O) and core (B) atoms on the magnetic properties of the ABO$_3$ type perovskite and its components (A, B, and O). For this aim, the temperature and external magnetic
field dependence of the magnetizations of that system are calculated for $j_{AA} > 0$, $j_{AO} > 0$, $j_{AB} < 0$, $j_{OO} > 0$, $j_{OB} > 0$ (shell (A)/core (B) antiferromagnetism) and $j_{AA} > 0$, $j_{AO} > 0$, $j_{AB} > 0$, $j_{OO} > 0$, $j_{OB} < 0$ (shell (O)/core (B) antiferromagnetism).

\[\text{Hamiltonian;} \]
\[H_A = -j_{AA} \sum_{(A,A)} S_A^z S_A^z - j_{AO} \sum_{(A,O)} S_A^z S_O^z - j_{AB} \sum_{(A,B)} S_A^z S_B^z - j_{OO} \sum_{(O,O)} S_O^z S_O^z - j_{OB} \sum_{(O,B)} S_O^z S_B^z \]
\[- h \left(\sum_A S_A^x + \sum_B S_B^x + \sum_O S_O^x \right) \] \((1) \)

\[\text{Magnetizations;} \]
\[m_A = [\cosh(j_{AA} \mathcal{V}) + m_A \sinh(j_{AA} \mathcal{V})]^3 [\cosh(j_{AO} \mathcal{V}) + m_O \sinh(j_{AO} \mathcal{V})]^3 \]
\[[\cosh(j_{AB} \mathcal{V}) + m_B \sinh(j_{AB} \mathcal{V})]^4 F_{s-1/2}(x)|_{x=0}, \]
\[m_B = [\cosh(j_{AB} \mathcal{V}) + m_A \sinh(j_{AB} \mathcal{V})]^8 \]
\[[\cosh(j_{OB} \mathcal{V}) + m_O \sinh(j_{OB} \mathcal{V})]^6 F_{s-1/2}(x)|_{x=0} \] \((2) \)
\[m_O = [\cosh(j_{OO} \mathcal{V}) + m_O \sinh(j_{OO} \mathcal{V})]^{10} [\cosh(j_{OA} \mathcal{V}) + m_A \sinh(j_{OA} \mathcal{V})]^4 \]
\[[\cosh(j_{OB} \mathcal{V}) + m_B \sinh(j_{OB} \mathcal{V})]^4 F_{s-1/2}(x)|_{x=0}, \]

\textbf{Figure 1:} (Color online) ABO_3 type perovskite lattice

The Hamiltonian and magnetizations of the ABO_3 type perovskite are given by as follows:
In Equations 1. and 2, \(\nabla = \frac{\partial}{\partial x} \) is the differential operator and the function of \(F_{1/2}(x) \) is defined in the EFT within the Ising model for the spin-1/2 Ising particles as

\[
F_{1/2}(x) = \frac{1}{2} \tanh \left[\frac{1}{2} \beta (x + h) \right]
\]

(3)

In Equation 3., \(\beta = 1/k_B T_A \), \(k_B \) is the Boltzmann’s constant, \(T_A \) denotes the absolute temperature. We used the reduced temperature \((T = k_B T_A/J) \) and reduced applied field \((H = h/J) \) in all calculations. The total magnetization of ABO$_3$ type perovskite is given by as follows,

\[
M_{T_{ABO_3}} = \frac{1}{15} (8 m_A + m_B + 6 m_O)
\]

(4)

RESULTS AND DISCUSSION

In Figure 2.a), the temperature dependence of the magnetizations of the A, B, O, and total ABO$_3$ are obtained for the antiferromagnetic interaction between shell (A) and core (B) atoms \((j_{AA} > 0, j_{AB} < 0, j_{AO} > 0, j_{OO} > 0, j_{OB} > 0) \). The Curie temperature is at \(T_C = 1.83 \). The values of the magnetizations are \(m_A = m_B = m_C = M_{T_{ABO_3}} = 0.5 \) at \(T = 0 \) and they become zero at \(T = T_C \). Antiferromagnetic interaction \((j_{AB} < 0) \) between A-B atoms causes a decreasing in the magnetization curves of the A, B, and total ABO$_3$ according to that of O. The most decreasing occur in the B atom (the red line). On the other hand, in Figure 2b), for the antiferromagnetic interaction between shell (O) and core (B) atoms \((j_{AA} > 0, j_{AO} > 0, j_{AB} > 0, j_{OO} > 0, j_{OB} < 0) \), magnetization curve of the B is entirely in the negative values. The values of the magnetization of the total ABO$_3$ is obtained as \(M_{T_{ABO_3}} = 0.43333 \) at \(T = 0 \). One notes that the antiferromagnetism between O-B atoms has higher effects than that of the A-B atoms on the magnetizations of the ABO$_3$ and its components, especially in B atoms and total ABO$_3$.

![Figure 2](image_url)

Figure 2. (Color online) Magnetizations versus temperature in ABO$_3$ type perovskite lattice
Figure 3. (Color online) Magnetizations versus external magnetic field in ABO$_3$ type perovskite lattice with $(j_{AA}>0, j_{AO}>0, j_{AB}>0, j_{OO}>0, j_{OB}<0)$ at $T=1, 2, 3, \text{ and } 4$ respectively.

In Figure 3.a), .b), .c), and .d) the external field dependence of the magnetizations of the A, B, O and total ABO$_3$ are obtained for the antiferromagnetic interaction between shell (O) and core (B) atoms $(j_{AA}>0, j_{AO}>0, j_{AB}>0, j_{OO}>0, j_{OB}<0)$ at $T=1, 2, 3, \text{ and } 4$ respectively. The magnetic hysteresis curve of the B atom has two different coercive field point (binary coercivity) and it exhibits type II superconductivity behaviors whereas those of the A, O and total ABO$_3$ has one coercive field point (single coercivity) and they exhibit usual ferromagnetic hysteresis behaviors. Therefore, only M-H curves of the B atom has Meissner state at $H<Hc1$, vortex (or Subnikov and Abrikosov) state at $Hc1<H<Hc2$ and normal state at $H>Hc2$. Meissner state decays at $Tc=1.83$ and vortex (or Subnikov and Abrikosov) state decays at $Tv=4$. One notes that usual ferromagnetic hysteresis loop areas of the A, O and total ABO$_3$ disappear at Tc and type II superconducting magnetic hysteresis loop area of the B atoms disappears at Tv. Our type II superconducting magnetic hysteresis results of ABO$_3$ are in agreement with the theoretical results of the body-centered orthorhombic nanolattice structure (Şarlı, 2015), Ni$_{50}$Mn$_{36}$Sn$_{14}$ Heusler Alloy (Duran, 2018), yttrium, barium, copper1 and oxygen2, and YBa core of YBa$_2$Cu$_3$O$_{7-\delta}$ (Keskin and Şarlı, 2018; Şarlı and Keskin, 2019b) and coexistence of ferromagnetism and superconductivity in NiBi alloy (Şarlı and Keskin, 2019a), Superconductivity-like phenomena in antiferrimagnetic endohedral fullerene (Kantar, 2017).
CONCLUSION

Superconducting magnetic hysteresis properties (type II) of the ABO$_3$-type Perovskites are investigated by means of the effective field theory developed by Kaneyoshi. It is found that

i. The A, O and total ABO$_3$ have usual ferromagnetic hysteresis behaviors and they have one coercive field point (single coercivity).

ii. The B atom of the ABO$_3$ has usual type II superconducting magnetic hysteresis behaviors, and it has two different coercive field point (binary coercivity).

iii. We suggest that the superconducting properties of the ABO$_3$-type Perovskites result from the antiferromagnetic interaction between the shell (O) and core (B) atoms

ACKNOWLEDGMENTS

This work was supported by Grant No FEFMAP/2018-0003 from Adiyaman University of Research Project Coordination (ADYUBAP), Turkey.

REFERENCES

