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ABO3-tipi Perovskitlerin Süper iletken Manyetik Histerezis Davranışları 

Serkan GÜLDAL1* 

ÖZET: ABO3-tipi perovskitlerin süperiletken manyetik histerezis özellikleri Kaneyoshi tarafından 

geliştirilen etkin alan teorisi ile incelendi. ABO3’ün merkez atomu (B) kabuk atomları (A ve O) ile 

antiferromanyetik etkileştiğinde tip II süperiletken davranışı gösteriyor. Böylece, B atomunun manyetik 

histerezis eğrisi iki zorlayıcı alan noktasına sahip oluyor (düşük zorlayıcı nokta; Hc1 ve yüksek zorlayıcı 

nokta; Hc2). B atomu H<Hc1olduğunda Meissner durumu, Hc1<H<Hc2 olduğunda vorteks (Abrikosov-

Subnikov) ve H>Hc2 olduğunda normal durumdadır. Sonuçlarımıza göre ABO3-tipi perovskitlerin süper 

iletkenlik özellikleri kabuk (O) ve merkez (B) atomlarının antiferromanyetik etkileşmesinin bir 

sonucudur. 

Anahtar Kelimeler: ABO3-tipi perovskitler, meissner, vortex, süperiletken, etkin alan teorisi 

 Superconducting magnetic hysteresis behaviors in ABO3-type Perovskites 

ABSTRACT: Superconducting magnetic hysteresis properties of the ABO3-type Perovskites are 

investigated by the effective field theory. It is found that the core (B) atom of the ABO3 exhibits type II 

superconducting hysteresis behaviors when it interacts antiferromagnetically with the shell (A and O) 

atoms. Therefore, the magnetic hysteresis curve of B atoms in the ABO3 has binary coercive field points 

(lower coercivity; Hc1, and upper coercivity; Hc2). B atoms have a Meissner state at H<Hc1, vortex (or 

Abrikosov-Subnikov) state at Hc1<H<Hc2, and normal state at H>Hc2. Our results indicate that the 

superconducting properties of the ABO3-type Perovskites result from the antiferromagnetic interaction 

between the shell (O) and core (B) atoms. 
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INTRODUCTION 

Perovskites are typically largely ionic compounds and have the general formula ABO3, is definite 

ideal cubic perovskite structure, where the eight A cations are located at the cube corners, the B cation 

is located at the body center of the cube, and the six anions are located at the face centers (Dongxue and 

Liu, 2017; O. El Rhazouani et al., 2015; Kim et al., 2014; Lang et al., 2014a; Luo and Daoud, 2015; R. 

Mitchell, 2002; R. H. Mitchell et al., 2000; Pandu, 2014; Tolman, 2016). After discovering this kind of 

perovskites which have been investigated experimentally firstly after that theoretically. Experimentally, 

perovskites have been synthesized and characterized to find most useful applications such as solid oxide 

fuel cells (Ullmann et al., 2000), sensors (Moradi et al., 2018), lasers (Weber et al., 1971), solar cells 

(Assadi et al., 2018), and superconductors (Cava et al., 1988; Ihringer et al., 1991; Sampathkumar et al., 

1994). On the other hand, contrary to experimental studies, theoretically, fewer studies were presented. 

Magnetic properties of perovskites were investigated by using the Monte Carlo method (O El Rhazouani 

et al., 2016; El Yadari et al., 2013; Labrim et al., 2015; Masrour et al., 2016; Ngantso et al., 2016; Slassi, 

2017), the Density Functional Theory and Mean Field Approximation (Dang and Millis, 2013; Keskin 

et al., 2008; Keskin and Polat, 2009; Lamrani et al., 2013; Zhandun and Zinenko, 2016; Zhu et al., 2017), 

Effective Mass Model (Yu, 2016), Mean Field Approximation (Arejdal et al., 2015; Brey et al., 2006; O 

El Rhazouani et al., 2014), Effective Spin Model (Deviren et al., 2011; Sanyal and Majumdar, 2009; 

Şarlı et al., 2015), and Green Functions Techniques (Estrada et al., 2018). 

In this work, we focus on the superconducting properties of the ABO3-type Perovskites, and we 

investigate the origin of the superconducting properties that perovskites by using Effective Field Theory 

(Braga et al., 2016; Kantar, 2017; Şarlı and Keskin, 2019a, 2019b). In this study, antiferromagnetic 

interaction between the shell (A and O) and core (B) atoms. 

Effective Field Theory (EFT), developed by Kaneyoshi (Kaneyoshi, 1993), is a successful method 

to obtain the superconducting properties (type II) of the magnetic systems (Şarlı and Keskin, 2019a). 

Such as, superconductor core effect of the body-centered orthorhombic nanolattice structure (Şarlı, 

2015), Surface superconductivity in Ni50Mn36Sn14 Heusler Alloy (Duran, 2018), superconducting phase 

diagram of the yttrium, barium, and YBa core in YBa2Cu3O7–δ (Keskin and Şarlı, 2018), effects of the 

copper and oxygen atoms of the CuO-plane on magnetic properties of the YBCO (Şarlı and Keskin, 

2019b), coexistence of ferromagnetism and superconductivity in NiBi binary alloy (Şarlı and Keskin, 

2019a), superconductivity-like phenomena in antiferrimagnetic endohedral fullerene with diluted 

magnetic surface (Padilha et al., 2013) and thermodynamic properties of copper-oxide superconductors 

(Kantar, 2017). In these studies, the superconducting properties (Meissner, vortex (or Subnikov and 

Abrikosov) and normal states) and superconducting magnetic hysteresis properties are successfully 

obtained by using EFT. However, superconductivity properties of Perovskites crystal system have not 

been investigated. Therefore, in this work, the superconductivity properties of the ABO3-type 

Perovskites are investigated by using EFT. 

MATERIAL AND METHOD 

Since ABO3 type perovskite is modeled and its EFT formulations are obtained as shown in Figure 

1 (Dongxue and Liu, 2017; Lang et al., 2014b; Luo and Daoud, 2015; Pandu, 2014), we shall follow the 

same procedures as given by as follows.  In this paper, we focus on the effects of the antiferromagnetic 

interactions between the shell (A and O) and core (B) atoms on the magnetic properties of the ABO3 

type perovskite and its components (A, B, and O). For this aim, the temperature and external magnetic 
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field dependence of the magnetizations of that system are calculated for jAA>0, jAO>0, jAB<0, jOO>0, 

jOB>0 (shell (A)/core (B) antiferromagnetism) and jAA>0, jAO>0, jAB>0, jOO>0, jOB<0 (shell (O)/core (B) 

antiferromagnetism). 

. 

 

Figure 1: (Color online) ABO3 type perovskite lattice 

The Hamiltonian and magnetizations of the ABO3 type perovskite are given by as follows: 

Hamiltonian; 

𝐻𝐴 = −𝑗AA ∑ 𝑆𝐴
𝑧𝑆𝐴

𝑧 − 𝑗AO ∑ 𝑆𝐴
𝑧𝑆𝑂

𝑧

⟨A,O⟩⟨A,A⟩

− 𝑗AB ∑ 𝑆𝐴
𝑧𝑆𝐵

𝑧

⟨A,B⟩

− 𝑗OO ∑ 𝑆𝑂
𝑧𝑆𝑂

𝑧

⟨O,O⟩

− 𝑗OB ∑ 𝑆𝑂
𝑧𝑆𝐵

𝑧

⟨O,B⟩

− ℎ (∑ 𝑆𝐴
𝑧 + ∑ 𝑆𝐵

𝑧 + ∑ 𝑆𝑂
𝑧

𝑂𝐵𝐴

)                                                                                              (1) 

Magnetizations; 

𝑚𝐴 = [cosh(𝑗AA𝛻)+m𝐴sinh(𝑗AA𝛻)]3[cosh(𝑗AO𝛻)+m𝑂sinh(𝑗AO𝛻)]3 

            [cosh(𝑗AB𝛻)+m𝐵sinh(𝑗AB𝛻)]1𝐹s-1/2(𝑥)|
x=0

, 

𝑚𝐵 = [cosh(𝑗AB𝛻)+m𝐴sinh(𝑗AB𝛻)]8 

            [cosh(𝑗OB𝛻)+m𝑂sinh(𝑗OB𝛻)]6𝐹s-1/2(𝑥)|
x=0

                                                                                         (2) 

𝑚𝑂 = [cosh(𝑗OO𝛻)+m𝑂sinh(𝑗OO𝛻)]4[cosh(𝑗OA𝛻)+m𝐴sinh(𝑗OA𝛻)]4 

            [cosh(𝑗OB𝛻)+m𝐵sinh(𝑗OB𝛻)]1𝐹s-1/2(𝑥)|
x=0

, 
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In Equations 1. and 2, 𝛻 =
𝜕

𝜕𝑥
 is the differential operator and the function of 𝐹1/2(𝑥) is defined in 

the EFT within the Ising model for the spin-1/2 Ising particles as 

 

𝐹1/2(𝑥) =
1

2
tanh [

1

2
𝛽(x+h)]                                                                     (3) 

 

In Equation 3., β=1/kBTA, kB is the Boltzmann’s constant, TA denotes the absolute temperature. 

We used the reduced temperature (T=kBTA/J) and reduced applied field (H=h/J) in all calculations. The 

total magnetization of ABO3 type perovskite is given by as follows,
 

 

MTABO3
=

1

15
(8 m𝐴+m𝐵+6 m𝑂)                     (4) 

 

RESULTS AND DISCUSSION 

In Figure 2.a), the temperature dependence of the magnetizations of the A, B, O, and total ABO3 

are obtained for the antiferromagnetic interaction between shell (A) and core (B) atoms (jAA>0, jAO>0, 

jAB<0, jOO>0, jOB>0). The Curie temperature is at Tc=1.83. The values of the magnetizations are 

mA=mB=mC=MABO3=0.5 at T=0 and they become zero at T=Tc. Antiferromagnetic interaction 

(jAB<0) between A-B atoms causes a decreasing in the magnetization curves of the A, B, and total ABO3 

according to that of O. The most decreasing occur in the B atom (the red line). On the other hand, in 

Figure 2b), for the antiferromagnetic interaction between shell (O) and core (B) atoms (jAA>0, jAO>0, 

jAB>0, jOO>0, jOB<0), magnetization curve of the B is entirely in the negative values. The values of the 

magnetization of the total ABO3 is obtained as MABO3=0.43333 at T=0. One notes that the 

antiferromagnetism between O-B atoms has higher effects than that of the A-B atoms on the 

magnetizations of the ABO3 and its components, especially in B atoms and total ABO3. 

 

Figure 2. (Color online) Magnetizations versus temperature in ABO3 type perovskite lattice 
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Figure 3. (Color online) Magnetizations versus external magnetic field in ABO3 type perovskite lattice 

with (jAA>0, jAO>0, jAB>0, jOO>0, jOB<0) at T=1, 2, 3, and 4 respectively 

In Figure 3.a), .b), .c), and .d) the external field dependence of the magnetizations of the A, B, O 

and total ABO3 are obtained for the antiferromagnetic interaction between shell (O) and core (B) atoms 

(jAA>0, jAO>0, jAB>0, jOO>0, jOB<0) at T=1, 2, 3, and 4 respectively. The magnetic hysteresis curve of 

the B atom has two different coercive field point (binary coercivity) and it exhibits type II 

superconductivity behaviors whereas those of the A, O and total ABO3 has one coercive field point 

(single coercivity) and they exhibit usual ferromagnetic hysteresis behaviors. Therefore, only M-H 

curves of the B atom has Meissner state at H<Hc1, vortex (or Subnikov and Abrikosov) state at 

Hc1<H<Hc2 and normal state at H>Hc2. Meissner state decays at Tc=1.83 and vortex (or Subnikov and 

Abrikosov) state decays at Tv=4. One notes that usual ferromagnetic hysteresis loop areas of the A, O 

and total ABO3 disappear at Tc and type II superconducting magnetic hysteresis loop area of the B atoms 

disappears at Tv. Our type II superconducting magnetic hysteresis results of ABO3 are in agreement with 

the theoretical results of the body-centered orthorhombic nanolattice structure (Şarlı, 2015), 

Ni50Mn36Sn14 Heusler Alloy (Duran, 2018), yttrium, barium, copper1 and oxygen2, and YBa core of 

YBa2Cu3O7–δ (Keskin and Şarlı, 2018; Şarlı and Keskin, 2019b) and coexistence of ferromagnetism and 

superconductivity in NiBi alloy (Şarlı and Keskin, 2019a), Superconductivity-like phenomena in 

antiferrimagnetic endohedral fullerene (Kantar, 2017). 
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CONCLUSION 

Superconducting magnetic hysteresis properties (type II) of the ABO3-type Perovskites are 

investigated by means of the effective field theory developed by Kaneyoshi. It is found that 

i. The A, O and total ABO3 have usual ferromagnetic hysteresis behaviors and they have one 

coercive field point (single coercivity). 

ii. The B atom of the ABO3 has usual type II superconducting magnetic hysteresis behaviors, and 

it has two different coercive field point (binary coercivity). 

iii. We suggest that the superconducting properties of the ABO3-type Perovskites result from the 

antiferromagnetic interaction between the shell ( O) and core (B) atoms 
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