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On the Analysis of Secrecy Outage Probability Using Average Channel Capacity 

 

Ferkan YILMAZ *1 

 

Abstract 

In this article, we analyze the outage probability of physically secure wireless signal transmis-
sion in fading environments where both primary and eavesdropper channels are subject to gen-
eralized fading. We propose a novel approach using the average channel capacity of the primary 
channel and that of the eavesdropper channel to the outage probability of physically secure 
wireless signaling. 

Keywords: Average channel capacity, secrecy outage probability, performance analysis, phys-
ical layer security. 

 

 

1. INTRODUCTION 

In wireless communication systems, information 
transmissions are inherently inclined to eaves-
dropping due to the broadcast essence of wireless 
channels. In this context, with the compelling 
concern of providing secure wireless communica-
tions, physical layer security, as an alternative to 
conventional cryptographic approaches, becomes 
an important issue that has attracted so much at-
tention from theoreticians, practitioners, and re-
searchers in the literature. Further, it certainly 
takes advantage of the physical characteristics 
(such as fading, noise, and diversity) of radio links 
to sustain secure communications. Cutting-edge 
studies on physical-layer security [1]–[4] carried 
on a primary wiretap channel where a legitimate 
user (say Alice) communicates with the intended 
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receiver (say Bob) in the presence of an eaves-
dropper (say Eve), where all nodes are each 
equipped with one antenna. In this model, for the 
primary channel (from Alice to Bob), the maximal 
achievable rate without allowing Eve to obtain 
any information is termed secrecy capacity. In [1], 
Wyner showed that, even if Eve’s channel is 
worse than Bob’s one, it is possible to have non-
zero secrecy capacity. Wyner’s work was first ex-
tended in [2] to a non-degraded channel and then 
generalized in [3] to determine the secrecy capac-
ity for a wiretap channel with additive white 
Gaussian noise (AWGN). Also, in [4], secrecy 
outage probability (SOP), sometimes called se-
cure outage probability, was introduced as a se-
crecy performance metric over fading channels. 
In the literature, there are various researches and 
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studies concerning the analysis of the secrecy per-
formance in the single-input single-output (SISO) 
system where information is transmitted from Al-
ice to Bob while Eve over-hears it over fading 
channels [5]–[17]. To the best of our knowledge, 
all the studies available in the literature [1]–[17] 
accomplish the SOP analysis using the statistical 
characterization of signal-to-noise ratios (SNR) of 
wireless links, that is widely described with the 
aid of probability density function (PDF), cumu-
lative distribution function (CDF), moment-gen-
erating function (MGF), and higher-order mo-
ments.  

In this article, to achieve the SOP analysis, we 
propose a novel approach using average channel 
capacity (ACC) performance of wireless links ra-
ther than using the PDF, CDF, MGF, and higher-
order moments of their SNR distributions. In 
other words, without need the statistical charac-
terization of SNR distributions, we present how to 
obtain the SOP from the averaged statistics that 
are the ACC performances of the primary channel 
and the eavesdropper channel.  

The structure of this article is organized as fol-
lows. Section 2 describes the system model of in-
terest. Section 3 presents an exact analysis of SOP 
in terms of ACC performance. Section 4 provides 
the numerical results of our analysis, followed by 
the conclusion given in the last section. 

2. SYSTEM MODEL 

Let us consider two nodes, say Alice (transmitter) 
and Bob (receiver), that Alice transmits confiden-
tial information to Bob over a wireless channel 
within the presence of an eavesdropper, say Eve, 
that secretly observes their transmission signaling 
[1]. To be realistic, we consider a silent eaves-
dropping scenario where Alice does not have the 
channel state information (CSI) of the Alice−Eve 
wireless link. In this scenario, perfect security of 
transmission from Alice to Bob cannot be guaran-
teed [1]. The instantaneous secrecy capacity, i.e., 
the instantaneous capacity of the secrecy in the 
primary link between Alice and Bob, is simply de-
fined as [1]–[4] 

𝐶ௌ = max(𝐶஻ − 𝐶ா , 0), (1)

where 𝐶஻ = log(1 + 𝛾஻) and 𝐶ா = log(1 + 𝛾ா) 
denote the instantaneous channel capacity (CC) of 
the Alice-Bob and Alice-Eve wireless channels, 
respectively. Furthermore, 𝛾஻ and 𝛾ா denotes the 
instantaneous SNRs at Bob and Eve receivers, re-
spectively, and they are, without loss of genera-
lity, assumed to be mutually independent. In (1), 
max(𝑥, 𝑦) yields 𝑥 if 𝑥 ≥ 𝑦, or otherwise 𝑦.  

3. SECRECY OUTAGE PROBABILITY 

In accordance with Section 2, the ACC of primary 
channel and the ACC of eavesdropper channels 
are obtained as 𝐶௔௩௚

஻ (𝛾̅) = 𝔼[𝐶஻] and 𝐶௔௩௚
ா (𝛾̅) =

𝔼[𝐶ா], respectively, where 𝔼[⋅] denotes the ex-
pectation operator. With the aid of their defini-
tions, they are rewritten as  

𝐶௔௩௚
஻ (𝛾̅) = 𝔼[log(1 + 𝛾஻)], (2)

𝐶௔௩௚
ா (𝛾̅) = 𝔼[log(1 + 𝛾ா)], (3)

respectively, for an average SNR 𝛾̅, Thus, for a 
certain SNR threshold 𝛾௧௛ , their outage probabil-
ities (OPs), i.e., 𝑃௢௨௧

஻ (𝛾௧௛|𝛾̅) = Pr(𝛾஻ ≤ 𝛾௧௛) and 
𝑃௢௨௧

ா (𝛾௧௛|𝛾̅) = Pr(𝛾ா ≤ 𝛾௧௛) are respectively 

𝑃௢௨௧
஻ (𝛾௧௛; 𝛾̅) = 𝔼[𝜃(𝛾௧௛ − 𝛾஻)], (4)

𝑃௢௨௧
ா (𝛾௧௛; 𝛾̅) = 𝔼[𝜃(𝛾௧௛ − 𝛾ா)], (5)

where 𝜃(⋅) denotes the Heaviside’s theta function 
[18, Eq. (1.8.3)], [19, Eq. (14.05.07.0002.01)], 
that is defined as 

𝜃(𝐶௧௛ − 𝐶௦) = ቐ

1,       if 𝐶௧௛ > 𝐶௦,
1 2⁄ , if 𝐶௧௛ = 𝐶௦,
0,       if 𝐶௧௛ < 𝐶௦.

 (6)

In addition, the SOP is widely used as an indicator 
for that secure transmission from Alice to Bob 
cannot be guaranteed. For a certain threshold 𝐶௧௛, 
the SOP is defined as the probability of that the 
distribution of secrecy capacity is less than or 
equal to 𝐶௧௛, and it is written as  

𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) = Pr(𝐶௦ ≤ 𝐶௧௛), (7a)

                                    = 𝔼[𝜃(𝐶௧௛ − 𝐶௦)], (7b)
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where 𝛾̅஻ and 𝛾̅ா denotes the average SNRs of the 
Alice-Bob and Alice-Eve wireless channels, res-
pectively (i.e.,  𝛾̅஻ = 𝔼[𝛾஻] and 𝛾̅ா = 𝔼[𝛾ா]). Fur-
ther, as seen in (7a), the analysis of SOP, i.e., the 
analysis of 𝐶௢௨௧(𝐶௧௛; 𝛾̅஻, 𝛾̅ா) requires the statisti-
cal characterizations of both 𝛾஻ and 𝛾ா. In the 
evaluation of OP and SOP, Heaviside’s theta 
function 𝜃(𝑥 − 𝑦) exhibits a discontinuity at 𝑥 =
𝑦. This discontinuity prevents obtaining closed-
form results. It is therefore usually replaced by the 
limit representation of smooth and nonlinear 
functions [19, Eq. (14. 05.09.0001) and others 
therein]. However, we introduce in Theorem 1 an 
alternative exact form of 𝜃(𝑥 − 𝑦) which has not 
been reported in the literature so far. The novelty 
of this alternative form is being an exact expres-
sion obtained neither by the limit of a function nor 
a sequence of functions with convergence. 

Theorem 1. An exact and closed-form represen-
tation of 𝜃(𝑥 − 𝑦) is given by 

𝜃(𝑥 − 𝑦) =
1

𝜋
ℑ ൜log ൬1 −

𝑥

𝑦
൰ൠ, (8)

for 𝑥 ∈ ℝା and 𝑦 ∈ ℝା, where ℑ{⋅} yields the im-
aginary part of its argument.  

Proof: In accordance with [20, Theorem 5], the 
quasi-increasing property of 𝜃(𝑥 − 1) (i.e., 
𝜃(𝑥 − 1) ≥ 𝜃(𝑦 − 1) for 𝑥 ≥ 𝑦) allows a theo-
retical relation between 𝜃(𝑥 − 1) and log(1 + 𝑥). 
In the context of [20, Theorem 4], the Lamperti’s 
dilation spectrum (LDS) of log(1 + 𝑥) can be ob-
tained as  

𝐿(𝜔, 𝑥) = 𝔉ఒ൛𝔏ு,௫
ିଵ {log(1 + 𝑥)}(𝜆)ൟ(𝜔) (9a)

               = −𝑥ுା௜ఠΓ(𝐻 + 𝑖𝜔)Γ(−𝐻 − 𝑖𝜔) (9b)

for the Hurst’s exponent 0 < 𝐻 < 1, where 
𝔏ு,௫

ିଵ {⋅}(𝜆) denotes the inverse Laperti’s transfor-
mation defined in [20, Eq. (15)], and 𝔉ఒ{⋅}(𝜔) de-
notes the Fourier’s transform with respect to 𝜆 ∈
ℝା. Γ(⋅) is the Gamma function [21, Eq. (6.5.3)]. 
Similarly, the LDS of 𝜃(𝑥 − 1) can be derived as 

𝑇(𝜔, 𝑥) = 𝔉ఒ൛𝔏ு,௫
ିଵ {𝜃(𝑥 − 1)}(𝜆)ൟ(𝜔), (10a)

 = −𝑥ுା௜ఠ(𝐻 + 𝑖𝜔)ିଵ,               (10b)

for the Hurst’s exponent 0 < 𝐻 < ∞. Using [19, 
Eq. (06.05.16.0010.01)], the ratio of (10b) to (9b) 
is simplified to  

𝑇(𝜔, 𝑥)

𝐿(𝜔, 𝑥)
= −

1

𝜋
sin൫𝜋(𝐻 + 𝑖𝜔)൯, (11)

whose substitution into [19, Eq. (33)] yields  

𝑧(𝑢) = 𝔏ି(ுାଵ),ఒ ቄ𝑢ି(ுାଵ)ା௜ఠ ×  

 𝔉ఠ
ିଵ ቊ

𝑇(𝜔, 𝑥)

𝐿(𝜔, 𝑥)
ቋ (𝜆)ቋ (𝑢),  

(12a)

=
1

𝜋
ℑ ቊ

1

2𝜋𝑖
න 𝑢௦ିଵ𝑒௝గ௦𝑑𝑠

ିுା௜ஶ

ିுି௜ஶ

ቋ.       (12b)

Thus, referring to [19, Theorem 4], 𝜃(𝑥 − 1) can 
be rewritten in terms of log(1 + 𝑥), that is 
𝜃(𝑥 − 1) = ∫ z(𝑢) log(1 + 𝑢𝑥) 𝑑𝑢

ஶ

଴
, where put-

ting (8b) results in  

𝜃(𝑥 − 1) =
1

𝜋
ℑ ൜log(1 − 𝑥)ൠ , (13)

which is the first step of the proof. In the second 
step, with the aid of [19, (14.05.17.0001.01)], we 
can write 𝜃(𝑥 − 𝑦) = 𝜃(𝑥/𝑦 − 1), where insert-
ing (13) yields (8), which proves Theorem 1.         

With the results presented above, we show in the 
following that we need to have the next property 
of Heaviside’s theta function to achieve the SOP 
analysis of the system model defined in Section 2.  

Theorem 2. Let 𝑓(𝑥) be a continuous and mono-
tonic function over 𝑥 ∈ ℝା. If 𝑓(𝑥) is increasing 
with respect to 𝑥 (i.e., 𝜕𝑓(𝑥)/𝜕𝑥 ≥ 0), then  

𝜃(𝑥 − 𝑦) = 𝜃൫𝑓(𝑥) − 𝑓(𝑦)൯; (14)

if decreasing (i.e., 𝜕𝑓(𝑥)/𝜕𝑥 < 0), then 

𝜃(𝑥 − 𝑦) = 𝜃൫𝑓(𝑦) − 𝑓(𝑥)൯, (15)

for any 𝑥, 𝑦 ∈ ℝା. 

Proof: The proof is obvious using the property 
that Heaviside’s theta function is a quasi-mono-
tonically increasing function.                                        
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With the aid of Theorem 1 and Theorem 2, we can 
show how to obtain the SOP of the system model, 
defined in Section 2, in terms of the ACC of the 
primary channel and the ACC of the eavesdropper 
channel, especially without the need for the statis-
tical characterizations of the instantaneous SNRs 
𝛾஻ and 𝛾ா. Accordingly, we present this novel 
SOP analysis in the following theorem.  

Theorem 3. If the ACC of the primary channel 
and the ACC of the eavesdropper channel, i.e., 
𝐶௔௩௚

஻ (𝛾̅) and 𝐶௔௩௚
ா (𝛾̅) are known, then the SOP for 

a certain threshold 𝐶௧௛, i.e., 𝐶௢௨௧
ௌ (𝐶௧௛|𝛾̅஻, 𝛾̅ா) is 

given by 

𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) = 1 + 

1

𝜋ଶ
න ℑ ൜𝐶௔௩௚

஻ ൬−
𝛾̅஻

𝑒஼೟೓(1 + 𝑢) − 1
൰ൠ

ஶ

଴

× 

ℑ ൜
𝜕

𝜕𝑢
𝐶௔௩௚

ா ൬−
𝛾̅ா

𝑢
൰ൠ  𝑑𝑢,

(18)

where 𝛾̅஻ and 𝛾̅ா denote the average SNRs of the 
Alice-Bob and Alice-Eve channels, respectively. 

Proof: As explained before, the SOP is defined as 
the probability that the achievable secrecy rate is 
less than a given secrecy code rate which is non-
negative. With the aid of (1) and (7) and using 
𝐶ௌ = max(𝐶஻ − 𝐶ா , 0) = (𝐶஻ − 𝐶ா)𝜃(𝐶஻ − 𝐶ா), 
we rewrite the SOP as  

 𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) = 𝔼[𝜃(𝐶௧௛ − 𝐶ௌ)], (19a)

                = 𝔼[𝜃(𝐶௧௛ + 𝐶ா − 𝐶஻)],  (19b)

wherein substituting both 𝐶஻ = log(1 + 𝛾஻) and 
𝐶ா = log(1 + 𝛾ா) results in  

𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) = 

𝔼[𝜃(𝑒஼೟೓(1 + 𝛾ா) − 1 − 𝛾஻)].
(20)

where the expectation operator 𝔼[⋅] is achieved 
with respect to 𝛾஻ and 𝛾ா. Note that the OP of the 
primary channel is given by 𝑃௢௨௧

஻ (𝛾௧௛; 𝛾̅஻) =
𝔼[𝜃(𝛾௧௛ − 𝛾஻)]. Accordingly, and consequently, 
(19) is simplified to 

  𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) = 

𝔼[𝑃௢௨௧
஻ (𝑒஼೟೓(1 + 𝛾ா) − 1; 𝛾̅஻)].  

(21) 

If the PDF of 𝛾ா, i.e., 𝑝ఊಶ
(𝛾; 𝛾̅) is known and can 

be obtained as 𝑝ఊಶ
(𝛾; 𝛾̅) = 𝜕𝑃௢௨௧

ா (𝛾; 𝛾̅)/𝜕𝛾, then 
(21) can be readily computed as  

𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) = 

න 𝑃௢௨௧
஻ (𝑒஼೟೓(1 + 𝛾) − 1; 𝛾̅஻)

ஶ

଴

× 

 𝑝ఊಶ
(𝛾; 𝛾̅ா) 𝑑𝛾. 

(22a)

= න 𝑃௢௨௧
஻ (𝑒஼೟೓(1 + 𝛾) − 1; 𝛾̅஻) ×

ஶ

଴

 

൜
𝜕

𝜕𝛾
𝑃௢௨௧

ா (𝛾; 𝛾̅ா)ൠ 𝑑𝛾.

(22b)

In accordance with the benightment of [20] and 
applying Theorem 1 on (4), we can alternatively 
evaluate the OP of Alice-Bob channel as follows  

𝑃௢௨௧
஻ (𝛾௧௛; 𝛾̅஻) = 1 − 

1

𝜋
ℑ ൜𝔼 ൤log ൬1 −

𝛾஻

𝛾௧௛
൰൨ൠ,  

(23a)

                 = 1 −
1

𝜋
ℑ ൜𝐶௔௩௚

஻ ൬−
𝛾̅஻

𝛾௧௛
൰ൠ,        (23b)

It is worth mentioning that (23b) presents that the 
ACC of the primary (Alice-Bob) channel is suffi-
cient to obtain its OP performance. Similarly, the 
ACC of the eavesdropper (Alice-Eve) channel is 
also enough and sufficient to obtain its OP perfor-
mance, that is 

𝑃௢௨௧
ா (𝛾௧௛; 𝛾̅ா) = 1 − 

1

𝜋
ℑ ൜𝔼 ൤log ൬1 −

𝛾ா

𝛾௧௛
൰൨ൠ,

(24a)

 = 1 −
1

𝜋
ℑ ൜𝐶௔௩௚

ா ൬−
𝛾̅ா

𝛾௧௛
൰ൠ.     (24b)

Finally, replacing both (23b) and (24) into (22b) 
and performing simple algebraic manipulations 
yields (18), which proves Theorem 3.                        

The resulting finite-range integration in (18) can 
be evaluated very accurately with only a few func-
tion samples using the Gauss-Chebyshev quadra-
ture (GCQ) formula [22]. The computational per-
formance of our new expression present itself as 
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a powerful tool for SOP analysis under a myriad 
of fading scenarios. Additionally, we can accu-
rately estimate the SOP as in (25) on the top of the 
next page, which converges quickly, requiring 
only few terms for an accurate result. Moreover, 
the abscissas 𝑢௡ and weights 𝜔௡ can be given in 
closed form [22, Eq. (9)] as follows  

𝑢௡ = tan ൬
𝜋

4
cos ൬

2𝑛 − 1

2𝑁
𝜋൰ +

𝜋

4
൰,   (26a)

𝜔௡ =
𝜋ଶ sin ቀ

2𝑛 − 1
2𝑁

𝜋ቁ

4𝑁 cosଶ ቀ
𝜋
4

cos ቀ
2𝑛 − 1

2𝑁
𝜋ቁ +

𝜋
4

ቁ
, (26b)

respectively, where 𝑁 is the truncation chosen as 
𝑁 = 50 to reach a high accuracy in calculations. 

4. NUMERICAL RESULTS 

In this section, we provide simulation results to check 
and validate the accuracy and completeness of our 
SOP analysis, proposed in the previous section. From 
the system design point of view, it is beneficial to have 
a general distribution whose versatility seems the most 
appropriate for the statistical characterization of fad-
ing channels. The extended generalized-K (EGK) dis-
tribution was proposed in [23], [24] as a very general 
one whose special cases, including those given in [24, 
Table 1], are widely used in the literature. The signif-
icance of EGK distribution in describing various fad-
ing/shadowing environments, as well as performance 
evaluations, have been presented in [23], [24]. Assum-
ing the instantaneous SNR 𝛾஻ of the primary channel 
follows EGK distribution, we can write the PDF of 𝛾஻ 
as [24, Eq. (3)] 

𝑓ఊಳ
(𝛾; 𝑚, 𝑚௦, 𝜉, 𝜉௦) =

𝜉

Γ(𝑚௦)Γ(𝑚)
൬

𝛽௦𝛽

𝛾̅
൰

௠క

× 

𝛾௠కିଵ Γ ቆ𝑚௦ − 𝑚
𝜉

𝜉௦
, 0, ൬

𝛽௦𝛽

𝛾̅
൰

௠క

𝛾,
𝜉

𝜉௦
ቇ,

(27)

defined over 0 ≤ 𝛾 < ∞, wherein the parameters 𝑚  
(0.5 ≤ 𝑚 < ∞) and 𝜉 (0.5 ≤ 𝜉 < ∞) denote the fad-
ing figure and shaping factors, respectively, while 
𝑚ௌ (0.5 ≤ 𝑚ௌ < ∞) and 𝜉ௌ (0.5 ≤ 𝜉ௌ < ∞) denote 

the shadowing severity and shaping factors, respec-
tively. The parameter 𝛾̅ is the average power (i.e., 𝛾̅ =

𝔼[𝛾஻]). Furthermore, 𝛽 and 𝛽௦ are expressed as 𝛽 =
Γ(𝑚 + 1 𝜉⁄ )/Γ(𝑚) and 𝛽௦ = Γ(𝑚௦ + 1 𝜉௦⁄ )/Γ(𝑚௦), 
respectively, and Γ(𝛼, 𝑥, 𝑏, 𝛽) = ∫ 𝑟ఈିଵ exp൫−𝑟 −

ஶ

௫

𝑏𝑟ିఉ൯𝑑𝑟 is the extended incomplete Gamma function 
with parameters 𝛼, 𝑏, 𝛽 ∈ ℂ and 𝑥 ∈ ℝା [25, Eq. 
(6.2)]. With the aid of [23, Eq. (42)], [24, Eq. (14)], 
we can obtain the ACC of the primary channel as 

𝐶௔௩௚
஻ (𝛾̅) =

1

Γ(𝑚)Γ(𝑚௦)
× 

Hଶ,ସ
ସ,ଵ ൤

𝛽௦𝛽
𝛾̅ ฬ

(0,1), (1,1)

(𝑚, 1 𝜉⁄ ), (𝑚௦, 1 𝜉௦⁄ ), (0,1), (0,1)
൨,

(28)

where H௣,௤
௠,௡[⋅]  is the Fox’s H function [26], [27]. 

Setting the shaping factors 𝜉 = 𝜉௦ = 1 and then 
using [28, Eq. (8.3.21)], we readily reduce (28) to 
[23, Eq. (43)], [24, Eq. (15)] 

𝐶௔௩௚
஻ (𝛾̅) =

1

Γ(𝑚)Γ(𝑚௦)
Gଶ,ସ

ସ,ଵ ൤
𝑚𝑚௦

𝛾̅ ฬ
0,1

𝑚, 𝑚௦, 0,0
൨, (29)

where G௣,௤
௠,௡[⋅]  is the Meijer’s G function [28, Eq. 

(8.3.22)]. Setting the shaping and figure factors of 
shadowing as 𝜉௦ = 1 and as, 𝑚௦ → ∞ and using 
[21, Eq. (6.1.46)], we reduce (28) to the ACC of 
Nakagami-m fading channels, that is [29, Eq. (3)] 

𝐶௔௩௚
஻ (𝛾̅) =

1

Γ(𝑚)
Gଶ,ଷ

ଷ,ଵ ቂ
𝑚
𝛾̅

ቚ
0,1

𝑚, 0,0
ቃ. (30)

Similarly, assuming the instantaneous SNR 𝛾ா of 
the eavesdropper channel follows EGK distribu-
tion, we can write its ACC performance in accord-
ance with (28), that is 

𝐶௔௩௚
ா (𝛾̅) =

1

Γ(𝑛)Γ(𝑛௦)
× 

Hଶ,ସ
ସ,ଵ ൤

𝐵௦𝐵
𝛾̅ ฬ

(0,1), (1,1)

(𝑛, 1 𝜙⁄ ), (𝑛௦, 1 𝜙௦⁄ ), (0,1), (0,1)
൨,

(31)

where the parameters 𝑛, 𝑛௦, 𝜙, 𝜙௦, 𝐵, 𝐵௦ have the same 
meaning and definition of 𝑚, 𝑚௦, 𝜉, 𝜉௦, 𝛽, 𝛽

𝑠
, respec-

tively. The special cases of (31) are similar to that of 

𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) ≈ 1 +

1

𝜋ଶ
෍ 𝜔௡

ே

௡ୀଵ

ℑ ൜𝐶௔௩௚
஻ ൬−

𝛾̅஻

𝑒஼೟೓(1 + 𝑢௡) − 1
൰ൠ ℑ ൜

𝜕

𝜕𝑢௡
𝐶௔௩௚

ா ൬−
𝛾̅ா

𝑢௡
൰ൠ , 𝑑𝑢, (25) 
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(28) for certain values of 𝑛, 𝑛௦, 𝜙, 𝜙௦. With the aid of 
Theorem 3 using (28) and (31), we obtain the SOP for 
a certain rate threshold 𝐶௧௛ as follows  

𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) = 1 +

1

𝜋ଶ
× 

න ℑ ൜𝐶௔௩௚
஻ ൬−

𝛾̅஻

𝑒஼೟೓(1 + 𝑢) − 1
൰ൠ

ஶ

଴

× 

 ℑ ൜
𝜕

𝜕𝑢
𝐶௔௩௚

ா ൬−
𝛾̅ா

𝑢
൰ൠ  𝑑𝑢,

(32)

where, using [20, Theorem 9], ℑ൛𝐶௔௩௚
஻ (− 𝛾̅஻ 𝑢⁄ )ൟ and 

ℑ൛(𝜕 𝜕𝑢⁄ )𝐶௔௩௚
ா (− 𝛾̅ா 𝑢⁄ )ൟ are readily reduced to the 𝜋 

times of the complementary CDF of the SNR 𝛾ா of the 
eavesdropper channel [24, Eq. (14)] and the −𝜋 times 
of the PDF of the SNR 𝛾ா of the eavesdropper channel 
[23, Eq. (5)], respectively, that are  

ℑ ൜𝐶௔௩௚
஻ ൬−

𝛾̅

𝑢
൰ൠ = 𝜋 ൬1 −

1

Γ(𝑚)Γ(𝑚௦)
× 

Hଵ,ଷ
ଷ,଴ ൥

𝛽௦𝛽
𝛾̅

𝑢อ
(1,1)

ቀ𝑚,
1
𝜉

ቁ , ൬𝑚௦,
1
𝜉௦

൰ , (0,1)
൩൱, 

(33)

ℑ ൜
𝜕

𝜕𝑢
𝐶௔௩௚

ா ൬−
𝛾̅

𝑢
൰ൠ = −

𝜋

Γ(𝑛)Γ(𝑛௦) 𝑢
× 

H଴,ଶ
ଶ,଴ ቈ

𝐵௦𝐵
𝛾̅

𝑢ቤ

—

ቀ𝑛,
1
𝜙

ቁ , ቀ𝑛௦,
1

𝜙௦
ቁ቉, 

(34)

as expected, where – the empty set of parameters. Con-
sequently, substituting (33) and (34) into (32), we ob-
tain the SOP as (35) on the top of this page, whose 
numerical evaluations have been exactly calculated 
and compared with the simulation-based results for 
different fading environment parameters {𝑚, 𝑚௦, 𝜉, 𝜉௦ 
𝑛, 𝑛௦, 𝜙, 𝜙௦} in the Figure 1, wherein numerical and 
simulation-based results are in perfect agreement. Fur-
ther-more, in Figure 1, it is worth noticing the secrecy 
of the primary channel decreases when the SNR of the 
eavesdropper channel increases (i.e., when Eve gets 
closer to Alice). The other important observation is 

that the secrecy strictly depends on the SNR of the pri-
mary channel. In particular, the secrecy is always pos-
sible if and only if the SNR of the primary (Alice-Bob) 
channel is higher than that of the eavesdropper chan-
nel. In other words, in order to provide secrecy for the 
primary channel, Bob has to be spatially much closer 
to Alice than Eve does. 

In Figure 2, we investigate how the diversity or-
ders (fading figures) of the primary and eaves-
dropper channels, i.e., the number of antennas on 
Bob’s and Eve’s receivers affect the SOP perfor-
mance when these channels have the same aver-
age SNR (i.e., Bob and Eve are spatially in same 
distance to Alice). Within that context, we ob-
serve that the secrecy of the primary channel in-
creases when the number of antennas on Bob’s re-
ceiver increases. Of course, while the number of 
antennas on Eve’s receiver increases, the secrecy 
of the primary channel decreases. How-ever, the 
secrecy is more susceptible to the diversity order 
of the primary channel (i.e., the number of anten-
nas on Bob’s receiver) rather than that of the 
eavesdropper channel. 

5. CONCLUSION 

In this article, we provide a novel approach using ACC 
of primary and eavesdropper channels to achieve the 
SOP analysis in fading environments. Our analytical 
and closed-form results demonstrate that the ACC is 
enough and sufficient for SOP analysis. The analytical 
formulation of SOP analysis is illustrated for EGK 
fading environments, and accordingly some simula-
tions have been carried out. The results show that nu-
merical results and simulation results are in perfect 
agreement.  
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𝐶௢௨௧
ௌ (𝐶௧௛; 𝛾̅஻, 𝛾̅ா) =

1

Γ(𝑚)Γ(𝑚௦)Γ(𝑛)Γ(𝑛௦)
න

1

𝑢

ஶ

଴

 

Hଵ,ଷ
ଷ,଴ ൤

𝛽௦𝛽
𝛾̅

(𝑒஼೟೓(1 + 𝑢) − 1)ฬ
(1,1)

(𝑚, 1 𝜉⁄ ), (𝑚௦, 1 𝜉௦⁄ ), (0,1)
൨ 

× H଴,ଶ
ଶ,଴ ቂ

𝐵௦𝐵
𝛾̅

𝑢ቚ
—

(𝑛, 1 𝜙⁄ ), (𝑛௦, 1 𝜙௦⁄ )ቃ 𝑑𝑢, 

(35) 
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Figure 1. For the rate threshold 𝑪𝒕𝒉 = 𝟏 nats/sn/Hz , the SOP performance in EGK fading environments, where 
the parameters of the primary channel are 𝒎 = 𝒎𝒔 = 𝟐 and 𝝃 = 𝝃𝒔 = 𝟏, and the parameters of the eavesdropper 

channel are 𝒏 = 𝒏𝒔 = 𝟐 and 𝝓 = 𝝓𝒔 = 𝟏 
 

 

Figure 2. For the rate threshold 𝐶௧௛ = 1 nats/sn/Hz , the SOP performance in EGK fading environments, where 
the average SNRs of the primary and eavesdropper channels are the same (i.e., 𝛾஻ = 𝛾ா = 15 dB). Further, the 
other parameters are  𝑚௦ = 𝑛௦ = 2 and 𝜉 = 𝜉௦ = 𝜙 = 𝜙௦ = 1. 
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