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ABSTRACT

In this paper, we study some geometric properties of statistical manifold equipped with the
Riemannian Otto metric which is related to the L2-Wasserstein distance of optimal mass transport.
We construct some α-connections on such manifold and we prove that the proposed connections are
torsion-free and coincide with the Levi-Civita connection when α = 0. In addition, the exponentialy
families and the mixture families are shown to be respectively (1)-flat and (−1)-flat.
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1. Introduction

Information geometry started as the investigation of the differential geometric stucture of some set of
probability distributions which constitutes a statistical manifold. Since the seminal work of Rao [11] where
Fisher information geometry is viewed as a Riemannian metric on a space of probability distributions, it
became obvious that as differentiable manifold, a space of probability distributions can be equipped with
a multitude of Riemannian metrics that are not necessarily the Fisher metric. Considering the Riemannian
structure obtained by the Fisher information on a statistical manifold, Amari [2] defines a one-parameter
family of affine connections called α-connections. Hence α-connections have become key tools in information
geometry and have been widely investigated by several authors such as Gbaguidi et al. [7] who constructed a
family of α-connections on a Hilbert bundle of generalized statistical manifold.

In this paper we are interested in statistical manifold equipped with the Wasserstein metric which is
related to optimal transport. Kantorovich and Rubinstein [8] stated that the Wasserstein metric can be taken
as a reasonable distance on spaces of random variables or of probability distributions. However, explicit
calculations based on that metric seems to be somewhat difficult to perform. Lott [9] showed that the
Riemannian Otto metric related to Wasserstein metric makes the calculations on Wasserstein space easier. We
make use of the Otto metric to investigate the Wasserstein Riemannian geometry on statistical manifold.

Let M be a set of probability densities endowed with the Otto Riemannian metric. We construct on M a
family ∇(α) of torsion-free α-connections that is exactly the Levi-Civita connection onM when α = 0. We also
find out that the exponential families and the mixture families are respectively (1)-flat and (−1)-flat. The rest of
the paper is organized as follows: we recall some preliminaries on α-connections in section 2, and we present
useful results on Otto metric and Wasserstein metric in section 3. Finally, the main results are given in section
4.

2. Preliminary remarks on α-connections

For some integer d ≥ 1, let X be a non-empty subset of Rd andM be a family of probability distributions on
X . Each element of M, can be identified with θ = (θ1, · · · , θn) ∈ Θ a subset of Rn and the mapping θ 7→ pθ is
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injective.M is a C∞ differentiable manifold.

Example 2.1. X = R, n = 2, θ = (µ, σ), Θ = {(µ, σ) : µ ∈ R, σ ∈ R∗+}

p(x, θ) =
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
Put `(.; θ) = log p(., θ). ∂`(.;θ)∂θi for i = 1, · · · , n are the scores functions.

The tangent space>θ(M) can be identifed with >̃θ(M), the vector space spanned by ∂`(x;θ)
∂θi , and endowed with

the inner product 〈X̃, Ỹ 〉θ = Eθ[X̃Ỹ ]. The mapping∑
i

ai
∂

∂θi
7→
∑
i

ai
∂`(x; θ)

∂θi

defines an isometry between >θM and >̃θ(M), (see[12]).

Definition 2.1. The Fisher information metric

The Fisher information matrix ofM at θ is the n× n matrix G(θ) = (g̃ij(θ)) defined by :

g̃ij(θ) := Eθ[∂i`(X, θ)∂j`(X, θ)] =

∫
X
∂i`(x, θ)∂j`(x, θ)p(x; θ)dx

where ∂i := ∂
∂θi

and `(x, θ) = log p(x; θ). In particular, when n = 1, we call this the Fisher information.
The inner product of the natural basis of the coordinate system (θ1, · · · , θn)

〈∂i, ∂j〉 = g̃ij

uniquely determines a Riemannian metric g̃ = 〈·, ·〉 such that for all θ ∈ Θ, and for all X,Y ∈ >θM; g̃θ(X,Y ) =
〈X,Y 〉θ = Eθ[(X`)(Y `)]. g̃ is called Fisher metric or alternatively, the information metric.

Definition 2.2. An affine connection ∇ on a differentiable manifoldM is a mapping

∇ : X (M)×X (M)→ X (M)

which is denoted by (X,Y )→ ∇XY and which satisfies the following properties:

• ∇fX+gY Z = f∇XZ + g∇Y Z
• ∇X(Y + Z) = ∇XY +∇XZ
• ∇X(fY ) = f∇XY +X(f)Y in which X,Y, Z ∈ X (M) and f, g ∈ C∞(M).

Theorem 2.1. [6] Given a Riemannian manifold (M, g), there exists a unique affine connection ∇ onM satisfing the
conditions:

• ∇ is symmetric.
• ∇ is compatible with the Riemannian metric g.

This affine connection is the Levi-Civita connection on the manifold (M, g).

In a coordinate system (U, θ), the function
◦
Γ
k

ij defined on U by ∇∂i∂j =
∑

k Γkij∂k are called the Christoffel
symbol of the the Levi-Civita connection and we have

◦
Γ
k

ij =
1

2

(
∂gjm
∂θi

+
∂gmi
∂θj

− ∂gij
∂θm

)
gmk. (2.1)

Amari[2] considers the function Γ
(α)
ij,k which maps each point θ to the following value:(

Γ
(α)
ij,k

)
θ

:= Eθ
[(
∂i∂j`(X, θ) +

1− α
2

∂i`(X, θ)∂j`(X, θ)

)
(∂k`(X, θ))

]
where α is some arbitrary real number. The α-connection ∇(α),which is an affine connection, is defined by

〈∇(α)
∂i
∂j , ∂k〉 = Γ

(α)
ij,k,

where g = 〈·, ·〉 is the Fisher metric and ∇(α)
∂i
∂j is the α covariant derivative of ∂j in the direction of ∂i.

Next, we recall some important results on the Otto metric which is a Riemannian metric on the Wasserstein
space.
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3. Otto metric

3.1. Wasserstein metric

Let (X , µ) and (Y, ν) be two probability spaces. A coupling of (µ, ν) is a random vector (X,Y ) such that the
law of X is µ and the law of Y is ν. By abuse of language, the law of (X,Y ) is also called a coupling of (µ, ν).
We denote by Π(µ, ν) the set of coupling of (µ, ν).

Definition 3.1. Let X be a subset of Rn, n ∈ N∗ and let p ∈ [1;∞[. For any two probability measures µ, ν on X ,
the Wasserstein distance of order p between µ and ν is defined by:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X
‖x− y‖pdπ(x, y)

)1/p

. (3.1)

Definition 3.2. Let P (X ) be the set of probability measures on X . The Wasserstein space of order p, p ∈ [1,∞[
is defined as

Pp(X ) =

{
µ ∈ P (X );

∫
X
‖x‖pdµ(x) < +∞

}
. (3.2)

Wp defines a (finite) distance on Pp(X ). For more details on Wasserstein space see [13].

3.2. Otto metric

We consider an n-dimensional regular statistical manifoldM = {p(·; θ); θ = (θ1, · · · , θn) ∈ Θ} where Θ is an
open subset of Rn and the mapping θ 7→ pθ is injective.

Motivated by the study of a class of partial differential equation, in [10], Otto considered an inner product
defined on smooth functions of the θ-fiber, >θM of the tangent bundle, as

(u, v) 7→
∫
X
∂xu(x) · ∂xv(x)p(x; θ)dx (3.3)

where ∂x is the gradient function. Then, this inner produit defines onM a Riemannian metric so called Otto
metric g, with coordinate functions:

gij =

∫
X
∂x
∂`(x; θ)

∂θi
· ∂x

∂`(x; θ)

∂θj
p(x; θ)dx = E

(
∂θi` · ∂θj `

)
. (3.4)

The following theorem states that the Riemannian Otto metric is related to the wasserstein metric.

Theorem 3.1. [9] Let P∞(χ) =
{
f : f ∈ C∞(χ), f > 0,

∫
χ
f(x)d(x) = 1

}
. If c : [0, 1]→ P∞(M) is a smooth

immersed curve then its length L(c) in the Wasserstein space P2(χ) satisfies

L(c) =

∫ 1

0

〈c′(t), c′(t)〉 12 dt

where

L(c) = sup
j∈N

sup
0=t0≤t1≤···≤tJ=1

J∑
j=1

W2(c(tj−1), c(tj)).

Proposition 3.1. Let M = {p(·; θ); θ = (θ1, · · · , θn) ∈ Θ} be a statistical manifold endowed with the Otto metric g
(3.4). For all i, j, k ∈ {1, · · · , n}

∂gjk
∂θi

+
∂gki
∂θj

− ∂gij
∂θk

= Eθ [2∂x∂ij`∂x∂k`

+∂x∂j`∂x∂k`∂i`+ ∂x∂k`∂x∂i`∂j`

−∂x∂j`∂x∂i`∂k`] . (3.5)

Proof. Taking the partial derivative of gij in Equation (3.4) with respect to θi, θj , θk yields the result.
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4. α-connection related to Otto metric

4.1. Construction of our α-connection

In the remainder, we consider an n-dimensional statistical manifoldM = {p(·; θ); θ = (θ1, · · · , θn) ∈ Θ}where
Θ is a open subset of Rn and the mapping θ 7→ pθ is injective. We endowedMwith the Riemannian Otto metric
g which is related to Wasserstein distance. For any α ∈ R, i, j, k ∈ {1, · · · , n}, we introduce the function Γ

(α)
ij,k

which maps each point θ to the following value:

Γ
(α)
ij,k = Eθ [∂x∂ij`∂x∂k`] +

1− α
2
>αij,k (4.1)

where >αij,k is a tensor defined by :

>αij,k = Eθ [∂x∂j`∂x∂k`∂i`] + Eθ [∂x∂k`∂x∂i`∂j`]− (1 + α)Eθ [∂x∂j`∂x∂i`∂k`] . (4.2)

Let φ be the parameter of dimension n of some parametrization of M, alternative to that indicated by θ.
Coordinates of φ will be denoted by φ = (φ1, · · · , φn), and we write ∂φu for ∂

∂φu
and θi/u = ∂θi

∂φu
.

Lemma 4.1. For any change of coordinate system >αij,k satisfies the equation >αuv,w = >αij,kθi/uθj/vφw/k.

Proof. Using (4.2), we have

>αij,kθi/uθj/vφw/k = Eθ [∂x∂j`∂x∂k`∂u`] θj/vφw/k

+Eθ [∂x∂k`∂x∂i`∂v`] θi/uφw/k

−(1 + α)Eθ [∂x∂j`∂x∂i`∂w`] θi/uθj/v

=: I1 + I2 − (1 + α)I3. (4.3)

We have

I1 = Eθ [∂x∂j`∂x∂k`∂u`] θj/vφw/k

= Eθ [∂x∂v`∂x∂w`∂u`]

+Eθ [∂x∂v`∂u`∂w`]
(
∂xθj/v

)
θj/v

+Eθ [∂x∂w`∂u`∂v`]
(
∂xφw/k

)
φw/k

+Eθ [∂v`∂u`∂w`]
(
∂xθj/v

) (
∂xφw/k

)
θj/vφw/k

= Eθ [∂x∂v`∂x∂w`∂u`] (4.4)

because ∂xθi/u = ∂xθj/v = ∂xφw/k = 0. Similarly, we deduce

I2 = Eθ [∂x∂w`∂x∂u`∂v`]

I3 = Eθ [∂x∂v`∂x∂u`∂w`] .

Then >αuv,w = >αij,kθi/uθj/vφw/k.

The following result based on the transformation law (see [1]) gives a characterization of affine connections
on a Riemannian manifold.

Lemma 4.2. On Riemannian manifold (M, g) :

(a) all affine connection ∇ with connection symbol Γkij (i.e.∇∂i∂j = Γkij∂k) are of the form

Γkij =
◦
Γ
k

ij + Skij (4.5)

where Sij,k satisfied

Swuv = Skijθi/uθj/vφw/k

(b) any set of smooth function Γij,k onM which satisfies the law (4.5) constitutes the connection symbols of an affine
connection onM.
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Proof. Let’s first prove (a). Let ∇ an affine connection on M . Then

Γwuv∂w = ∇ ∂
∂φu

∂

∂φv
= ∇ ∂θi

∂φu
∂

∂θi

(
∂θj

∂φv
∂

∂θj

)
=

∂θi

∂φu
∇ ∂

∂θi

(
∂θj

∂φv
∂

∂θj

)
=

∂θi

∂φu

[
∂θj

∂φv
∇ ∂

∂θi

∂

∂θj
+

∂

∂θi

(
∂θj

∂φv

)
∂

∂θj

]
=

∂θi

∂φu

[
∂θj

∂φv
Γkij

∂

∂θk
+

∂

∂θi

(
∂θj

∂φv

)
∂

∂θj

]
= Γkij

∂θi

∂φu
∂θj

∂φv
∂φw

∂θk
∂

∂φw
+

∂2θj

∂φu∂φv
∂

∂θj

= Γkij
∂θi

∂φu
∂θj

∂φv
∂φw

∂θk
∂

∂φw
+

∂2θk

∂φu∂φv
∂φw

∂θk
∂

∂φw

=

[
Γkij

∂θi

∂φu
∂θj

∂φv
∂φw

∂θk
+

∂2θw

∂φu∂φv
∂φw

∂θk

]
∂

∂φw
.

Then

Γwuv(φ) = Γkij(θ)
∂θi

∂φu
∂θj

∂φv
∂φw

∂θk
+

∂2θw

∂φu∂φv
∂φw

∂θk
.

It is well known that the Christofell symbol satisfies the transformation law:
◦
Γ
w

uv(φ) =
◦
Γ
k

ij(θ)
∂θi

∂φu
∂θj

∂φv
∂φw

∂θk
+

∂2θw

∂φu∂φv (see [3]). One has

Γwuv(φ)−
◦
Γ
w

uv(φ) =

(
Γkij(θ)−

◦
Γ
k

ij(θ)

)
∂θi

∂φu
∂θj

∂φv
∂φw

∂θk
.

The last equation shows that

Γkij =
◦
Γ
k

ij + Skij

where Skij satisfies

Swuv = Skijθi/uθj/vφw/k

To the proof of (b), one shows that the following map:

∇ : X (M)×X (M)→ X (M)
(X = xi∂i, Y = yj∂j) 7→ xiyjΓkij∂k + xi∂i(y

j)∂j

is an affine connection onM.

Theorem 4.1. LetM = {p(·; θ); θ = (θ1, · · · , θn) ∈ Θ} be a statistical manifold endowed with the Otto metric g (3.4).
There exists an affine connection ∇(α) : X (M)×X (M)→ X (M) defined by :

g
(
∇(α)
∂i
∂j , ∂j

)
= Γ

(α)
ij,k. (4.6)

Proof. Set Γ
(α),k
i,j = Γ

(α)
ij,mg

mk. By using Lemma 4.2, Lemma 4.1 and Proposition 3.1

∇(α) : X (M)×X (M)→ X (M)

(X = xi∂i, Y = yj∂j) 7→ xiyjΓ
(α),k
ij ∂k + xi∂i(y

j)∂j
(4.7)

is an affine connection onM. The proof is completed.

Now, we prove that this α-connection is torsion-free and for α = 0 this connection is the Levi-Civita
connection.

Theorem 4.2. 1. ∇(α) is a torsion-free affine connection.
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2. The 0-connection is the Levi-Civita connection with respect to the Otto metric.

Proof. 1. We have

∇(α)
∂i
∂j −∇(α)

∂j
∂i = Γ

(α),k
ij ∂k − Γ

(α),k
ji ∂k

= Γ
(α),k
ij ∂k − Γ

(α),k
ij ∂k

= 0

where Γ
(α),k
ij = Γ

(α)
ij,mg

mk.

2. Taking the partial derivative of gij in Equation (3.4) with respect to θk, we obtain ∂kgij = Γ
(0)
ij,k + Γ

(0)
kj,i.

4.2. Flatness of exponential and mixture families

Let’s introduce now the notion of exponential family. In general, if an n-dimensional modelM = {p(·; θ), θ ∈
Θ} can be expressed in terms of functions {C,F1, · · · , Fn} on X and a function ψ on Θ such that

p(x; θ) = exp

[
C(x) +

n∑
i=1

θiFi(x)− ψ(θ)

]
, (4.8)

then we say thatM is an exponential family, and that the [θi] are its natural or its canonical parameters. Next,
let’s consider the case where an n-dimensional modelM can be expressed in terms of functions {C,F1, · · · , Fn}
on X as

p(x; θ) = C(x) +

n∑
i=1

θiFi(x), (4.9)

then we say thatM is a mixture family, and that the [θi] are its mixture parameters.
The following theorem gives the flatness result of exponential family.

Theorem 4.3. An exponential family

M =

{
p(·; θ) = exp

(
C(·) +

n∑
i=1

θiFi(·)− ψ(θ)

)
, θ ∈ Θ

}
equipped with Otto metric is (1)-flat.

Proof. Let p(·; θ) ∈MwithM the exponential family. We have p(x; θ) = exp
{
C(x) +

∑n
i=1 θ

iFi(x)− ψ(θ)
}
.One

has

`(x) = C(x) +

n∑
i=1

θiFi(x)− ψ(θ)

Then

∂i`(x) = Fi(x)− ∂iψ(θ); ∂ij`(x) = −∂ijψ(θ); ∂x∂ij`(x) = 0.

Thus

Γ
(1)
ij,k = −∂x∂ijψ(θ) · Eθ [∂x∂kl] = 0.

This completes the proof.

Similarly, we state the flatness for a mixture family.

Theorem 4.4. A mixture familly

M =

{
p(·; θ) = C(·) +

n∑
i=1

θiFi(·)− ψ(θ), θ ∈ Θ

}
equiped with Otto metric is (−1)-flat.
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Proof. Let p(·; θ) ∈MwithM the mixture family. We have p(x; θ) = C(x) +
∑n

i=1 θ
iFi(x). One has

`(x) = log p(x; θ).

Then

∂i`(x) =
Fj(x)

p(x; θ)
; ∂ij`(x) = −Fi(x)Fj(x)

p2(x; θ)
,

∂x∂ij` = −∂x[∂i`∂j`]

= −∂x∂i`∂j`− ∂i`∂x∂j`.

Thus

∂x∂ij`(x) · ∂x∂k`(x) = −∂x∂i` · ∂x∂k`(x)∂j`− ∂x∂j`∂x∂k`(x)∂i`(x). (4.10)

Using the previous equations and the definition of Γ (α)
ij,k (4.1) we have

Γ
(−1)
ij,k = 0.

We conclude that the mixture family is (−1)-flat.
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