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ABSTRACT

The original “Steiner point” introduced in 1838 by the Swiss mathematician Jakob Steiner (1796-
1863), also known as the “Steiner curvature centroid”, is the geometric centroid of the system
obtained by placing a mass equal to the magnitude of the exterior angle at each vertex of a triangle.
Steiner points have been studied and applied to networks, combinatorics, computational geometry
and even in game theory.
In this article, we extend the notion of Steiner points to the notion of g-Steiner points for
bounded Euclidean submanifolds with arbitrary codimension. In this article, we also introduce the
notions of co-Steiner and normal points for bounded Euclidean submanifolds. We prove several
fundamental properties for such points. Furthermore, we establish some links between g-Steiner,
co-Steiner and normal points.
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1. Introduction

The name of "Steiner point" was named after Swiss mathematician Jakob Steiner (1796-1863). The Steiner
point, also known as the Steiner curvature centroid, is originally defined to be the geometric centroid of the
system obtained by placing a mass equal to the magnitude of the exterior angle at each vertex of a triangle (cf.
[19, 20]). Since then Steiner points have been studied and applied to networks, combinatorics, computational
geometry and game theory (cf. e.g., [12, 13, 15, 16, 17]).

Throughout this article, by a bounded manifold we mean a compact manifold with or without smooth
boundary. By a closed manifold we mean a bounded manifold without boundary.

For an even-dimensional convex closed hypersurface Mn in a Euclidean (n+ 1)-space En+1, H. Flanders
proved in [11] that the Steiner point of Mn can be defined as

s(Mn) =
1

cn

∫
p∈Mn

xK(p)dv, (1.1)

where x denotes the position vector field of Mn in En+1, dv is the volume element of Mn, and K(p) denotes the
Gauss-Kronecker curvature of Mn at a point p ∈Mn.

It is known that the Steiner point defined by (1.1) satisfies the following properties (cf. [17, 18]):

• s(aMn) = as(Mn) for any similar transformation a;
• s(Mn + c) = s(Mn) + c for a constant vector c ∈ En+1;
• s(Mn) is a continuous function of Mn;
• If dimMn is positive, then s(Mn) is a relative interior point of Mn.

In this article, we extend the notion of Steiner points to the notion of g-Steiner points for bounded Euclidean
submanifolds with arbitrary codimension. We also introduce the notions of co-Steiner and normal points for
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bounded Euclidean submanifolds via the notion of G-total curvatures introduced in [4, 7]. In this article, we
also prove several fundamental properties for such points. Furthermore, we establish some links between
g-Steiner, co-Steiner and normal points.

2. Preliminaries

In this article, we follow the notations from [7, 8, 9, 10].
Let Mn be a bounded manifold of dimension n and let ϕ : Mn → Em be an immersion of Mn into an oriented

Euclidean space Em of dimension m. By a frame {p, e1, . . . , em} in the space Em, we mean a point p ∈ Em
together with an ordered set of mutually perpendicular unit vectors e1, . . . , em whose orientation is coherent
with that of the Euclidean space Em. In the following, we shall identify ei with its image ϕ∗(ei) under the
differential map ϕ∗ of the immersion ϕ.

Let F(Em) be the set of all frames on the Euclidean m-space space Em. We let F(Mn) denote the set of all
orthonormal frames in Mn (with respect to the induced metric on Mn) such that e1, . . . , en are tangent to Mn

and hence en+1, . . . , em are normal to Mn.
Let us denote by B1(ϕ) the bundle space of unit normal vectors of ϕ(Mn) so that a point in B1(ϕ) is a pair

(p, e), where e is a unit normal vector of Mn at ϕ(p). Then B1(ϕ) forms a principal bundle of (m− n− 1)-
dimensional unit-spheres Sm−n−1

p at p ∈Mn. Clearly, B1(ϕ) is a manifold of dimension m− 1. Let B(ϕ) denote
the set consists of all b = (p, e1, . . . , em) such that (p, e1, . . . , em) ∈ F(Mn) and (ϕ(p), e1, . . . , em) ∈ F(Em). Then
the natural projection B(ϕ)→Mn can be regarded as a principal bundle with fiber O(n)× SO(m− n), and
ϕ̃ : B(ϕ)→ F(Em) is naturally defined by ϕ̃(b) = (ϕ(p), e1, . . . , em).

To avoid confusion, we shall use Einstein’s convention on summation and also use the following ranges of
indices:

1 ≤ i, j, k, . . . ≤ n; n+ 1 ≤ r, s, t, . . . ≤ m; A,B,C . . . , . . . ≤ m

throughout this article, unless otherwise stated.
On F(Em), we introduce the 1-forms θA, θBA defined by

dp =
∑

θAeA, deA =
∑

θBAeB , θBA = −θAB . (2.1)

Since d2 = 0, it follows from (2.1) that

dθA =
∑

θB ∧ θAB , dθAB = −
∑

θAC ∧ θCB , (2.2)

where ∧ denotes the exterior product.
Let ωA and ωAB denote the restrictions of the 1-forms θA and θAA to Mn via the immersion ϕ. Then we have

ωr = 0. Thus, we find from (2.1) and (2.2) that

dϕ =
∑

θiei, dem = −
m−1∑
A=1

ωmA eA, (2.3)

dωi =
∑

ωj ∧ ωij , dωij = −
∑

ωik ∧ ωkj +
∑
r

ωri ∧ ωrj , (2.4)

It was well-known that ω1, . . . , ωn are linearly independent 1-forms on Mn and the volume element of Mn is
given by dv = ω1 ∧ . . . ∧ ωn.

Since 0 = dωr =
∑
ωi ∧ ωsi , Cartan’s lemma implies that

ωri =
∑

hrijω
j , hrij = hrji, (2.5)

where hrij are called the coefficients of the second fundamental form h. The eigenvalues κ1(p, er), . . . , κn(p, er)
of the symmetric matrix (hrij) via the second fundamental form are called the principal curvatures of Mn at a
point (p, er) ∈ B1(ϕ).

From (2.4) and (2.5) we obtain

dωij =
∑

ωki ∧ ωkj +
∑
r,k,`

(hrikh
r
j` − hri`hrjk)ωk ∧ ω`, (2.6)
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The `-th mean curvature K`(p, er) at (p, er) is defined by the elementary symmetric functions such that(
n

`

)
K`(p, er) =

∑
κ1(p, er) · · ·κ`(p, er), ` = 1, . . . , n, (2.7)

where
(
n
`

)
= n!/(`!(n− `)!) denotes the binomial coefficients (cf. [1, 8, 9, 10, 14]). In particular, the n-th mean

curvature Kn(p, e) is well-known as the Lipschitz-Killing curvature at (p, e).
Consider the principal bundle B1(ϕ)→Mn with fiber Sm−n−1

p . Then

dσ = ωmn+1 ∧ · · · ∧ ωmm−1

is a differential form of degree (m− n− 1) on B1(ϕ) such that its restriction to the fiber Sm−n−1
p of B1(ϕ) at

a point p ∈Mn is the volume element of Sm−n−1
p . Therefore, dv ∧ dσ is the volume element of the principal

bundle B1(ϕ) (cf. [5, 10]).
Also, it follows from (2.5) and (2.7) that we have

ωm1 ∧ · · · ∧ ωmn = Kn(p, em)dv. (2.8)

Note that, for a hypersurfaceMn in En+1, the fiber S0
p at a point p ∈Mn consists of two unit vectors at p; namely

the unit outward normal vector and unit inner normal vector at ϕ(p). Also, note that the `-th mean curvature
satisfies

K`(p,−e) = (−1)`K`(p, e) (2.9)

for ` = 0, 1, . . . , n.

3. G-total curvatures, g-Steiner, co-Steiner and normal points

Now, we recall the notion of G-total curvatures from [4, 7]. For a given immersion ϕ : Mn → Em of a bounded
n-manifoldMn into Em, let η : B1(ϕ)→ Er be a Er-valued function on the principal bundleB1(ϕ). In particular,
if r = 1, then η is nothing but a real-value function on B1(ϕ).

For ` ∈ {0, 1, 2, . . .} and k ≥ 0, the integral

G`(ϕ, p, η, k) =

∫
e∈Sm−n−1

p

η(p, e)(K`(p, e))
kdσ, (3.1)

is called the `-th G-total curvature of rank k at the point p ∈Mn with respect to the function η if the right-hand-side
of (3.1) exists (cf. [4, 7]).

An immersion ϕ : Mn → Em is called pseudo-flat if Gn(ϕ, p, 1, 1) = 0 for all p ∈Mn (cf. [4]). It follows from
(2.9) that every immersion ϕ : Mn → Em of Mn is always pseudo-flat whenever n = dimMn is odd.

The integral

T`(ϕ, η, k) =
1

cm−1

∫
p∈Mn

G`(ϕ, p, η, k)dv =

∫
(p,e)∈B(ϕ)

η(p, e)(K`(p, e))
kdv ∧ dσ (3.2)

is called the `-th G-total curvature with resect to η if the right-hand-side of (3.2) exists (cf. [4, 7]).
For some special cases of G-total curvatures, we have the following.

• T`(ϕ, η, 0) is the ordinary Em-valued integral over B1(ϕ);
• T`(ϕ, 1, 0) is the volume of B1(ϕ), where 1 denotes the constant function 1 on B1(ϕ);
• T0(ϕ,ϕ, 0) is the center of mass of Mn in Em;
• If Mn is a closed manifold, then Tn(ϕ, 1, 1) = X (Mn), where X (Mn) denotes the Euler characteristic of
Mn (see [7, Proposition 6.4]);

• If m = n+ 1 and n is even, then 1
2Gn(ϕ, p, 1, 1) is the Gauss-Kronecker curvature of the hypersurface Mn

in En+1 (cf. [2, 6]).

For simplicity, we put

T (ϕ) = Tn(ϕ, 1, 1) and T (ϕ, η) = Tn(ϕ, η, 1). (3.3)

For an immersion ϕ : Mn → Em and for (p, e) ∈ B1(ϕ), we define g-Steiner points, co-Steiner points and normal
points of ϕ via (3.2) and (3.3) as follows:
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• gs(ϕ) = T (ϕ,ϕ) is called the g-Steiner point of ϕ;
• cs(ϕ) = T (ϕ, 〈ϕ, e〉 e) is called the co-Steiner point of ϕ;
• n(ϕ) = T (ϕ, e) is called the normal point of ϕ,

where 〈ϕ, e〉 denotes the inner product for the Em-valued functions ϕ and the unit normal vector e on Mn.
Now, we prove the following two lemmas.

Lemma 3.1. If ϕ : Mn → Em is an immersion of a bounded manifold Mn in Em, then the g-Steiner point gs(ϕ) of ϕ is
given by

gs(ϕ) =
1

cm−1

∫
(p,em)∈B1(ϕ)

ϕωm1 ∧ · · · ∧ ωmm−1. (3.4)

Proof. Follows easily from the definition of g-Steiner point and Eqs. (2.8), (3.1) and (3.2).

Lemma 3.2. For an immersion ϕ : Mn → En+1 of an even-dimensional closed convex hypersurface Mn in En+1, the
g-Steiner point gs(ϕ) of ϕ and the Steiner point s(Mn) of Mn defined by (1.1) are related by gs(ϕ) = 2s(Mn).

Proof. Let ϕ : Mn → En+1 be the immersion of a closed convex hypersurface. Denote by x the position vector
field of Mn in En+1. Then it follows from Eqs. (3.1), (3.2) and the definition of the g-Steiner point gs(ϕ) of ϕ that

gs(ϕ) =
1

cn

∫
(p,en+1)∈B1(ϕ)

ϕωn+1
1 ∧ · · · ∧ ωn+1

n

=
1

cn

∫
p∈Mn

ϕ

{∫
e∈S0

p

Kn(p, e)dσ

}
dv

=
2

cn

∫
p∈Mn

xK(p)dv

(3.5)

where K(p) is the Gauss-Kronecker curvature of Mn at a point p ∈Mn, Kn(p, e) is the Lipschitz-Killing
curvature at (p, e) ∈ B1(ϕ) and x is the position vector field of ϕ : Mn → En+1. Therefore, after comparing (3.5)
with (1.1), we obtain gs(ϕ) = 2s(Mn).

The next lemma is direct to verify.

Lemma 3.3. If ϕ : Mn → Em is an immersion of a bounded manifoldMn in Em and ψ : Em ↪→ Em̄ is an inclusion map,
then we have gs(ϕ) = gs(ϕ̄) with ϕ̄ = ψ ◦ ϕ.

4. Some properties of g-Steiner and co-Steiner points

For g-Steiner points, we have the following.

Theorem 4.1. For a given immersion ϕ : Mn → Em of a bounded n-manifold Mn into Em, the g-Steiner point gs(ϕ) of
ϕ satisfies the following properties:

(a) If a is a positive number and ϕ̄ = aϕ is the similarity transformation of ϕ given by (aϕ)(p) = a(ϕ(p)), p ∈Mn,
then we have gs(aϕ) = a(gs(ϕ));

(b) For a constant vector c ∈ Em, we have
gs(ϕc) = gs(ϕ) + T (ϕ)c,

where ϕc = ϕ+ c is the parallel translation of ϕ given by ϕc(p) = ϕ(p) + c, and T (ϕ) is the total Lipschitz-Killing
curvature of Mn defined by (3.3), i.e.,

T (ϕ) =
1

cm−1

∫
(p,em)∈B1(ϕ)

ωm1 ∧ · · · ∧ ωmm−1; (4.1)

(c) If ϕ : Mn → Em is a pseudo-flat immersion, then gs(ϕ) = 0. In particular, we have gs(ϕ) = 0 whenever Mn is of
odd dimension;
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(d) If ϕ : Mn → Em and ϕ̄ : M̄ n̄ → Em̄ are immersions of even-dimensional bounded manifolds Mn and M̄ n̄ into Em
and Em̄ respectively, then we have

gs(ϕ× ϕ̄) =
(
T (ϕ̄)gs(ϕ), T (ϕ)gs(ϕ̄)

)
, (4.2)

where ϕ× ϕ̄ is the product immersion of ϕ and ϕ̄ given by Mn × M̄ n̄ 3 (p, p̄) 7→ (ϕ(p), ϕ̄(p̄)) ∈ Em × Em̄.

Proof. (a) Let aϕ be a similarity transformation of ϕ. Then, the definition of B1(ϕ) yields B1(aϕ) = B1(ϕ). For a
given point (p, e1, . . . , em) ∈ B(aϕ), we put

d(aϕ) =
∑

ω̄iei, ω̄mA = 〈dem, eA〉 ,

and let ωi, ωmA denote the corresponding forms on B(ϕ). Then we obtain

ω̄m1 ∧ · · · ∧ ω̄mm−1 = ωm1 ∧ · · · ∧ ωmm−1. (4.3)

Consequently, we obtain from the definition of g-Steiner points and Lemma 3.1 that

gs(aϕ) =
1

cm−1

∫
(p,em)∈B1(aϕ)

(aϕ)ω̄m1 ∧ · · · ∧ ω̄mm−1

=
a

cm−1

∫
(p,em)∈B1(ϕ)

ϕωm1 ∧ · · · ∧ ωmm−1

= a(gs(ϕ)).

(b) For a given vector c ∈ Em, we haveB1(ϕ) = B1(ϕc). Thus, if we denote by ω̄ the form for ϕc corresponding
to a form ω for ϕ, then we obtain (4.3) as well. Therefore

gs(ϕc) =
1

cm−1

∫
(p,em)∈B1(ϕ+c)

(ϕ+ c)ω̄m1 ∧ · · · ∧ ω̄mm−1

=
1

cm−1

∫
(p,em)∈B1(ϕ)

ϕωm1 ∧ · · · ∧ ωmm−1 +
c

cm−1

∫
(p,em)∈B1(ϕ)

ωm1 ∧ · · · ∧ ωmm−1

= gs(ϕ) +
c

cm−1

∫
(p,em)∈B1(ϕ)

ωm1 ∧ · · · ∧ ωmm−1

= gs(ϕ) + T (ϕ)c,

where T (ϕ) is defined by (4.1).
(c) The first part of statement (c) follows from Eq. (2.8) and Lemma 3.2. And the second part of statement (c)

follows from (2.9).
(d) Let ϕ : Mn → Em and ϕ′ : Mn′ → Em′ be immersions of bounded manifolds Mn and Mn′ into Em and

Em′ respectively. According to Lemma 3.3, to prove statement (d), without loss of generality, we may assume
m and m̄ are both odd.

Let B(ϕ× ϕ̄) be the bundle space over Mn × M̄ n̄ consisting of

((p, p̄), e1, . . . , en, ē1, . . . , ēn̄, en+1, . . . , em, ēn̄+1, . . . , ēm̄)

such that (p, e1, . . . , em) ∈ B(ϕ) and (p̄, ē1, . . . , ēm̄) ∈ B(ϕ̄). Let us consider the following two unit normal vector
fields of Mn × M̄ n̄ in Em × Em̄ given by

ẽm+m̄−1 = − sin θem + cos θēm̄, ẽm+m̄ = cos θem + sin θēm̄ (4.4)

over Mn × M̄ n̄. Then we have

dẽm+m̄ = cos θdem + sin θdēm̄ + ẽm+m̄−1dθ. (4.5)

If ω̃βα (α, β = 1, . . . ,m+ m̄) denote the connection forms associated with the frame

((p, p̄), e1, . . . , en, ē1, . . . , ēn̄, en+1, . . . , em−1, em+m̄−1, ēn̄+1, . . . , ēm̄−1, ēm+m̄),
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then we find

ω̃m+m̄
i = cos θωmi , ω̃m+m̄

ī
= sin θωm̄ī , i = 1, . . . , n; ī = 1, . . . , n̄ (4.6)

ω̃m+m̄
r = cos θωmr , ω̃m+m̄

r̄ = cos θωm̄r̄ , r = n+ 1, . . . ,m− 1; r̄ = n̄+ 1, . . . , m̄− 1; (4.7)

ω̃m+m̄
m+m̄−1 = dθ. (4.8)

Now, it follows from (4.6), (4.7) and (4.8) that

dṽ ∧ dσ̃ = ω̃m+m̄
1 ∧ · · · ∧ ω̃m+m̄

m+m̄−1

= (cos θ)m−1(sin θ)m̄−1Kn(p, em)K̄n̄(p̄, ēm̄)

× dv ∧ dv̄ ∧ ωmn+1 ∧ · · · ∧ ωmm−1 ∧ ωm̄n̄+1 ∧ · · · ∧ ωm̄m̄−1 ∧ dθ.
(4.9)

Consequently,

gs(ϕ× ϕ̄) =
1

cm+m̄−1

∫
em+m̄∈B1(ϕ×ϕ̄)

(ϕ× ϕ̄) ω̃m+m̄
1 ∧ · · · ∧ ω̃m+m̄

m+m̄−1

=
1

cm+m̄−1

∫
em+m̄∈B1(ϕ×ϕ̄)

(ϕ× ϕ̄)(cosm−1 θ)(sinm̄−1 θ)

×Kn(p, em)K̄n̄(p̄, ēm̄)dv ∧ dv̄ ∧ dσ ∧ dσ̄ ∧ dθ
=
(
T (ϕ̄)gs(ϕ), T (ϕ)gs(ϕ̄)

)
,

(4.10)

where we have used (cf. Formula (4.6) of [9, page 135])∫
S1

(cosp θ sinq θ)dθ =
2Γ((1 + p)/2)Γ((1 + q)/2)

Γ((2 + p+ q)/2))

for even integers p, q ≥ 0 and

cn =
(n+ 1)π(n+1)/2

Γ((n+ 3)/2)
.

The next three corollaries follow from Theorem 4.1 and the fact that the total Gauss-Kronecker curvature of
ϕ satisfies T (ϕ) = cm−1X (Mn) (cf. [7, Proposition 6.4]).

Corollary 4.1. Let ϕ : Mn → Em be an immersion of an even-dimensional closed oriented manifold Mn into Em. Then
the Euler characteristic of Mn satisfies X (Mn) = 0 if and only if the g-Steiner point of ϕ is invariant under translations.

Corollary 4.2. Let ϕ : Mn → Em and ϕ̄ : M̄ n̄ → Em̄ be immersions of even-dimensional closed oriented manifolds Mn

and M̄ n̄ into Em and Em̄ respectively. If X (Mn) = X (M̄ n̄) = 0, then gs(ϕ× ϕ̄) = 0.

Corollary 4.3. Let Mn be an oriented closed manifold with X (Mn) 6= 0. If Mn is immersible into Em, then for any
c ∈ Em, there exists an immersion of ϕ : Mn → Em such that gs(ϕ) = c.

We have the following properties for co-Steiner points.

Theorem 4.2. For a given immersion ϕ : Mn → Em of a bounded n-manifold Mn into Em, the co-Steiner point cs(ϕ)
of ϕ satisfies the following properties:

(a) If a is a positive number, then we have cs(aϕ) = a(cs(ϕ));
(b) For a constant vector c ∈ Em, the translation ϕc of ϕ satisfies

cs(ϕc) = cs(ϕ) + T (ϕ, 〈c, e〉e), (4.11)

where T (ϕ, c) is the n-th G-total curvature of Mn defined by

T (ϕ, 〈c, e〉e) =
1

cm−1

∫
(p,e)∈B1(ϕ)

〈c, e〉e ωm1 ∧ · · · ∧ ωmm−1, e = em; (4.12)

(c) If dimMn is odd, then cs(ϕ) = 0.

Since this theorem can be proved in similar way as Theorem 4.1, so we omit its proof.
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5. Some properties of normal points

Let v1, . . . , vm−1, v be m vector in Em and let v1 × · · · × vm−1 denote the vector product of v1, . . . , vm−1. Then
we get

v · (v1 × · · · × vm−1) = (−1)m−1|v, v1, · · · , vm−1|, (5.1)

where |v, v1, · · · , vm−1| denotes the determinant of v, v1, . . . , vm−1. From (5.1) we find

e1 × · · · × êα × · · · × em = (−1)m+αeα, (5.2)

where the roof ·̂ means the omitted term.
Let ϕ : Mn → Em be an immersion of a bounded n-manifold Mn into Em. As before, we denote by B(ϕ)

the bundle space consists of all (p, e1, . . . , em) over Mn defined as in Section 2. Now, we define a Em-valued
(m− 1)-form Ω given by

Ω =
1

(m− 1)cm−1

m−1∑
α=1

(−1)α(ωm1 ∧ · · · ∧ ω̂mα ∧ · · · ∧ ωmm−1)eα. (5.3)

Proposition 5.1. For a given immersion ϕ : Mn → Em of a bounded n-manifold Mn into Em, the normal point n(ϕ) of
ϕ satisfies

n(ϕ) =

∫
∂B1(ϕ)

Ω, (5.4)

where ∂B1(ϕ) denotes the boundary of B1(ϕ).

Proof. For a given immersion ϕ : Mn → Em of a bounded n-manifold Mn into Em, let [ · , . . . , · ] denote the
combining operation of the vector product of Em with the exterior product.

If we denote em by e, then we have

[

m−2 times︷ ︸︸ ︷
de, . . . , de, e] = (−1)m

[∑
ωmα1

eα1 , . . . ,
∑

ωmαm−2
eαm−2 , e

]
= (−1)m

∑
ωmα1
∧ · · · ∧ ωmαm−2

[eα1 , . . . , eαm−2 , e]

= (−1)m(m− 2)!

m−1∑
α=1

ωm1 ∧ · · · ∧ ω̂mα ∧ . . . ∧ ωmm−1[e1, . . . , êα, . . . , em−1, e]

= (m− 2)!

m−1∑
α=1

(−1)α(ωm1 ∧ · · · ∧ ω̂mα ∧ · · · ∧ ωmm−1)eα,

Combining this with (5.3) gives

Ω =
1

(m− 1)!cm−1
[

m−2 times︷ ︸︸ ︷
de, . . . , de, e]. (5.5)

Since

d([

m−2 times︷ ︸︸ ︷
de, . . . , de, e]) = (−1)m[

m−1 times︷ ︸︸ ︷
de, . . . , de],

it follows from (5.5) that

dΩ =
(−1)m

(m− 1)!cm−1
[

m−1 times︷ ︸︸ ︷
de, . . . , de]

= − 1

(m− 1)!cm−1

[∑
ωmα1

eα1
, . . . ,

∑
ωmαm−1

eαm−1

]
= − 1

(m− 1)!cm−1

∑
ωmα1
∧ · · · ∧ ωmαm−1

[
eα1

, . . . , eαm−1

]
=

1

cm−1
(eωm1 ∧ · · · ∧ ωmm−1).

(5.6)
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Consequently, after applying Stokes’ theorem we obtain

n(ϕ) =
1

cm−1
T (ϕ, e)

=
1

cm−1

∫
(p,e)∈B1(ϕ)

eKn(p, e)dv ∧ dσ

=
1

cm−1

∫
(p,e)∈B1(ϕ)

eωm1 ∧ · · · ∧ ωmm−1

=

∫
B1(ϕ)

dΩ =

∫
∂B1(ϕ)

Ω,

(5.7)

which proves the Proposition.

For the normal point n(ϕ) of ϕ, we have the following.

Theorem 5.1. For a given immersion ϕ : Mn → Em of a bounded n-manifoldMn into Em, the normal point of ϕ satisfies
the following three properties:

(a) The normal point is invariant under similarity transformations;
(b) The normal point is invariant under translations;
(c) If Mn is of even dimension or Mn is a closed manifold, then we have n(ϕ) = 0.

Proof. Since statements (a) and (b) can be proved in similar ways as the proofs of statements (a) and (b) of
Theorem 4.1, so we omit them.

(c) First, if dimMn is even, then the Lipschitz-Killing curvature satisfies K(p, e) = K(p,−e), Thus, by the
definition of the normal point n(ϕ) and the symmetry of the fiber Sm−1

p over p, we easily see that the G-total
curvature Gn(ϕ, p, e, 1) = 0 for each p ∈Mn. Hence we get n(ϕ) = 0.

Second, if Mn is a closed manifold, then statement (c) follows from Proposition 5.1.

6. A link between g-Steiner and co-Steiner points

The next theorem provides a link between g-Steiner and co-Steiner points.

Theorem 6.1. Let ϕ : Mn → Em be an immersion of a closed manifold Mn into Em. Then the g-Steiner and co-Steiner
points of ϕ are related by gs(ϕ) = m(cs(ϕ)).

Proof. For an immersion ϕ : Mn → Em of a closed manifold Mn into Em, let Ω be defined as (5.3). Then it
follows from (2.3) and (5.5) that

d(〈ϕ, em〉Ω) = (d 〈ϕ, em〉) ∧ Ω + 〈ϕ, em〉 dΩ

= (〈ϕ, dem〉) ∧ Ω + 〈ϕ, em〉 dΩ

= − 1

(m− 1)cm−1

m−1∑
α

〈ϕ, eα〉ωmα ∧
m−1∑
β=1

(−1)β(ωm1 ∧ · · · ∧ ω̂mβ ∧ · · · ∧ ωmm−1)eβ

+ 〈ϕ, em〉 dΩ

= − 1

(m− 1)cm−1

m−1∑
α

〈ϕ, eα〉 eα(ωm1 ∧ · · · ∧ ωmm−1) + 〈ϕ, em〉 dΩ

= − 1

(m− 1)cm−1
(ϕ− 〈ϕ, em〉 em)(ωm1 ∧ · · · ∧ ωmm−1) + 〈ϕ, em〉 dΩ.

(6.1)

After combining (6.1) with (5.6) we find

d(〈ϕ, e〉Ω) = − 1

(m− 1)cm−1
(ϕ− 〈ϕ, e〉 e)(ωm1 ∧ · · · ∧ ωmm−1) +

1

cm−1
(〈ϕ, e〉 e)ωm1 ∧ · · · ∧ ωmm−1

=
1

(m− 1)cm−1

{
m(〈ϕ, e〉 e)ωm1 ∧ · · · ∧ ωmm−1 − ϕ(ωm1 ∧ · · · ∧ ωmm−1)

}
,

(6.2)

with e = em. Consequently, after applying Stokes’ theorem we obtain sg(ϕ) = m(cs(ϕ)) since M is a closed
manifold.
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Corollary 6.1. Let ϕ : Mn → Em and ϕ̄ : M̄ n̄ → Em̄ be two immersions of two even-dimensional closed manifolds Mn

and M̄ n̄ into Em and Em̄, respectively. Then we have

cs(ϕ× ϕ̄) =
1

m+ m̄

(
T (ϕ̄)gs(ϕ), T (ϕ)gs(ϕ̄)

)
. (6.3)

where ϕ× ϕ̄ is the product immersion of ϕ and ϕ̄

Proof. Follows from Theorem 6.1 and statement (d) of Theorem 4.1.

7. g-Steiner and co-Steiner points of higher order

Let ϕ : Mn → Em be an immersion of a bounded n-manifold Mn into Em. For k = 1, 2, . . . , n, let us introduce
the following notion of Steiner point of order k of ϕ.

Definition 7.1. The point gsk(ϕ) = T (ϕ, 〈ϕ, e〉k−1
ϕ) is called the g-Steiner point of order k.

Similarly, we make the following.

Definition 7.2. The point csk(ϕ) = T (ϕ, 〈ϕ, e〉k−1
e) is called the co-Steiner point of order k.

Clearly, the g-Steiner (respectively, co-Steiner) point of order 1 is nothing but the g-Steiner (respectively,
co-Steiner) point defined in Section 3.

The g-Steiner and co-Steiner points of higher order are related by the following.

Theorem 7.1. Let ϕ : Mn → Em be an immersion of a bounded n-manifold Mn into Em. Then we have:

k(gsk(ϕ)) = (m+ k − 1)csk(ϕ) +
1

cm−1

∫
∂B(ϕ)

〈ϕ, e〉k Ω. (7.1)

Proof. For an immersion ϕ : Mn → Em of a bounded manifold Mn into Em, let Ω be defined as in (5.3). Then it
follows from (2.3) and (5.5) that

d(〈ϕ, em〉k Ω) = (d 〈ϕ, em〉k) ∧ Ω + 〈ϕ, em〉k dΩ

= k(〈ϕ, dem〉k−1
) ∧ Ω + 〈ϕ, em〉k dΩ

= − k 〈ϕ, em〉
k−1

(m− 1)cm−1

m−1∑
α

〈ϕ, eα〉ωmα ∧
m−1∑
β=1

(−1)β(ωm1 ∧ · · · ∧ ω̂mβ ∧ · · · ∧ ωmm−1)eβ

+ 〈ϕ, em〉k dΩ

= − k 〈ϕ, em〉
k−1

(m− 1)cm−1

m−1∑
α

〈ϕ, eα〉 eα(ωm1 ∧ · · · ∧ ωmm−1) + 〈ϕ, em〉k dΩ

= − k 〈ϕ, em〉
k−1

(m− 1)cm−1
(ϕ− 〈ϕ, em〉 em)(ωm1 ∧ · · · ∧ ωmm−1) + 〈ϕ, em〉k dΩ.

(7.2)

After combining (7.2) with (5.6) we obtain

d(〈ϕ, e〉k Ω) = − k 〈ϕ, em〉
k−1

(m− 1)cm−1
(ϕ− 〈ϕ, e〉 e)(ωm1 ∧ · · · ∧ ωmm−1) + 〈ϕ, e〉k dΩ.

= − k 〈ϕ, em〉
k−1

(m− 1)cm−1
(ϕ− 〈ϕ, e〉 e)(ωm1 ∧ · · · ∧ ωmm−1) +

1

cm−1
(〈ϕ, e〉k e)ωm1 ∧ · · · ∧ ωmm−1

=
〈ϕ, em〉k−1

(m− 1)cm−1

{
(m+ k − 1)(〈ϕ, e〉 e)ωm1 ∧ · · · ∧ ωmm−1 − kϕ(ωm1 ∧ · · · ∧ ωmm−1)

}
,

(7.3)

with e = em. Consequently, after applying Stokes’ theorem to (7.3) we obtain (7.1).
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The next corollary is an immediate consequence of Theorem 7.1.

Corollary 7.1. Let ϕ : Mn → Em be an immersion of a closed manifold Mn into Em. Then the g-Steiner and co-Steiner
points of order k are related by

gsk(ϕ) =
m+ k − 1

k
csk(ϕ)

for k = 2, . . . , n.
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