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Abstract
Let σ = {σi|i ∈ I} be a partition of the set of all primes P and G a finite group. A set H of
subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of H
is a Hall σi-subgroup of G for some i ∈ I and H contains exactly one Hall σi-subgroup of
G for every i such that σi ∩ π(G) ̸= ∅. Let τH(A) = {σi ∈ σ(G)\σ(A) | σ(A) ∩ σ(HG) ̸= ∅
for a Hall σi-subgroup H ∈ H}. A subgroup A of G is said to be τσ-permutable or τσ-
quasinormal in G with respect to H if AHx = HxA for all x ∈ G and H ∈ H such
that σ(H) ⊆ τH(A), and τσ-permutable or τσ-quasinormal in G if A is τσ-permutable in
G with respect to some complete Hall σ-set of G. We say that a subgroup A of G is
weakly τσ-quasinormal in G if G has a σ-subnormal subgroup T such that AT = G and
A ∩ T ≤ AτσG, where AτσG is the subgroup generated by all those subgroups of A which
are τσ-quasinormal in G. We study the structure of G being based on the assumption that
some subgroups of G are weakly τσ-quasinormal in G.
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1. Introduction
Throughout this paper, all groups are finite and G always denotes a finite group. More-

over, P is the set of all primes, π ⊆ P and π′ = P\π. If n is an integer, the symbol π(n)
denotes the set of all primes dividing n; as usual, π(G) = π(|G|), the set of all primes
dividing the order of G.

In what follows, σ = {σi|i ∈ I} is some partition of all primes P, that is, P =
∪

i∈I σi

and σi ∩ σj = ∅ for all i ̸= j. Let σ(G) = {σi|σi ∩ π(G) ̸= ∅}.
Following [18, 20, 34–36], a set H of subgroups of G is said to be a complete Hall σ-set

of G if every non-identity member of H is a Hall σi-subgroup of G for some σi ∈ σ(G) and
H contains exactly one Hall σi-subgroup for every σi ∈ σ(G). G is said to be σ-full if G
possesses a complete Hall σ-set; σ-primary if |σ(G)| ≤ 1; σ-nilpotent if G has a complete
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Hall σ-set H = {H1, · · · , Ht} such that G = H1 × · · · × Ht; σ-soluble if every chief factor
of G is σ-primary; σ-full group of Sylow type if every subgroup of G is a Dσi-group for all
σi ∈ σ(G). Π is always supposed to be a non-empty subset of the set σ and Π′ = σ\Π.
n is said to be a Π-number if π(n) ⊆

∪
σi∈Π σi. A subgroup A of G is said to be Π-

subgroup of G if |A| is a Π-number; σ-subnormal in G if there exists a subgroup chain
A = A0 ≤ A1 ≤ · · · ≤ An = G such that either Ai−1 is normal in Ai or Ai/(Ai−1)Ai is
σ-primary for all i = 1, · · · , n.

Let L be some non-empty set of subgroups of G and K ≤ G. A subgroup A of G is
called L-permutable if AH = HA for all H ∈ L; LK-permutable if AHx = HxA for all
H ∈ L and all x ∈ K. In particular, a subgroup A of G is σ-permutable in G if G has a
complete Hall σ-set H such that A is LG-permutable (see [34]).

It is well known that permutable subgroups and supplemented subgroups play an im-
portant role in the theory of finite groups. Recall that a subgroup A of G is said to be
σ-semipermutable in G if G possesses a complete Hall σ-set H such that AHx = HxA
for all x ∈ G and all H ∈ H with σ(A) ∩ σ(H) = ∅ (see [19]). Let τH(A) = {σi ∈
σ(G)\σ(A) | σ(A) ∩ σ(HG) ̸= ∅ for a Hall σi-subgroup H ∈ H}. A subgroup A of G is
said to be τσ-permutable or τσ-quasinormal in G with respect to H if AHx = HxA for all
x ∈ G and H ∈ H such that σ(H) ⊆ τH(A) (see [6]), and τσ-permutable or τσ-quasinormal
in G if A is τσ-permutable in G with respect to some complete Hall σ-set H of G (see [6]).
A subgroup A of G is said to be c-normal in G if G has a normal subgroup T such that
G = AT and A ∩ T ≤ AG, where AG is the maximal normal subgroup of G contained
in A (see [38]). A subgroup A of G is said to be weakly σ-permutable in G if G has a
σ-subnormal subgroup T such that G = AT and A∩T ≤ AσG, where AσG is the subgroup
of A generated by all those subgroups of A which are σ-permutable in G (see [42]). By
using the above subgroups and supplemented subgroups, the researchers have obtained a
series of interesting results (see, for example, [4, 6, 8, 10, 14, 19, 26, 27, 31, 34, 38, 42]). Now,
we consider the following new generalized supplemented subgroup.
Definition 1.1. We say that a subgroup A of G is said to be weakly τσ-quasinormal in
G if G has a σ-subnormal subgroup T such that AT = G and A ∩ T ≤ AτσG, where AτσG

is the subgroup generated by all those subgroups of A which are τσ-quasinormal in G.
In the classical case when σ = {{2}, {3}, · · · }, σ-permutable subgroup, σ-semipermutable

subgroup, τσ-quasinormal subgroup, weakly σ-permutable subgroup and weakly τσ-quasi-
normal subgroup are also called S-permutable subgroup [4, 10], S-semipermutable sub-
group [14], τ -quasinormal subgroup [27], weakly s-permutable subgroup [31] and weakly
τ -quasinormal subgroup [26], respectively. It is clear that every σ-permutable subgroup,
every σ-semipermutable subgroup, every τσ-quasinormal subgroup and every weakly σ-
permutable subgroup are weakly τσ-quasinormal.
Remark 1.2. In the case when σ = {{2}, {3}, · · · }, [26, Examples 1.2 and 1.3] show that
weakly τσ-quasinormal subgroups of G are not necessarily τσ-quasinormal, c-normal and
weakly σ-permutable in G.

In this paper, we study the properties of weakly τσ-quasinormal subgroups and use
them to determine the structure of finite groups. We obtain the following results.
Theorem 1.3. Let G be a σ-full group of Sylow type and H a complete Hall σ-set of G
such that every member of H is supersoluble. If every maximal subgroup of any non-cyclic
H ∈ H is weakly τσ-quasinormal in G, then G is supersoluble.

Recall that a normal subgroup E of G is called hypercyclically embedded in G (see [30,
p.217]) if every chief factor of G below E is cyclic. Hypercyclically embedded subgroups
play an important role in the theory of soluble groups (see [4,14,30,41]) and the condition
under which a normal subgroup is hypercyclically embedded in G were found by many
authors (see books [4, 14,30,41] and the recent papers [15,20,23,32,33,42]).
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Suppose that G has a complete Hall σ-set H = {H1, · · · , Ht}. Following [20], for any
subgroup H (resp. normal subgroup N) of G we write H ∩ H (resp. HN/N) to denote
the set {H ∩ H1, · · · , H ∩ Ht} (resp. {H1N/N, · · · , HtN/N}).

Theorem 1.4. Let G be a σ-full group of Sylow type, H a complete Hall σ-set of G
such that every member of H is nilpotent, and E a normal subgroup of G. If every
maximal subgroup of any non-cyclic H ∈ E ∩H is weakly τσ-quasinormal in G, then E is
hypercyclically embedded in G.

Theorem 1.5. Let G be a σ-full group of Sylow type, H a complete Hall σ-set of G such
that every member of H is supersoluble and E a normal subgroup of G. If every cyclic
subgroup H of any non-cyclic T ∈ E ∩ H of prime order and order 4 (if the Sylow 2-
subgroup of E is non-abelian and H � Z∞(G)) is weakly τσ-quasinormal in G, then E is
hypercyclically embedded in G.

We shall give the proofs of Theorems 1.3-1.5 in section 3. In section 4, we consider some
applications of our results.

All unexplained terminologies and notations are standard, as in [4, 11,14].

2. Preliminaries
We use Sσ to denote the class of all σ-soluble groups and Fσ(G) to denote the product

of all normal σ-nilpotent subgroups of G.

Lemma 2.1 (see [34, Lemma 2.1]). The class Sσ is closed under taking direct products,
homomorphic images and subgroups. Moreover, any extension of a σ-soluble group by a
σ-soluble group is a σ-soluble group.

Lemma 2.2 (see [17, Lemma 2.6(i)]). Fσ(G) is σ-nilpotent.

Following [18, 34], we use OΠ(G) to denote the subgroup of G generated by all its Π′-
subgroups. Instead of O{σi}(G) we write Oσi(G). We use OΠ(G) to denote the subgroup
of G generated by all its normal Π-subgroups. Instead of O{σi}(G) (resp. O{σi}′(G)) we
write Oσi(G) (resp. Oσ′

i
(G)).

Lemma 2.3 (see [34, Lemma 2.6] and [18, Lemma 2.1]). Let A, K and N be subgroups
of G. Suppose that A is σ-subnormal in G and N is normal in G.

(1) If A is a Π-group, then A ≤ OΠ(G).
(2) AN/N is σ-subnormal in G/N .
(3) A ∩ K is σ-subnormal in K.
(4) If |G : A| is a Π-number, then OΠ(A) = OΠ(G).

Lemma 2.4 (see [34, Lemma 2.8]). Let H, K and N be subgroups of a σ-full group
G. Let H = {H1, · · · , Ht} be a complete Hall σ-set of G and L = HK . Suppose that
H is L-permutable and N is normal in G. Then HN/N is L∗-permutable, where L∗ =
{H1N/N, · · · , HtN/N}KN/N . In particular, if H is σ-permutable in G, then HN/N is
σ-permutable in G/N .

Lemma 2.5 (see [34, Theorem C]). Let G be a σ-full group of Sylow type. Then the
set of all σ-permutable subgroups of G forms a sublattice of the lattice of all σ-subnormal
subgroups of G.

Lemma 2.6 (see [34, Lemma 3.1]). Let H be a σ1-subgroup of a σ-full group G. Then H
is σ-permutable in G if and only if Oσ1(G) ≤ NG(H).

Lemma 2.7 (see [21, VI, 4.10]). Assume that A and B are two subgroups of G and
G ̸= AB. If ABg = BgA holds for any g ∈ G, then either A or B is contained in a proper
normal subgroup of G.
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Before continuing, we give some facts about τσ-quasinormal and weakly τσ-quasinormal
subgroups of G.

Lemma 2.8 (see [6, Lemma 2.6]). Suppose that G has a complete Hall σ-set H =
{H1, · · · , Ht} such that the subgroups H and K of G are τσ-quasinormal in G with respect
to H. Let R be a normal subgroup of G and H ≤ L ≤ G. Then:

(1) H0 = {H1R/R, · · · , HtR/R} is a complete Hall σ-set of G/R. Moreover, if
σ(H) = σ(HR/R), then HR/R is τσ-quasinormal in G/N with respect to H0.

(2) If HK = KH and σ(H ∩ K) = σ(H) = σ(K), then H ∩ K is τσ-quasinormal in
G with respect to H.

(3) If for some i we have H ≤ Oσi(G), then H is σ-quasinormal in G.
(4) If H reduces into L, then H is τσ-quasinormal in L with respect to L ∩ H.
(5) If G is a σ-full group of Sylow type, then H is τσ-quasinormal in L.

From Lemma 2.8 we directly have the following lemma.

Lemma 2.9. Let G is a σ-full group of Sylow type and H ≤ K be subgroups of G. Suppose
that σi ∈ σ(G) for some i.

(1) If H is a σi-group, then HτσG is τσ-quasinormal in G and HG ≤ HτσG.
(2) HτσG ≤ HτσK .
(3) If K is a σi-group and H is normal in G, then KτσG/H ≤ (K/H)τσ(G/H).
(4) If H is normal in G and E is a σi-subgroup of G such that (|H|, |E|) = 1, then

EτσGH/H ≤ (EH/H)τσ(G/H).

Lemma 2.10. Let G be a σ-full group of Sylow type and H = {H1, · · · , Ht} a complete
Hall σ-set of G. Suppose that H ≤ K ≤ G and σi ∈ σ(G) for some i.

(1) If H is τσ-quasinormal in G, then H is weakly τσ-quasinormal in G.
(2) Suppose that K is a σi-group and H is normal in G. If K is weakly τσ-quasinormal

in G, then K/H is weakly τσ-quasinormal in G/H.
(3) If H is weakly τσ-quasinormal in G, then H is weakly τσ-quasinormal in K.
(4) Suppose that H is normal in G and E is a σi-subgroup of G such that (|H|, |E|) = 1.

If E is weakly τσ-quasinormal in G, then EH/H is weakly τσ-quasinormal in G/H.

Proof. (1) This is obvious.
(2) Assume that for some σ-subnormal subgroup T of G, we have KT = G and T ∩

K ≤ KτσG. Then by Lemma 2.3(2), TH/H is σ-subnormal in G/H. Besides, we have
that (TH/H)(K/H) = G/H and (TH/H) ∩ (K/H) = (TH ∩ K)/H = (T ∩ K)H/H ≤
KτσGH/H = KτσG/H ≤ (K/H)τσ(G/H) by Lemma 2.9(1)(3). This shows that K/H is
weakly τσ-quasinormal in G/H.

(3) Let T be a σ-subnormal subgroup of G such that HT = G and T ∩ H ≤ HτσG.
Then K = K ∩ HT = H(K ∩ T ). By Lemma 2.3(3), we have that K ∩ T is σ-subnormal
in K. Moreover, we have that (K ∩ T ) ∩ H ≤ HτσG ≤ HτσK by Lemma 2.9(2). Therefore,
H is weakly τσ-quasinormal in K.

(4) Assume that for some σ-subnormal subgroup T of G we have ET = G and T ∩ E ≤
EτσG. Clearly, (TH/H)(EH/H) = G/H. Since (|H|, |E|) = 1, we have that

(|T ∩ EH : T ∩ E|, |T ∩ EH : T ∩ H|)
= (|(T ∩ EH)E : E|, |(T ∩ EH)H : H|)|(|EH : E|, |EH : H|)
= 1.

Hence by [11, Ch. A, 1.6(b)], T ∩EH = (T ∩E)(T ∩H). It follows from Lemma 2.9(4) that
(TH/H) ∩ (EH/H) = (TH ∩ EH)/H = (T ∩ EH)H/H = (T ∩ E)H/H ≤ EτσGH/H ≤
(EH/H)τσ(G/H). Besides, since TH/H is σ-subnormal in G/H by Lemma 2.3(2), we
obtain that EH/H is weakly τσ-quasinormal in G/H. �
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Let P be a p-group. If P is not a non-abelian 2-group, then we use Ω(P ) to denote
Ω1(P ). Otherwise, Ω(P ) = Ω2(P ).

The following lemma is a corollary of [16, Lemma 4.4] and [9, Lemma 2.12].

Lemma 2.11. Let P be a normal p-subgroup of G and C a Thompson critical subgroup
of P (see [12, p.185]). If either P/Φ(P ) is hypercyclically embedded in G/Φ(P ) or Ω(C)
is hypercyclically embedded in G, then P is hypercyclically embedded in G.

Lemma 2.12 (see [16, Lemma 4.3]). Let C be a Thompson critical subgroup of a p-group
P .

(1) If p is odd, then the exponent of Ω(C) is p.
(2) If P is a non-abelian 2-group, then the exponent of Ω(C) is 4.

Lemma 2.13 (see [33, Theorem C]). Let E be a normal subgroup of G. If F ∗(E) is
hypercyclically embedded in G, then E is hypercyclically embedded in G.

In this Lemma, F ∗(E) is the generalized Fitting subgroup of E, that is, the largest
normal quasinilpotent subgroup of E (see [22, Chapter X]).

Recall that a class of groups F is said to be a formation provided that (i) if G ∈ F and
N � G, then G/N ∈ F, and (ii) G/(M ∩ N) ∈ F for any normal subgroups M , N of G
with G/M ∈ F and G/N ∈ F. A formation F is said to be saturated if G/Φ(G) ∈ F implies
that G ∈ F.

Lemma 2.14 (see [31, Lemma 2.16] or [14, Theorem 1.2.7(b)]). Let F be a saturated
formation containing all supersoluble groups and E a normal subgroup of G such that
G/E ∈ F. If E is cyclic, then G ∈ F.

3. Proofs of Theorems 1.3-1.5
The following Proposition is the main stage in the proof of Theorem 1.3 and Theorem

1.4.

Proposition 3.1. Let G be a σ-full group of Sylow type and H = {H1, · · · , Ht} be a
complete Hall σ-set of G such that Hi is a supersoluble σi-group for all i ∈ {1, · · · , t}, and
let the smallest prime p of π(G) belongs to σj. If every maximal subgroup of Hj is weakly
τσ-quasinormal in G, then G is soluble.

Proof. Assume that this is false and let (G, Hj) be a counterexample with minimal |G| +
|Hj |. Without loss of generality, we may assume that j = 1. Then p = 2 ∈ π(H1) by the
Feit-Thompson theorem.

(1) G is not σ-soluble, and so |σ(G)| > 1.
Assume that G is σ-soluble. Then every chief factor H/K of G is σ-primary, that is,

H/K is a σi-group for some i. But since Hi is supersoluble, H/K is an elementary abelian
group. It follows that G is soluble. This contradiction shows that (1) holds.

(2) Oσ1(G) = 1.
Assume that Oσ1(G) ̸= 1. Let N = Oσ1(G). If N = H1, then G/N is soluble by the Feit-

Thompson theorem, and so G is σ-soluble, contrary to Claim (1). Hence N ̸= H1, so H1/N
is a non-identity Hall σ1-subgroup of G/N . Let M/N be a maximal subgroup of H1/N .
Then M is a maximal subgroup of H1. By the hypothesis and Lemma 2.10(2), M/N is
weakly τσ-quasinormal in G/N . This shows that the hypothesis holds for (G/N, H1/N).
Hence G/N is soluble by the choice of (G, H1). Consequently, G is σ-soluble by Lemma
2.1, which contradicts Claim (1). Hence we have (2).

(3) Oσ′
1
(G) = 1.

Assume that K = Oσ′
1
(G) ̸= 1. Then H1K/K is a Hall σ1-subgroup of G/K. Let W/K

be a maximal subgroup of H1K/K. Then W = (H1 ∩ W )K is a maximal subgroup of
H1K. If H1 ∩ W is not a maximal subgroup of H1, then there exists a subgroup E of H1
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such that H1 ∩ W < E < H1. Since (|H1|, |K|) = 1, W < EK < H1K. This contradiction
shows that H1 ∩ W is a maximal subgroup of H1. By the hypothesis and Lemma 2.10(4),
W/K is weakly τσ-quasinormal in G/K. This shows that (G/K, H1K/K) satisfies the
hypothesis, so G/K is soluble by the choice of (G, H1). But since K is soluble by the
Feit-Thompson theorem, it follows that G is soluble. This contradiction shows that (3)
holds.

(4) Let R be a minimal normal subgroup of G. Then R is not σ-soluble, G = RH1 and
G/R is soluble.

Assume that R is σ-soluble. Then R is a σi-subgroup of G for some i. It follows
that R ≤ Oσ1(G) or R ≤ Oσ′

1
(G), which contradicts Claim (2) or (3). Hence R is not

σ-soluble. By the hypothesis and Lemma 2.10(3), it is easy to see that (RH1, H1) satisfies
the hypothesis. If RH1 < G, then RH1 is soluble by the choice of G. It follows that
R is soluble, and so R is σ-soluble, a contradiction. Hence, G = RH1. Consequently,
G/R = H1R/R ∼= H1/(H1 ∩ R) is soluble since H1 is supersoluble.

(5) R is the unique minimal normal subgroup of G and Fσ(G) = 1.
This directly follows from Claim (4) and Lemma 2.2.
(6) R ∩ H1 � Φ(H1).
Assume that R ∩ H1 ≤ Φ(H1). Then by [21, IV, Theorem 4.6], there exists a normal

subgroup M of R such that R/M is a σ1-group and |R ∩ H1| | |R/M |. It follows that
Oσ1(R) ≤ M . Since Oσ1(R) char R � G, we have Oσ1(R) � G, so Oσ1(R) = 1 or R by
Claim (5). If Oσ1(R) = 1, then R ≤ H1, which contradicts Claim (4). Hence Oσ1(R) = R,
and therefore M = R. Moreover, since |R ∩ H1| | |R/M |, we obtain that R ∩ H1 = 1. But,
clearly, R ∩ H1 is a Hall σ1-subgroup of R. Thus R is a σ′

1-subgroup, so R ≤ Oσ′
1
(G) = 1,

a contradiction. Hence (6) holds.
(7) Final contradiction.
By Claim (6), H1 has a maximal subgroup L such that H1 = (R ∩ H1)L. By the

hypothesis, there exists a σ-subnormal subgroup T of G such that G = LT and L ∩
T ≤ LτσG. Since |G : T | = |LT : T | = |L : L ∩ T | is a σ1-number, we obtain that
Oσ1(T ) = Oσ1(G) by Lemma 2.3(4). As t > 1, Oσ1(G) > 1. It follows from Claim (5) that
R ≤ Oσ1(G) = Oσ1(T ) ≤ TG ≤ T . Hence L∩R ≤ L∩T ≤ LτσG, and so L∩R = LτσG ∩R.
Let Rj be any Hall σj-subgroup of R with j ̸= 1. Then Rj is also a Hall σj-subgroup of
G by Claim (4). It follows from Claim (3) that LτσGRj = RjLτσG. Hence

Rj(L ∩ R) = Rj(LτσG ∩ R) = RjLτσG ∩ R = LτσGRj ∩ R = (LτσG ∩ R)Rj = (L ∩ R)Rj ,

which implies that L ∩ R is τσ-quasinormal in R. Clearly, we can see that (L ∩ R)Rj is a
proper subgroup of R. Applying Lemma 2.7, we can assume that M is a proper normal
subgroup of R such that either L ∩ R ≤ M or Rj ≤ M . If Rj ≤ M , then Rj = 1 since R
is the minimal normal subgroup of G by Claim (5)(see [21, I, Theorem 9.12(b)]). Hence
R is a σ1-group, a contradiction. If L ∩ R ≤ M , then L ∩ R ≤ L ∩ M . It follows that

|R/M |σ1 = |R|σ1/|M |σ1 = |H1 ∩ R : H1 ∩ M |
∣∣∣ |H1 ∩ R : L ∩ M |

∣∣∣ |H1 ∩ R : L ∩ R|,

But as H1 is supersoluble and L is a maximal subgroup of H1, we have that |H1 ∩ R :
L∩R| = |H1 : L| = q, where q ∈ σ1 is a prime. This shows that |R/M |σ1 |q. Note that 2||R|
by Claim (4), we have that 2||R/M | by [21, I, Theorem 9.12(b)]. This implies that q = 2.
Hence R/M is 2-nilpotent by [21, IV, Theorem 2.8], and so it is soluble. Again by [21, I,
Theorem 9.12(b)], we obtain that R is soluble, a contradiction. This final contradiction
completes the proof. �

Proof of Theorem 1.3. Let H = {H1, · · · , Ht} be a complete Hall σ-set of G. We can
assume without loss of generality that Hi is a supersoluble σi-group for all i ∈ {1, · · · , t}.
Assume that this is false and let G be a counterexample of minimal order. Then:

(1) G is soluble.
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By the Feit-Thompson theorem, we may assume that 2||G|. Without loss of generality,
we may assume that 2 ∈ π(H1). If H1 is cyclic, then G has a cyclic Sylow 2-subgroup.
Hence G is 2-nilpotent by [21, IV, Theorem 2.8] and so G is soluble. If H1 is non-cyclic,
then G is soluble by Proposition 3.1.

(2) Let R be a minimal normal subgroup of G. Then G/R is supersoluble.
It is clear that H = {H1R/R, H2R/R, · · · , HtR/R} is a complete Hall σ-set of G/R and

HiR/R ∼= Hi/Hi ∩ R is supersoluble. By Claim (1), R is an elementary abelian p-group
for some prime p. Without loss of generality, we may assume that R ≤ H1. Assume that
H1/R is non-cyclic. Then H1 is non-cyclic. Let M/R be a maximal subgroup of H1/R.
Then M is a maximal subgroup of H1. By the hypothesis and Lemma 2.10(2), M/R is
weakly τσ-quasinormal in G/R. Now let Mi/R be a maximal subgroup of HiR/R, where
i ̸= 1, and suppose that HiR/R is non-cyclic. Then Mi = (Hi ∩ Mi)R is a maximal
subgroup of HiR. With the same discussion as Claim (3) in the proof of Proposition 3.1,
we have that Hi ∩ Mi is a maximal subgroup of Hi. Then by the hypothesis and Lemma
2.10(4), Mi/R is weakly τσ-quasinormal in G/R. This shows that the hypothesis holds for
G/R. The choice of G implies that G/R is supersoluble.

(3) R is the unique minimal normal subgroup of G, Φ(G) = 1, CG(R) = R = F (G) =
Op(G), R is an elementary abelian p-group for some prime p and |R| > p.

This directly follows from Claims (1), (2) and [11, Chapter A, Theorem 15.2].
Without loss of generality, we may assume that p ∈ π(H1). Then R ≤ H1.
(4) Final contradiction.
Since Φ(G) = 1, R � Φ(H1) by [21, III, Lemma 3.3]. Hence there exists a maximal

subgroup K of H1 such that H1 = RK. Let E = R ∩ K. By Claim (3), we have that
E � H1. Since H1 is supersoluble, |R : E| = |RK : K| = |H1 : K| is a prime. Hence E
is a maximal subgroup of R, and so E ̸= 1 by Claim (3). Since R is not cyclic by Claim
(3) and R ≤ H1, H1 is non-cyclic. Then by the hypothesis, there exists a σ-subnormal
subgroup T of G such that G = KT and K ∩ T ≤ KτσG . Since |G : T | is a σ1-number, we
have that Oσ1(T ) = Oσ1(G) by Lemma 2.3(4). If Oσ1(G) = 1, then G = H1. Hence E�G,
which contradicts the minimality of R. Hence Oσ1(G) ̸= 1, and so R ≤ Oσ1(T ) ≤ T by
Claim (3). It follows that K ∩ R ≤ K ∩ T ≤ KτσG , and so K ∩ R = KτσG ∩ R. Let Hj

be any Hall σj-subgroup of G with j ̸= 1. In view of Claim (3) and Lemma 2.9(1), we
have that KτσGHj = HjKτσG . Hence E = K ∩ R = KτσG ∩ R = KτσGHj ∩ R � KτσGHj .
Moreover, since E � H1 by above, we obtain that E � G. By the minimality of R, we
have that E = 1, which contradicts with Claim (3). This final contradiction completes
the proof. �

Proof of Theorem 1.4. Let H = {H1, · · · , Ht} be a complete Hall σ-set of G. We can
assume without loss of generality that Hi is a nilpotent σi-group for all i ∈ {1, · · · , t}.
Assume that this is false and (G, E) be a counterexample with minimal |G| + |E|. Then:

(1) E is supersoluble.
It is clear that E ∩H is a complete Hall σ-set of E, Hi ∩ E is nilpotent and E is a σ-full

group of Sylow type. By Lemma 2.10(3) and Theorem 1.3, we get that E is supersoluble.
(2) Let R be a minimal normal subgroup of G contained in E. Then R is an elementary

abelian p-group for some prime p, E/R is hypercyclically embedded in G/R and R is
non-cyclic.

By Claim (1), R is an elementary abelian p-group for some prime p. Without loss of
generality, we may assume that R ≤ H1. Clearly, HR/R is a complete Hall σ-set of G/R
and HiR/R ∼= Hi/(Hi ∩ R) is nilpotent. Assume that (H1/R) ∩ (E/R) is non-cyclic.
Then H1 ∩ E is non-cyclic. Let M/R be a maximal subgroup of (H1/R) ∩ (E/R) . Then
M is a maximal subgroup of H1 ∩ E. Hence M/R is weakly τσ-quasinormal in G/R
by the hypothesis and Lemma 2.10(2). Now assume that Mi/R is a maximal subgroup
of some non-cyclic (HiR/R) ∩ (E/R), where i ̸= 1. Then HiR ∩ E is non-cyclic and
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Mi = (Hi ∩ Mi)R is a maximal subgroup of HiR ∩ E. With the same discussion as Claim
(3) in the proof of the Proposition 3.1, we have that Hi ∩ Mi is a maximal subgroup of
Hi ∩ E. Then by the hypothesis and Lemma 2.10(4), Mi/R is weakly τσ-quasinormal in
G/R. This shows that (G/R, E/R) satisfies the hypothesis. Hence E/R is hypercyclically
embedded in G/R by the choice of (G, E). It is also clear that R is non-cyclic. Hence (2)
holds.

(3) R is the unique minimal normal subgroup of G contained in E.
Let L be a minimal normal subgroup of G contained in E such that L ̸= R. Then

E/L is also hypercyclically embedded in G/L by Claim (2). It follows that RL/L is
hypercyclically embedded in G/L. Then |R| = p for RL/L ∼= R, contrary to Claim (2).
Hence we have (3).

Without loss of generality, we may assume that p ∈ π(H1).
(4) E is a p-group, and so E ≤ H1.
Let Q be a Sylow q-subgroup of E, where q is the largest prime belongs of π(E). Since

E is supersoluble by Claim (1), we obtain that Q charE�G and so Q�G. Hence R ≤ Q,
p = q and F (E) = Q is a Sylow p-subgroup of E by Claim (3). It follows from [13, Theorem
1.8.18] that CE(Q) ≤ Q. Moreover, since Q ≤ H1 ∩ E and H1 is nilpotent, we obtain that
Q = H1 ∩ E. Hence H1 ∩ Q = Q = H1 ∩ E and Hi ∩ Q = 1 for all i ∈ {2, · · · , t}. This
implies the hypothesis holds for (G, Q). Assume that Q < E. Then Q is hypercyclically
embedded in G by the choice of (G, E). It follows that R is hypercyclically embedded in
G, and so R is cyclic by Claim (3), contrary to Claim (2). Hence E = Q is a p-group, and
so E ≤ H1.

(5) Φ(E) = 1, so E is an elementary abelian p-group.
Assume that Φ(E) ̸= 1. Then R ≤ Φ(E) by Claim (3). Hence E/Φ(E) is hypercyclically

embedded in G/Φ(E) by Claim (2) and [14, Chapter 1, Theorem 2.6(d)]. It follows from
Claim (4) and Lemma 2.11 that E is hypercyclically embedded in G. This contradiction
shows that (5) holds.

(6) Final contradiction.
Let R1 be a maximal subgroup of R such that R1�H1. Then |R1| > 1 by Claim (3). By

Claim (5), there exists a complement S of R in E (maybe S = 1). Let V = R1S. Then,
clearly, R1 = R ∩ V and V is a maximal subgroup of E. By the hypothesis and Claims
(2)−(5), there exists a σ-subnormal subgroup T of G such that G = V T and V ∩T ≤ VτσG .
In view of Claim (4) and Lemma 2.8(3), we have that VτσG is σ-quasinormal subgroup of
G. With the same discussion as Claim (6) in the proof of [42, Theorem 1.13], we have
that R1 = 1. This contradiction completes the proof. �

In order to prove Theorem 1.5, we first prove the following:

Lemma 3.2. Let G be a σ-full group of Sylow type, H a complete Hall σ-set of G such
that every member of H is supersoluble and P a normal p-subgroup of G. If every cyclic
subgroup H of P of prime order and order 4 (if P is a non-abelian 2-group and H �
Z∞(G)) is weakly τσ-quasinormal in G, then P is hypercyclically embedded in G.

Proof. Let H = {H1, · · · , Ht} be a complete Hall σ-set of G. We can assume without
loss of generality that Hi is a supersoluble σi-group for all i ∈ {1, · · · , t}. Assume that
this is false and let (G, P ) be a counterexample with minimal |G| + |P |. Without loss of
generality, we may assume that P ≤ H1.

(1) Let P/N be a chief factor of G. Then N is hypercyclically embedded in G. Hence N
is the unique normal subgroup of G such that P/N is a chief factor of G and |P/N | > p.

It is clear that (G, N) satisfies the hypothesis. Hence N is hypercyclically embedded in
G by the choice of (G, P ). Assume that G has another normal subgroup R ̸= N of G such
that P/R is a chief factor of G. Then R is also hypercyclically embedded in G. It follows
that P/N = RN/N is hypercyclically embedded in G/N . Hence P is hypercyclically
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embedded in G. This contradiction shows that N is the unique normal subgroup such
that P/N is a chief factor of G. It is also clear that |P/N | > p.

(2) The exponent of P is p or 4 (if P is a non-abelian 2-group).
Let C be a Thompson critical subgroup of P (see [12, p.185]). If Ω(C) < P , then

Ω(C) ≤ N is hypercyclically embedded in G by Claim (1). Hence by Lemma 2.11, P is
hypercyclically embedded in G, a contradiction. Hence Ω(C) = P , so by Lemma 2.12, the
exponent of P is p or 4 (if P is a non-abelian 2-group).

(3) Final contradiction.
Since H1/N is supersoluble and |P/N | > p, H1/N has a minimal normal subgroup

L/N such that 1 ̸= L/N < P/N and L/N is cyclic. Let x ∈ L\N and H = ⟨x⟩. Then
L = HN and |H| = p or 4 (if P is a non-abelian 2-group) by Claim (2). If H ≤ Z∞(G),
then L/N = HN/N ≤ Z∞(G)N/N ≤ Z∞(G/N) by [14, Chapter 1, Theorem 2.6(d)]. So
Z∞(G/N)∩P/N ̸= 1. Hence P/N ≤ Z∞(G/N) since P/N is a chief factor of G. It follows
from Claim (1) that P is hypercyclically embedded in G. This contradiction shows that
H � Z∞(G). Then by the hypothesis, there exists a σ-subnormal subgroup T of G such
that G = HT and H ∩ T ≤ HτσG . With a similar argument as Claim (6) in the proof
of Theorem 1.4, we have that HτσG is σ-quasinormal in G. In view of Claim (3) in the
proof of [8, Lemma 3.2], we obtain that L/N � G/N . This contradiction completes the
proof. �

Proof of Theorem 1.5. Let H = {H1, · · · , Ht} be a complete Hall σ-set of G. We can
assume without loss of generality that Hi is a supersoluble σi-group for all i ∈ {1, · · · , t}.
Assume that this is false and let (G, E) be a counterexample with minimal |G| + |E|. Let
P be a Sylow p-subgroup of E, where p is the smallest prime containing in π(E). Without
loss of generality, we may assume that P ≤ H1 ∩ E.

(1) H1 ∩ E is non-cyclic.
Assume that H1 ∩E is cyclic. Then P is cyclic. By [21, Chapter IV, Theorem 2.8], E is

p-nilpotent. Let Ep′ be a normal Hall p′-subgroup of E. Then Ep′ �G. If Ep′ = 1, then E
is cyclic, so E is hypercyclically embedded in G, a contradiction. Hence Ep′ ̸= 1. Clearly,
Hi ∩ Ep′ = Hi ∩ E for i = 2, · · · , t. This shows the hypothesis holds for (G, Ep′), so Ep′

is hypercyclically embedded in G by the choice of (G, E). But as E/Ep′ ∼= P is cyclic, it
follows that E is hypercyclically embedded in G. This contradiction shows that (1) holds.

(2) If E = P, then E is hypercyclically embedded in G.
This directly follows from Lemma 3.2 and Claim (1).
(3) E is not p-nilpotent.
Assume that E is p-nilpotent. Let Ep′ be a normal Hall p′-subgroup of E. Then

Ep′ �G. By Claim (2), Ep′ ̸= 1. Clearly, HEp′/Ep′ is a complete Hall σ-set of G/Ep′ and
HiEp′/Ep′ ∼= Hi/Hi ∩ Ep′ is supersoluble.

We claim that the hypothesis holds for (G/Ep′ , E/Ep′). In fact, HiEp′/Ep′ ∩ E/Ep′ = 1
for i = 2, · · · , t and H1Ep′/Ep′ ∩E/Ep′ = E/Ep′ . It is trivial when E/Ep′ is cyclic. We may
therefore, assume that E/Ep′ is non-cyclic. Let H/Ep′ be a cyclic subgroup of E/Ep′ of
order p or 4 (if the Sylow 2-subgroup of E/Ep′ is non-abelian and H/Ep′ � Z∞(G/Ep′)).
Then by Schur-Zassenhaus theorem, H = Ep′ o L and without loss of generality, we
may assume that L ≤ E ∩ H1. Note that if L ≤ Z∞(G), then H/Ep′ = LEp′/Ep′ ≤
Z∞(G)Ep′/Ep′ ≤ Z∞(G/Ep′) by [14, Chapter 1, Theorem 2.6(d)]. Hence L is of order p or
4 (if the Sylow 2-subgroup of E is non-abelian and L � Z∞(G)). Then by Lemma 2.10(4),
we see that the hypothesis holds for (G/Ep′ , E/Ep′). Hence E/Ep′ is hypercyclically
embedded in G/Ep′ by the choice of (G, E). On the other hand, it is clear that the
hypothesis holds for (G, Ep′), so Ep′ is hypercyclically embedded in G by the choice of
(G, E). Therefore E is hypercyclically embedded in G, a contradiction. Hence we have
(3).

(4) Final contradiction.



Finite groups with given weakly τσ-quasinormal subgroups 1715

By Claim (3), [21, Chapter IV, Theorem 5.4] and [13, Theorem 3.4.11], E has a p-closed
Schmidt subgroup S = P1 oQ, where P1 is a Sylow p-subgroup of S of exponent p or 4 (if
P1 is non-abelian 2-group), Q is a Sylow q-subgroup of S for some prime q ̸= p, P1/Φ(P1)
is an S-chief factor, Z∞(S) = Φ(S) and Φ(S) ∩ P1 = Φ(P1).

We claim that |P1 : Φ(P1)| = p. If q ∈ π(H1), then S is a σ1-group, and so S ≤ Hg
1 for

some g ∈ G since G is a σ-full group of Sylow type. Since H1 is supersoluble and P1/Φ(P1)
is an S-chief factor, |P1 : Φ(P1)| = p. Now we consider that q /∈ π(H1). Assume that there
exists a minimal subgroup D/Φ(P1) of P1/Φ(P1) such that D/Φ(P1) is not σ-quasinormal
in S/Φ(P1). Let x ∈ D\Φ(P1) and U = ⟨x⟩. Then D = UΦ(P1) and |U | = p or 4 (if P1
is non-abelian 2-group). If U ≤ Z∞(G), then U ≤ Z∞(S) ∩ P1 = Φ(S) ∩ P1 = Φ(P1),
a contradiction. Hence U � Z∞(G). Then by the hypothesis and Lemma 2.10(3), U
is weakly τσ-quasinormal in S. Hence there exists a σ-subnormal subgroup T of S such
that S = UT and U ∩ T ≤ UτσS . Let UτσS = ⟨U1, · · · , Ut⟩, where U1, · · · , Ut are all non-
identity τσ-quasinormal subgroups of S contained in U . Lemma 2.8(3) implies that Ui is
σ-quasinormal in S since Ui ≤ P1 � S. Then by Lemma 2.5, UτσS is σ-quasinormal in S.
Arguing as for Claim (2) in the proof [8, Proposition 3.1], we have that |P1 : Φ(P1)| = p.
Hence P1 is cyclic of exponent p. This implies that P1 is a group of order p. Since
NS(P1)/CS(P1) . Aut(P1) is a group of order p−1 and p is the smallest prime containing
in π(E), it follows that NS(P1) = CS(P1) = S. Thus Q�S. This contradiction completes
the proof. �

4. Some applications of our results
By Theorems 1.4 and 1.5, we may obtain the following results.

Corollary 4.1. Let F be a saturated formation containing all supersoluble groups and E
a normal subgroup of G such that G/E ∈ F. Suppose that G is a σ-full group of Sylow
type and H a complete Hall σ-set of G such that every member of H is nilpotent. If
every maximal subgroup of any non-cyclic H ∈ E ∩H is weakly τσ-quasinormal in G, then
G ∈ F.

Corollary 4.2. Let F be a saturated formation containing all supersoluble groups and E
a normal subgroup of G such that G/E ∈ F. Suppose that G is a σ-full group of Sylow
type and H a complete Hall σ-set of G such that every member of H is supersoluble. If
every cyclic subgroup H of any non-cyclic T ∈ E ∩ H of prime order and order 4 (if the
Sylow 2-subgroup of E is non-abelian and H � Z∞(G)) is weakly τσ-quasinormal in G,
then G ∈ F.

Corollary 4.3. Let F be a saturated formation containing all supersoluble groups and E
a normal subgroup of G such that G/E ∈ F. Suppose that G is a σ-full group of Sylow
type and H a complete Hall σ-set of G such that every member of H is nilpotent. If every
maximal subgroup of any non-cyclic H ∈ F ∗(E) ∩ H is weakly τσ-quasinormal in G, then
G ∈ F.

Proof. By the hypothesis and Theorem 1.4, we obtain that F ∗(E) is hypercyclically
embedded in G. Then E is hypercyclically embedded in G by Lemma 2.13. Hence by
Lemma 2.14, G ∈ F. �

A similar argument as in the proof of Corollary 4.3, we can get the following corollary
from Theorem 1.5.

Corollary 4.4. Let F be a saturated formation containing all supersoluble groups and E
a normal subgroup of G such that G/E ∈ F. Suppose that G is a σ-full group of Sylow
type and H a complete Hall σ-set of G such that every member of H is supersoluble. If
every cyclic subgroup H of any non-cyclic T ∈ F ∗(E) ∩ H of prime order and order 4 (if
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the Sylow 2-subgroup of E is non-abelian and H � Z∞(G)) is weakly τσ-quasinormal in
G, then G ∈ F.

Theorems 1.3-1.5 and Corollaries 4.1-4.4 cover lots of known results, in particular, [7,
Theorem 3], [37, Theorems 1 and 2], [42, Theorems 1.5 and 1.13, Corollaries 1.6 and
1.14, and Proposition 4.1], [8, Theorems 1.2 and 1.10], [21, Chap. VI, Theorem 10.3],
[28, Corollary 3.4], [31, Theorem 1.4], [38, Theorem 4.1], [3, Theroems 3.2 and 4.1, and
Corollary 4.4], [2, Theroems 1.3 and 1.4], [39, Theorem 1 and Corollary 1], [29, Theorem
3.5], [24, Theorem 2], [40, Theorem 3.1], [25, Theorem 3.4], [1, Theorem 3.1], [5, Theorems
2 and 5].
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