Combustion, performance and emission characteristics of a HCCI engine fuelled with n-butanol/n-heptane blends

Bilal Aydoğan¹*, Alper Calam²

¹,² Burdur Mehmet Akif Ersoy University, High Vocational School of Technical Sciences, 15100 Burdur, Turkey
²Gazi University, High Vocational School of Technical Sciences, 06760, ANKARA, Turkey

ARTICLE INFO

ABSTRACT

* Corresponding author
baydogan@mehmetakif.edu.tr

Received: July 18, 2019
Accepted: Dec 19, 2019

© This article is distributed by Turk Journal Park System under the CC 4.0 terms and conditions.

Homogeneous charge compression ignition (HCCI) combustion can achieve very low NOx and soot emissions but knocking and misfiring restrict the operating range of this kind of engines. In this work, n-butanol which has low reactivity and high volatility blended with n-heptane that choosen as reference fuel in this study with various rates (25 vol% and 50 vol%). The experiments performed at various engine speeds (800-1800) and lambda (λ=1.6-2.95) at full load and 60 °C inlet air temperature. the parameters such as in-cylinder pressure, heat release rate, CA10, ringing intensity, thermal efficiency, brake torque, power output, specific fuel consumption, and HC and CO emissions were determined. The results showed that both in-cylinder pressure and heat release rate decreased with increasing lambda. Increasing amount of n-butanol in the charge mixture resulted a decrease both in-cylinder pressure and heat release rate. n-butanol also provided retarded combustion phasing and increased CA10. Ringing intensity decreased with increasing both lambda and n-butanol content in the mixture. Thermal efficiency increased with n-butanol. HC and CO emissions increased with increasing lambda. HC and CO emissions increased with increasing amount of n-butanol in the charge mixture. Operating range of HCCI engine was expanded with n-butanol in both knocking and misfiring zones.

Keywords: HCCI, n-butanol, combustion, n-heptane

1. Introduction

Petroleum based fuels are widely used in many fields such as transportation sector in the world. With the development of technology, the use and consumption of fossil fuels, however, the damage to the environment and the atmosphere is increasing day by day. Especially strict limitations of the environmental pollution has canalized the researchers to different engine and combustion techniques [1]. The gas temperature at the end of the combustion increases at high loads and rich mixtures and NO generation occurs. At the same time, locally rich mixture areas occurs due to the heteregeneous mixture in the combustion chamber and HC and smoke generate. Homogenous charge compression
ignition (HCCI) engines have high efficiency due to high compression ratio and a shorter combustion duration and ultra low NOx emissions owing to low combustion temperatures [2-6]. Furthermore, HCCI engines have less soot and particulate matter than SI and diesel engines because lean and homogenous air/fuel mixture is taken into the cylinder [7-9]. Despite all these advantages, ignition can not be controlled directly and autoignition is controlled by chemical kinetics of the fuel [10-12]. Besides, the operating of HCCI engines is restricted by knocking and misfiring [13-15]. Several studies has been performed by many researchers to eliminate these disadvantages and various methods have been proposed like EGR (exhaust gas recirculation) [16-18], changing valve lift [19, 20], changing inlet air temperature [21, 22], changing compression ratio [23], using different fuels [24-26]. HCCI engines have also fuel flexibility such as diesel, gasoline, natural gas and some alcohols [27-29]. Various alcohols including ethanol [30, 31], methanol [32-33], diethyl ether [34-35] and others [36-37] have been used and blended with primary reference fuels, isopropanol and n-heptane in HCCI engines.

Butanol is renewable fuel that have various advantages for internal combustion engines. Butanol can be obtained from the fermentation of the biomass feedstock. Butanol in diesel and HCCI engines has been examined as a blend with different fuels. He et al [38] investigated the effects of n-butanol and blends with gasoline on combustion and emission characteristics of a single cylinder port fuel injection four-stroke HCCI/CAI engine. They have reported that autoignition occurred earlier and combustion duration was shortened when the amount of n-butanol increased in the mixture. Furthermore, imep decreased when the engine speed and n-butanol was increased. Li et al [39] searched the effects of n-butanol/n-heptane blends on knock tendency and cyclical variations of a HCCI combustion operation conducted 2nd cylinder of a natural aspirated four stroke diesel engine. The experiments showed that knock tendency decreased with increasing of n-butanol volume fraction. Higher heat release rate which cause knock tendency was obtained when engine speed and intake temperature increased. Liu et al [40] investigated the effect of air dilution and effective compression ratio on the combustion characteristics of a single cylinder four-stroke HCCI engine fuelled with n-butanol. It was found that autoignition timing was retarded by air dilution and decreasing effective compression ratio. However, air dilution caused reduced maximum pressure rise rate and increased combustion duration. Zheng et al [41] studied the effects of n-butanol in a HCCI combustion mode. They performed their experiments on a single-cylinder high compression ratio (18.2:1) diesel engine without any modifications. The results showed that ultra-low NOx and smoke emissions were observed with n-butanol. N-butanol with low reactivity helped in realizing an optimal combustion phasing. Mack et al [42] investigated of n-butanol and isobutanol combustion in HCCI engine. N-butanol showed slightly more stable engine operation and misfiring occured under very lean conditions. Higher heat release rate was observed at the begining of combustion. N-butanol has lower knocking resistane compared to isobutanol, gasoline and ethanol. The emissions of n-butanol and isobutanol are in the same range as ethanol and gasoline. He et al [43] studied the combustion of n-butanol/ethanol-gasoline blends in a HCCI engine. They used a single cylinder port fuel injection gasoline engine. They have reported that alcohol type and the concentration of the alcohol are the main parameters which effect the autoignition timing. The alcohol and gasoline blends autoignitned more easily than gasoline and the autoignition timing was earlier than ethanol-gasoline for n-butanol-gasoline blends.

In this study, the effects of n-butanol/n-heptane blends on combustion, performance and emission characteristics on a HCCI engine and the results were compared with pure n-heptane. The combustion parameters such as in-cylinder pressure, heat release rate, CA10, combustion duration, ringing intensity, thermal efficiency, power output, brake torque, specific fuel consumption, and HC and CO emissions were determined. And the operating range of HCCI combustion was also obtained.

2. Materials and Methods

A single cylinder, port injection, four stroke gasoline HCCI engine was used to perform
experiments. The technical properties of the test engine was given in Table 1 and the schematic diagram of the experimental setup was given in Figure 1. DC dynamometer which was rated 30 kW/6500 rpm engine speed was conducted to the engine. The experiments were performed at range of 800-1800 rpm engine speed and \(\lambda=1.61\) and \(\lambda=2.95\). K-type thermocouple was used to measure temperatures.

In-cylinder pressure was measured with Kristler model 6121 piezoelectric pressure transducer. Pressure data was scaled up by Cussons P4110 combustion analysis device. The data was converted to digital signals by National Instruments USB 6259 data acquisition card. The pressure data of the cylinder were recorded in the computer.

\[
\text{Imep} = \frac{W_{\text{net}}}{V_d}
\]

\[
W_{\text{net}} = \int PdV
\]

\[
dQ = \frac{k}{k-1} P \frac{dV}{d\theta} + \frac{1}{k-1} V \frac{dP}{d\theta} + \frac{dQ_{\text{heat}}}{d\theta}
\]

Thermal efficiency calculated with the ratio between the net work and released energy from fuel (Eq. (4)).

\[
\eta_T = \frac{W_{\text{net}}}{m_{\text{fuel1}} \cdot Q_{\text{LHV1}} + m_{\text{fuel2}} \cdot Q_{\text{LHV2}}}
\]
3. Results and Discussion

Figure 2. shows the variation of in-cylinder pressure and heat release rate of the test fuels versus crank angle at 1000 rpm engine speed and 60 °C inlet air temperature. n-heptane was used as base fuel in the experiments. It is clearly seen that knocking combustion occurred with n-heptane at lower value of the lambda. Knocking combustion disappeared when the n-butanol was added in the charge mixture owing to higher octane number of n-butanol. In other words, more stable HCCI combustion occurred. When the Figure 2 was examined, it is possible to say that heat release rate significantly decreased when the amount of n-butanol increased.

Combustion phasing retarded when the lambda was increased. As it can be clearly seen from the Figure 2 that HCCI combustion was achieved closer to dead top center when the amount of n-butanol increased in the mixture due to higher octane number which increased the resistance to auto-ignition. Furthermore, both in-cylinder pressure and heat release rate increased by decreasing the value of lambda. It is because the higher charge concentration increases the reaction rate and accelerates the heat release progress resulting in increase of maximum pressure.

Figure 3 illustrates the variations of CA10 versus lambda. CA10 is defined as the crank angle where the 10% mass fraction burned [45]. Start of combustion (SOC) can also be defined by CA10. Combustion phasing was advanced with the increase of lambda for all test fuels. The CA10 value of n-heptane was determined as 6.58 °CA BTDC for \(\lambda = 2.4 \). However, CA10 was found as 1.8 °CA BTDC and 5.76 °CA ATDC for 25BUT75HEP and 50BUT50HEP, respectively, for \(\lambda = 2.4 \). It is seen that auto-ignition was retarded with increasing the lambda owing to lower fraction of fuel at leaner charge mixture.

The effect of n-butanol addition at 1000 rpm engine speed and 60 °C inlet air temperature versus lambda was given in Figure 4. Ringing intensity is an important parameter which limits the operating range of HCCI combustion [46].

Engine speed, maximum in-cylinder pressure and combustion rate are the major parameters which effect the ringing intensity [47]. It can be clearly seen from the Figure 4. that ringing intensity decreased with increasing lambda. As it was mentioned before that knocking combustion reduced in leaner charge mixture.
and thereby combustion noise decreased. In the other words, ringing intensity decreased with leaner charge mixture. Ringing intensity decreased also with increasing amount of n-butanol in the charge mixture due to higher octane number of n-butanol that that of n-heptane. The lowest value of ringing intensity was obtained for 50BUT50HEP.

Figure 4. The variations of ringing intensity versus lambda

The variations of brake torque, power output and specific fuel consumption versus engine speed was given in Figure 5. Power output increased with increasing the engine speed and then decreased after a specific value. This decrease depends on the friction losses and insufficient oxygen at high engine speeds. The maximum power output was found as 0.56 kW for n-heptane at 1400 rpm engine speed. The corresponding value was 0.89 kW for 50BUT50HEP at 1200 rpm engine speed. Brake torque similarly increased to until a specific value and then decreased. It can be explained with gas leakages and heat losses occurred at high engine speeds. 50BUT50HEP showed higher power output and brake torque than the other test fuels. Lower power output and brake torque was obtained for n-heptane for each engine speed. the maximum brake torque was obtained as 7.15 Nm for 50BUT50HEP at 1200 rpm engine speed. When Figure 5 was examined, it is possible to say that specific fuel consumption firstly decreased and then increased unlike power output and brake torque. SFC was found as 0.24, 0.42 and 0.54 kg/kWh for 25BUT75HEP, 50BUT50HEP and 100HEP, respectively.

Figure 5. The variations of brake torque, power output and specific fuel consumption

The effect of test fuels on thermal efficiency was given in Figure 6. Thermal efficiency firstly increased and then started to decrease. The maximum values of thermal efficiency were obtained as 48%, 32% and 27% for 25BUT75HEP, 50BUT50HEP and 100HEP, respectively. The corresponding maximum values were found at \(\lambda = 2.68, \lambda = 2.46 \) and \(\lambda = 2.42 \) where the whole fuel molecules can be reacted and oxidized for 25BUT75HEP, 50BUT50HEP and 100HEP, respectively.
respectively. Released heat energy decreased at leaner charge mixture resulting decrease in thermal efficiency. The maximum value of thermal efficiency was found for 25BUT75HEP. Higher density and considerable calorific value of n-butanol demonstrated higher thermal efficiency as a result of combustion of higher fuel mass by volume. On the contrary, more n-butanol fraction leads to decrease thermal efficiency owing to lower heating value. So, it can be pointed out that 25BUT75HEP was seen to be the best fuel in view of engine performance and thermal efficiency. Knocking and misfiring are the most important parameters which restrict the HCCI combustion. The fuels with high octane number can eliminate the knocking problem. Figure 7 represents the HCCI operating range for the test fuels versus engine speed. As it can be seen from the Figure 7 that HCCI combustion was achieved at misfiring zone for n-heptane. But HCCI combustion could not be obtained with 25BUT75HEP and 50BUT50HEP in a large misfiring zones. On the contrary, HCCI combustion could not be achieved with n-heptane in a large knocking zone. When the Figure 7 was examined, it is possible to say that HCCI combustion could be performed with the test fuels added n-butanol between 800 and 1800 rpm engine speed. Besides, HCCI combustion could not be performed with n-heptane at 1800 rpm engine speed. 25BUT75HEP presented larger region at partial combustion. 25BUT75HEP caused to improve complete auto igniton combustion. Stable HCCI combustion was achieved with 25BUT75HEP and 50BUT50HEP in misfiring zone. Namely, poorer charge mixture can be able to combust with the addition of n-butanol compared to n-heptane. N-butanol addition showed better performance in misfiring zone compared to knocking zone as seen in Figure 7. Broader operating range of HCCI was seen with fuel blends. Figure 8 shows the variation of the HC and CO emissions versus lambda at 100 rpm engine speed and 60 °C inlet air temperature. As it was mentioned above that HCCI combustion has low combustion temperatures. Low combustion temperature results insufficient oxidation of the fuel and cause high HC emission. HC emission increased with increasing lambda for each test fuels. The amount of fuel taken into the cylinder decreases when the lambda
increases and more incomplete combustion occurs. In the other words, in-cylinder pressure and combustion efficiency increases because more fuel is burned as the air/fuel mixture closes to the stoichiometric ratio. So, HC emission decreases. The HC emission was found as 349, 341 and 388 ppm for 100HEP, 25BUT75HEP and 50BUT50HEP, respectively, at $\lambda=2.4$. Incomplete combustion is the major effect which generates the CO emission. It is seen from the Figure 8 that CO emissions increased when the lambda increased since less amount of fuel was taken into the cylinder and more incomplete combustion occurred. CO emissions of 100HEP, 25BUT75HEP and 50BUT50HEP were obtained as 0.072, 0.095 and 0.153 %, respectively, at $\lambda=2.4$.

4. Conclusions

An investigation on the combustion, performance and emissions of n-butanol/n-heptane fuelled HCCI engine has been carried out at various engine speed and lambda values. Knocking combustion was observed for n-heptane at rich mixtures but knocking disappeared when n-butanol was added into the mixture. Both in-cylinder pressure and heat release rate decreased with increasing of n-butanol in the mixture. Besides, CA10 was moved to ATDC from BTDC for 50BUT50HEP. The CA10 values of 100HEP, 25BUT75HEP and 50BUT50HEP were 6.58 °CA (BTDC), 1.8 °CA (ATDC) and 5.76 °CA (ATDC) at $\lambda=2.4$. Ringing intensity decreased with increasing of lambda value. Power output and brake torque showed similar tendency, firstly increased and then decreased when reached to specific value. Thermal efficiency increased with increasing of lambda. 25BUT75HEP showed the maximum thermal efficiency compared to two other test fuels. 25BUT75HEP showed about 21% higher thermal efficiency than 100HEP when the maximum values were compared. CO and HC emissions increased when the lambda increased. Furthermore, the addition of n-butanol into the mixture increased HC and CO emissions.

Abbreviations

HCCI : Homeogeneous charge compression ignition
Imep : Indicated mean effective pressure
BTDC : Before top dead center
ATDC : After top dead center
EGR : Exhaust gas recirculation

Nomenclature

W_{net} : Net work
V_d : Cylinder swept volume
P : Cylinder pressure
dV : Variation of cylinder volume
dQ : Heat release
dθ : Crank angle
m_{fuel} : Consumed fuel per cycle
Q_{LVH} : Heating value of the fuel

5. References

HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels”, Fuel Processing Technology, 130, 275-281, 2015.

