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Abstract

We shall determine the coding matrix of the semi-direct product group G = Cn oφ Cm ;
φ : Cm −→ Aut(Cn) of two cyclic groups in order to generalize the known result for the
dihedral group D2n, which is known to be a semi-direct of the two cyclic groups Cn , C2.

1. Introduction

An (n,k)-linear code C of length n over the finite field of q elements Fq is a k-dimensional subspace of Fn
q. It gained more

attention from the work of W. Hamming in 1950 [1]. The first connection between codes and group rings of finite groups
appeared in the work of F. G. MacWilliams (1969) [2]. In (2006) T. Hurley [3] (starting with a coding matrix of the finite
group G based on an appropriate listing of its elements) proved that the group ring RG of a finite group of order n over a ring R
is isomorphic to certain well-defined ring of matrices, and hence gave a construction of codes from certain elements of the
group ring such as units and zero divisors [4]. The coding matrices were determined for several classes of finite groups such as
cyclic [3], elementary-abelian [3], dihedral groups D2n [3], direct product [5] and the general linear group GL(2,F) [6].
In this paper, we shall generalize Hurley’s theorem in [3] to Cn oφ C2 as a special case of Cn oφ Cm and we will decide the
form of the coding matrices of Cn oφ Cm.

The paper is organized as follows in section 2, we present some definitions and basic results with examples about group rings,
coding matrices of group rings and codes. In section 3, we determine the coding matrix of the semi-direct product group of
two cyclic groups with illustrative examples.

2. Preliminaries

Let G be a finite group of order n, and {g1,g2, ...,gn} be a fixed listing of the element of G. Consider the matrix of G relative
to its listing, M(G), which has the following form:

M(G) =


g−1

1 g1 g−1
1 g2 . . . g−1

1 gn

g−1
2 g1 g−1

2 g2 . . . g−1
2 gn

...
...

...
...

g−1
n g1 g−1

n g2 . . . g−1
n gn


n×n

.
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Then for each u = ∑
n
i=1 αgigi ∈ RG, define the matrix M(RG,u) ∈Mn(R) as follows:

M(RG,u) =


αg−1

1 g1
αg−1

1 g2
. . . αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

. . . αg−1
2 gn

...
...

...
...

αg−1
n g1

αg−1
n g2

. . . αg−1
n gn


n×n

.

It is quite clear that the shape as well as the coefficients of the coding matrix M(RG,u) depends on the listing of the group
elements of the group G.
In [3], T. Hurley proved that the group ring RG of a group G of order n over a ring R is isomorphic to a certain ring of (n×n)
matrices over R.

Theorem 2.1. ( [3], Theorem 1 )
Let G be a group of order n with the given listing of the elements, then there is a bijective ring homomorphism is given by

σ : u−→M(RG,u)

between RG and the ring of (n×n) G-matrices over R.

The coding matrices are known for several types of groups, for details see [3].

Definition 2.2. • Let R be a ring, a non zero element u = ∑g∈G αgg ∈ RG is called a zero-divisor if and only if there exists
a non zero element v ∈ RG such that uv = 0 or vu = 0.

• Let R be a ring with identity IR 6= 0, an element u ∈ RG is called a unit if and only if there exists an element v ∈ RG,
such that uv = 1 = vu.

Definition 2.3. • Let C be an (n,k)-code and let G be a (k×n)-matrix whose rows are the basis for C, then G is called a
generator matrix for C.

• A parity-check matrix H for an (n,k)-code C is a generator matrix of C⊥, such that the dual code C⊥ is defined by
C⊥ = {u ∈ Fn

q | u.v = 0 f or all v ∈C}.
Definition 2.4. Let RG be the group ring of the group G over the ring R, where the listing of the elements of G is given by
{g1,g2, . . . ,gn}. Suppose W is a submodule of RG, x ∈W and u ∈ RG is given. Then the group ring encoding is a mapping
f : W −→ RG such that f (x) = xu or f (x) = ux. In the first case, f is a right group ring encoding and in the letter case is a
left group ring encoding.

Thus, a code C derived from a group ring encoding is the image of a group ring encoding, for a given u ∈ RG, either
C = {ux : x ∈W} or C = {xu : x ∈W}.
The map θ : RG→ Rn, θ(∑n

i=1 αgigi) = (α1,α2, ...,αn) is a ring isomorphism from RG to Rn. Thus every element in RG can
be considered as n-tuple in Rn.
In the group ring the multiplication is not necessary be commute, and this allows the construction of non-commutative.

Definition 2.5. If xu = ux for all x, then the code C = {xu : x ∈W} is said to be commutative, and otherwise non-commutative
codes.

When u is a zero-divisor, it generates a zero-divisor code and when it is a unit, it generates a unit-derived code. The structure
of codes from unit and zero-divisor in RG where done by P. Hurley and T. Hurley in [4] , [7].

Example 2.6. Let R = Z2 = {0,1} be the finite field of two elements and G = S3 =≺ a,b | a3 = b2 = 1,ba = a2b �=
{1,a,a2,b,ab,a2b} be the symmetric group of order 6. Then the coding matrices of S3 is:

× 1 a a2 a2b ab b
1 1 a a2 a2b ab b
a2 a2 1 a ab b a2b
a a a2 1 b a2b ab

a2b a2b ab b 1 a a2

ab ab b a2b a2 1 a
b b a2b ab a a2 1

Thus,

M(S3) =


1 a a2 a2b ab b
a2 1 a ab b a2b
a a2 1 b a2b ab

a2b ab b 1 a a2

ab b a2b a2 1 a
b a2b ab a a2 1


6×6
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And the group ring RG=Z2S3 =∑g∈S3
αgg |αg ∈Z2 = {c0+c1a+c2a2+c3a2b+c4ab+c5b ; ci ∈Z2}, Such that (Z2S3,+, .)

is F-algebra. From T. Hurley’s theorem : Z2S3 ↪→M|S3|×|S3| (Z2). So, if u ∈ Z2S3 ; u = c0 + c1a+ c2a2 + c3a2b+ c4ab+ c5b ,
then :

M(Z2S3,u) =


c0 c1 c2 c3 c4 c5
c2 c0 c1 c4 c5 c3
c1 c2 c0 c5 c3 c4
c3 c4 c5 c0 c1 c2
c4 c5 c3 c2 c0 c1
c5 c3 c4 c1 c2 c0


6×6

For the unit element u = 1+a+a2 +ab+a2b ∈U(Z2S3) there exists u−1 = 1+a+a2 +ab+a2b such that uu−1 = 1. Then
we have M(Z2S3,u) as follows :

M(Z2S3,u) =


1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1


6×6

Also , from Hurley’s theorems : If R has an identity 1R, then u ∈ RG is a unit if and only if σ(u) is a unit in Rn×n. Hence we
have the invertible matrix as follows :

U =

(
A
B

)
and V =

(
C D

)
such that UV = 16 in R6×6 .

Taking any r rows of U as a generator matrix define an (n,r)-code. Then we have

A =

1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1


3×6

, B =

1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1


3×6

,

C =


1 1 1
1 1 1
1 1 1
1 1 0
1 0 1
0 1 1


6×3

and D =


1 1 0
1 0 1
0 1 1
1 1 1
1 1 1
1 1 1


6×3

.

Such that

AC = BD =

1 0 0
0 1 0
0 0 1


3×3

and AD = BC =

0 0 0
0 0 0
0 0 0


3×3

.

Then,

UV =

(
A
B

)
.
(
C D

)
=

(
AC AD
BC BD

)
=

(
I3 O3
O3 I3

)
= I6×6.

The linear code C of dimension k = 3, generated by the matrix

A =

1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1


3×6

,

is the unit derived code C = {ux | x ∈W}, where S = {a} ⊂ G and W =≺ a �= {1,a,a2}. The dual code C⊥ is the linear
code generated by the matrix

DT =

1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1


3×6

,

with dimension n− k = 3. The dual code can be considered as the submodule C⊥ = {(u−1)T y | y ∈W⊥}, where W⊥ =≺
G− S �= {a2b,ab,b}. So, C = {ux | x ∈W} = {1+ a+ a2 + a2b+ ab,1+ a+ a2 + b+ a2b,1+ a2 + a+ ab+ b}, θ(C) =
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{111110,111101,111011}, and C⊥= {(u−1)T y | y∈W⊥}= {1+a2b+ab+b+a,1+ab+b+a2b+a2,b+a2b+ab+b+a},
θ(C⊥) = {110111,101111,011111}. Clearly, the matrix A is the generator matrix for an (6,3)-code, and DT is the parity-
check matrix for this code, since it is a generator matrix of C⊥ as defined in (definition 2.3 ).

3. Coding matrices of semi-direct product groups

Definition 3.1. Let H and K be groups and let φ be a homomorphism,

φ : K −→ Aut(H)

Then the semi-direct product of H and K with respect the action φ is the group G containing of ordered pairs (h,k) with h ∈ H
and k ∈ K defined by:

(h1,k1)(h2,k2) = (h1φk1h2,k1k2)

Where φk(h) = kh = khk−1,∀h ∈ H,k ∈ K.

Denote of semi-direct product by H oφ K (or simply, write H oK).

Example 3.2. Let G = S3, let N be the normal subgroup of order 3 generated by a 3-cycle, and let H be a subgroup of order 2
generated by a 2-cycle. Then G = N oH. This example generalizes a long two different lines:

1 • Let G = Sn , N = An and H a subgroup of order 2 generated by a 2-cycle. Then G = N oH.
2 • Let G = D2n, the dihedral group of order 2n. Then let N =Cn and H =C2. Then D2n ∼=Cn oC2.

We will decide the coding matrices of the semi-direct product groups Cn oCm as following:
Consider G = Cn oCm; Cn /G of two groups Cn =< x >= {x | xn = 1} and Cm =< y >= {y | ym = 1}. We may list the
elements of the semi-direct product Cn oCm as follows: xiy j ; 0 6 i 6 n−1, 0 6 j 6 m−1 :

1,x,x2, . . . ,xn−1 , y,xy,x2y, . . . ,xn−1y , y2,xy2,x2y2, . . . ,xn−1y2 , . . . . . . . . . ,ym−1,xym−1,x2ym−1, . . . , xn−1ym−1 . (3.1)

( m blocks each with n elements).
This product defined by the action of Cm on Cn (or group homomorphism) given by φ : Cm −→ Aut(Cn) ; Cn oCm = {xiy j :
xi ∈Cn , y j ∈Cm | xiy j.xsyt = xiφy j xs.y jyt}. The inverse of the element xiy j in Cn oCm is φ(m− j)xn−i.ym− j.
In fact, the automorphism group Aut(Cn) is one to one correspondence with the set {xr | hc f (n,r) = 1} of generators of Cn, so
|Aut(Cn)|= ϕ(n) , where ϕ is the Euler function.

Definition 3.3. The Euler ϕ-function is defined as: for n ∈ Z+, let ϕ(n) be the number of positive integers a 6 n with
(a,n) = 1.

Here, the non-identity element of C2 acts on Cn by inverting elements; this is an automorphisms since Cn is an abelian, and the
presentation for this group is: < xy|xn = ym = 1,yxy−1 = x−1 >.
More generally, a semi-direct product of any two cyclic groups Cn with generator x and Cm with generator y is given by one
extra relation, yxy−1 = xk, with (k,n) = 1, where Aut(Cn) : x −→ xk for some k; that is, the presentation: < xy|xn = ym =
1,yxy−1 = xk >.
If yr is a generator of Cm and (r,m) = 1, hence we have the presentation: < xy|xn = ym = 1,yrxyr−1

= xkr
>.

Now, taking the trivial homomorphism φ : Cm −→ Aut(Cn); Cm 7→ ICn gives the direct product G =Cn oCm =Cn×Cm.
And consider G = Cn oCm, we need to know when there is a non-trivial homomorphism φ : Cm −→ Aut(Cn) but since
Aut(Cn)∼=Cϕ(n) and since Hom(Cm,Cϕ(n))∼=Chc f (m,ϕ(n) ) we have the following:

Lemma 3.4. There is a non-trivial homomorphism φ : Cm −→ Aut(Cn) iff hc f (m,ϕ(n)) 6= 1.

Proof. We have Hom(Cm,Cϕ(n)) ∼= Chc f (m,ϕ(n) ). If hc f ( m,ϕ(n) ) = 1 then Hom(Cm,Cϕ(n)) ∼= C1 the trivial subgroup and
so the only element φ ∈ Hom(Cm,Cϕ(n)) is the trivial one given by φ(y) = ICn . Conversely, suppose that hc f (m,ϕ(n)) 6= 1,
to define φ ∈ Hom(Cm,Cϕ(n)) by φ(y) : x 7−→ xt (where 1≤ t < ϕ(n) with hc f (t,ϕ(n)) 6= 1 in order for xt to be a generator
for Cϕ(n)), we must have order(φ(y)) | m (as ym = 1) and order(φ(y)) | ϕ(n) (as φ(y) ∈ Cϕ(n)). But this is possible since
hc f (m,ϕ(n)) 6= 1.

So for example there will be no non-trivial semi-direct product Cn oCm (i.e. different from the direct product Cn×Cm) if
hc f (m,ϕ(n)) = 1, for instance C4 oC3 the only homomorphism φ : C3 −→ Aut(C4) is the one which takes y ∈Cm =< y >
to the identity IC4 ∈ Aut(C4) =< θ3 >= {IC4 ,θ3};θ3 : x 7−→ x3 = x−1, therefore the only semi-direct product C4 oC3 is the
direct product C4×C3.
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Definition 3.5. • A circulant matrix is special type of Toeplitz matrix, which is one that is constant a long any diagonal
running from upper left to lower right.

• A (general) Hankel matrix is one which is constant on any diagonal from upper right to lower left.

In the following examples, we will clarify the coding matrices of Cn oCm .

Example 3.6. The semi-direct product of C3 oC4 ; C3 =≺ x | x3 = 1�= {1,x,x2} and C4 =≺ y | y4 = 1�= {1,y,y2,y3}.
The listing of elements of C3 oC4 are : 1,x,x2,y,xy,x2y,y2,xy2,x2y2,y3,xy3,x2y3. And it has non-trivial homomorphism
since (4,ϕ(3) ) = (4,2) = 2 6= 1, the action of C4 on C3 given by φ : C4 → Aut(C3), such that Aut(C3) is φ : C3 −→ C3
; | Aut(C3) |= ϕ(3) = 2, hence it has Aut(C3) = {φ1 : x −→ x , φ2 : x −→ x2}. At φ1 give us the semi-direct prod-
uct as a direct product, but at φ2 give us the semi-direct product with the presentation < xy|x3 = y4 = 1,yxy−1 = x2 > ;
C3 oC4 = { xy : x ∈ C3 , y ∈ C4 : x1y1.x2y2 = x1φy1(x2).y1y2 } and the inverse of the element xy is (φy−1(x−1).y−1) as
following:

at φ2

o 1 x x2 x2y xy y x2y2 xy2 y2 x2y3 xy3 y3

1 1 x x2 x2y xy y x2y2 xy2 y2 x2y3 xy3 y3

x2 x2 1 x xy y x2y xy2 y2 x2y2 xy3 y3 x2y3

x x x2 1 y x2y xy y2 x2y2 xy2 y3 x2y3 xy3

x2y3 x2y3 xy3 y3 1 x x2 y xy x2y y2 xy2 x2y2

xy3 xy3 y3 x2y3 x2 1 x x2y y xy x2y2 y2 xy2

y3 y3 x2y3 xy3 x x2 1 xy x2y y xy2 x2y2 y2

xy2 xy2 x2y2 y2 y3 x2y3 xy3 1 x2 x y x2y xy
x2y2 x2y2 y2 xy2 xy3 y3 x2y3 x 1 x2 xy y x2y
y2 y2 xy2 x2y2 x2y3 xy3 y3 x2 x 1 x2y xy y
x2y x2y xy y y2 xy2 x2y2 y3 xy3 x2y3 1 x x2

xy xy y x2y x2y2 y2 xy2 x2y3 y3 xy3 x2 1 x
y y x2y xy xy2 x2y2 y2 xy3 x2y3 y3 x x2 1

It follows that the coding matrix

M(C3 oC4) =


T0 H1 H2 H3
H4 T1 T2 T3
H5 T4 T5 T6
H6 T7 T8 T9


12×12

,

is a block matrix consisting of 16 = 4×4 matrices all are of size (3×3)-matrices from which 10 = (4−1)2 +1 are circulant
(Toeplitz) matrices and 6 = 2(4−1) Hankel-type-matrices.

Example 3.7. Consider the semi-direct product C7oC3, C7 =≺ x | x7 = 1�= {1,x,x2,x3,x4,x5,x6} and C3 =≺ y | y3 = 1�=
{1,y,y2}, where φ : C3 −→ Aut(C7)∼=C6. In fact Aut(C7) = {θi|i = 1,2,3,4,5,6}=< θ3 >=< θ5 >∼=C6 ; i.e. order(θ3) =
order(θ5) = 6, while order(θ2) = order(θ4) = 3 and order(θ6) = 2. Therefore we may take φi : C3 −→ Aut(C7) to be the
group homomorphism (or the action of C3 on C7) defined as (φi(y) = θi; i = 1,2,4), since order(θi); i = 1,2,4 | order(y) = 3 .
Clearly φ1(y) = θ1 = IC7 will induce the direct product C7×C3. (In fact it is easy to prove from the relations that C7 oφ4 C3 ∼=
C7 oφ2 C3). So we take φ2(y) = θ2 : x 7−→ x2 and consider C7 oφ2 C3 =< xy | x7 = y3 = 1,yxy−1 = x2 >, generally G =C7 oφi

C3 =< xy | x7 = y3 = 1,yxy−1 = xi; i = 1,2,4 >. Therefore C7 oC3 has the listing: 1,x,x2,x3,x4,x5,x6,y,xy,x2y,x3y,x4y,x5y,
x6y,y2,xy2,x2y2,x3y2,x4y2,x5y2,x6y2 subject to the above relations. From it we may deduce the product of different elements
as { xy : x ∈C7 , y ∈C3 : x1y1.x2y2 = x1φy1(x2).y1y2 } and the inverse of the element yx is (φy−1(x−1).y−1) as following:
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at φ2

o 1 x · · · x5 x6 x6y x5y · · · xy y x6y2 x5y2 · · · xy2 y2

1 1 x · · · x5 x6 x6y x5y · · · xy y x6y2 x5y2 · · · xy2 y2

x6 x6 1 · · · x4 x5 x5y x4y · · · y x6y x5y2 x4y2 · · · y2 x6y2

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

x2 x2 x3 · · · 1 x xy y · · · x3y x2y xy2 y2 · · · x3y2 x2y2

x x x2 · · · x6 1 y x6y · · · x2y xy y2 x6y2 · · · x2y2 xy2

x4y2 x4y2 xy2 · · · x3y2 y2 1 x3 · · · x x4 y x3y · · · xy x4y
xy2 xy2 x5y2 · · · y2 x4y2 x4 1 · · · x5 x x4y y · · · x5y xy

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

x3y2 x3y2 y2 · · · x2y2 x6y2 x6 x2 · · · 1 x3 x6y x2y · · · y x3y
y2 y2 x4y2 · · · x6y2 x3y2 x3 x6 · · · x4 1 x3y x6y · · · x4y y
x2y x2y x4y · · · x5y y y2 x5y2 · · · x4y2 x2y2 1 x5 · · · x4 x2

x4y x4y x6y · · · y x2y x2y2 y2 · · · x6y2 x4y2 x2 1 · · · x6 x4

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
. . .

...
...

x5y x5y y · · · xy x3y x3y2 xy2 · · · y2 x5y2 x3 x · · · 1 x5

y y x2y · · · x3y x5y x5y2 x3y2 · · · x2y2 y2 x5 x3 · · · x2 1

It follows that the coding matrix

M(C7 oC3) =

T0 H1 H2
H3 T1 T2
H4 T3 T4


21×21

,

is a block matrix consisting of 9 = 3×3 matrices all are of size (7×7)-matrices from which 5 = (3−1)2 +1 are circulant
(Toeplitz) matrices and 4 = 2(3−1) Hankel-type-matrices.

In general, we take G =Cn oφ Cm with respect the action φ as previously and it has the elements listing (3.1). By inspecting
each block sub-matrix provided by each sub-list in (1)− (m) and there corresponding inverse elements, we conclude the
following theorem:

Theorem 3.8. With respect to the above elements listing (3.1) for the semi-direct product groups

G =Cn oφ Cm =< xy|xn = ym = 1,yxy−1 = xk >,

the coding matrix of this group is a block matrix
T0 H1 . . . Hm−1
Hm T1 . . . Tm−1

...
...

...
...

H2(m−1) T(m−2)(m−1) . . . T(m−1)2


nm×nm

,

consisting of m2 matrices all are of size (n×n) from which the (m−1)2 +1 matrices T0,T1, . . . ,T(m−1)2 are circulant (Toeplitz)
and the 2(m−1) matrices H1,H2, . . . ,H2(m−1) are Hankel-type-matrices.

As a special case of this theorem, we deduce the coding matrices for the dihedral group D2n ∼=Cn oC2 which was determined
in [3].

Corollary 3.9. The coding matrices for Cn oC2 ∼= D2n have the following form(
T1 H1
H2 T2

)
2n×2n

,

where Ti,Hi ; i = 1,2 are circulant, Hankel-type (n×n)-matrices, respectively.

Proof. Consider Cn oC2 ∼= D2n such that Cn =≺ x | xn = 1 �= {1,x,x2, . . . ,xn−1}, C2 =≺ y | y2 = 1 �= {1,y}, the
listing of elements of Cn oC2 are : 1,x,x2, ...,xn−1,y,xy,x2y, ...,xn−1y. And there is a non-trivial homomorphism since
(2,ϕ(n) ) 6= 1, so the action of C2 on Cn given by φ : C2 −→ Aut(Cn) ; Aut(Cn) : φ : Cn −→Cn, | Aut(Cn) |= ϕ(n), hence we
have Aut(Cn) = {φ1 : x−→ x , φn−1 : x−→ xn−1}.
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Cn oC2 = { xy : x ∈Cn , y ∈C2 : x1y1.x2y2 = x1φy1(x2).y1y2 }, and the inverse of the element yx is (φy−1(x−1).y−1). At φ1
give us the semi-direct product as a direct product, but at φn−1 give us the semi-direct product groups as following:

at φn−1

o 1 x x2 .. xn−1 xn−1y .. x2y xy y
1 1 x x2 .. xn−1 xn−1y .. x2y xy y

xn−1 xn−1 1 x .. xn−2 xn−2y .. xy y xn−1y
xn−2 xn−2 xn−1 1 .. xn−3 xn−3y .. y xn−1y xn−2y

: : : : : : : : : : :
x x x2 x3 .. 1 y .. x3y x2y xy

xn−1y xn−1y xn−2y xn−3y .. y 1 .. xn−3 xn−2 xn−1

: : : : : : : : : : :
x2 x2 xy y .. x3y x3 .. 1 x x2

xy xy y xn−1y .. x2y x2 .. xn−1 1 x
y y xn−1y x2y .. xy x .. xn−2 xn−1 1
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