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Abstract. Since cognition has become an important topic in Electronic Warfare 

(EW) systems, Electronic Support Measures (ESM) are used to monitor, intercept 

and analyze radar signals. Low Probability of Intercept (LPI) radars are preferred 

to be able to detect targets without being detected by ESM systems. Because of their 

properties as low power, variable frequency, wide bandwidth, LPI Radar 

waveforms are difficult to intercept with ESM systems. In addition to intercepting, 

the determination of the waveform types used by the LPI Radars is also very 

important for applying counter-measures against these radars. In this study, a 

solution for the LPI Radar waveform recognition is proposed. The solution is based 

on the training of Support Vector Machine (SVM) after applying Principal 

Component Analysis (PCA) to the data obtained by Time-Frequency Images (TFI). 

TFIs are generated using Choi-Williams Distribution. High energy regions on these 

images are cropped automatically and then resized to obtain uniform data set. To 

obtain the best result in SVM, the SVM Hyper-Parameters are also optimized. 

Results are obtained by using one-against-all and one-against-one methods. Better 

classification performance than those given in the literature has been obtained 

especially for lower Signal to Noise Ratio (SNR) values. The cross-validated results 

obtained are compared with the best results in the literature. 

 

 

1. Introduction 
 

Electronic Warfare (EW) systems are involved in LPI Radars as they are unlikely to 

intercept and it is hard to analyse them in detail while they track the targets [1]. By 

using the information provided by ES systems, Electronic Counter Measures (ECM) 
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are used for interfering the radar operation by providing false information and noise, 

that is why LPI Radar waveform recognition is very important for EW systems. 

Different techniques are used to insert signal data into the classifiers such as using 

raw data, filtered data [2], arrays or Time-Frequency Images. Some of the Time-

Frequency Analysis (TFA) techniques used for LPI Radar waveform recognition are 

Choi Williams Distribution (CWD) [1], [3] - [7], Wigner-Ville Distribution (WVD) 

[1], [4], [7], Radon-WVD [8], short-time Fourier Transform (STFT) [9] and discrete 

Fourier Transform(DFT) [10]. By using results obtained from these distributions, 

images that show various frequency over time are generated. These images are called 

Time-Frequency Images. In literature, the commonly used TFA technique for LPI 

Radar waveform recognition is CWD because WVD-TFI contains interfering ghost 

terms and these terms degrade the performance of classification. The effect of 

different TFA techniques on LPI Radar classification may be the subject of another 

study. Similar to the ones in the literature, TFIs used in this paper are generated by 

using CWD. Unlike the methods given in the literature, during the generation of TFIs 

simple operations that do not require much processing time are performed. While 

converting the time-frequency graph of the CWD transform, the appropriate 

parameters used to improve image quality and pixel values are normalized to clarify 

the distinctive features.  

Various techniques have been proposed for classification by using Time-Frequency 

Images. As a LPI Radar Waveform Recognition Technique [3], [6] uses the 

Convolutional Neural Network (CNN). The computational cost has become a 

problem because of the generated TFI sizes. [3] proposes a sampling averaging 

technique (SAT) which provides a higher sampling rate with a lower computational 

cost. However, because of the CNN complexity, TFIs are re-sized by using nearest-

neighbour interpolation. But by using interpolation, some distinctive features of TFIs 

may be lost. Instead of this, taking the principal components of the signals that carry 

most of the information is a more accurate way to decrease computational 

complexity. It is indicated in [3] that to reduce the number of signal samples, 

consecutive signal samples are averaged by applying coherent summation, but it is 

not clear how to guarantee coherency in real-world applications and the effect of 

coherency on the performance of classification. In this paper, to reduce the 

computational cost of TFA, Fractional Fourier Transform is utilized. [8] uses Wigner 

Ville Distribution (WVD) to obtain TFI. Before creating WVD-TFIs, a basic 

threshold was applied to the amplitude of the signals to fix the raised spikes that the 

phase changes caused. As a classification technique, they propose the Fractional 

Fourier transform (FRT) to reduce the computational cost. Proposed LPI Radar 

waveform recognition technique excludes the four Poly-time signals (T1, T2, T3, 

T4). The classification performances of [7] are lower than other techniques, although 
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they classified fewer signal types than others. [4] uses a single-shot multi-box 

detector (SSD) to detect both Continuous Wave (CW) and Pulse Wave(PW) signals 

and a supplementary classifier to classify signals that cannot be classified using SSD. 

In [4], it is mentioned that LPI waveform recognition has been performed for both 

CW and Pulsed Signals. It is also stated that recognition of CW LPI signals is 

challenging due to the lower peak power values of CW signals. However, when we 

evaluate the CW and Pulsed signals having the same average power value, CW 

signals are clearly distinguishable and traceable in TFI as a continuous curve along 

the time axis. This is not the case for Pulsed signals. For Pulsed signals, small zones 

of high intensity are observed in certain regions of the TFI. In our study, CW signals 

are not considered for classification, but our approach can also be applied to CW 

signals. The rationale behind this is that the highest energy region along the time axis 

is selected during the automatic crop of the respective zones in the TFI. Therefore, 

it becomes clear that the average power of the signal is important, not the peak 

power. LPI Radar waveform recognition techniques based on multi-layer perceptron, 

radial basis function and probabilistic neural networks are utilized in [7]. To 

minimize the information loss, classification is done based on deep sparse capsule 

networks in [11] and they used cross ambiguity functions for feature extraction. [5] 

proposed an image fusion algorithm and used CNN for feature extraction. Yet, poly-

phase Frank code was excluded in classification. As a result, the similarity between 

Frank and other poly-phase codes is not examined. In this case, to compare [5] with 

other techniques that include both poly-phase codes and Frank code does not give an 

accurate result. Also, clustering [9], decision trees and SVM [5], [12] are commonly 

used techniques for classification. 

In this paper Linear Frequency Modulation (LFM), Costas, Binary Phase Shift 

Keying (BPSK), Frank, P1, P2, P3, P4, T1, T2, T3, T4 signals are used for 

classification. Time-frequency images are generated using Choi-Williams 

Distribution [13]. 

All images are cropped automatically to make them include maximum information 

and then resized to a constant dimension for all signals to keep data vectors uniform. 

SVMs are used to train the dataset. Both binary classification and multi-class 

classification methods are used. For multi-class classification, Directed Acrylic 

Graph SVM (DAGSVM) method is used which is based on Decision Directed 

Acyclic Graph (DDAG) [23].  

 

Support Vector Machine is an effective classification algorithm that is suitable for 

LPI Radar classification due to its good generalization performance. A major 

limitation of SVM is the high demand for memory during training. To overcome this 

limitation, Principal Component Analysis (PCA) is applied to TFIs. Unlike other 
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methods proposed in the literature, principal components have been used instead of 

resizing the images that cause entropy increase. 

 

There are a lot of parameters to be turned in SVMs such as choosing the "right" 

kernel, regularization penalties, and the slack variable. These parameters must be 

optimized to find the best generalization. Firstly, SVMs are trained by using different 

Kernel Functions. We notice that different types of LPI signals can be classified 

better with different Kernel Functions. Then, it is decided to apply Hyper-Parameter 

Optimization to the Kernel Functions as well. Therefore, the optimal Kernel 

Function selection is automatically done by Hyper-Parameter Optimization. Then, 

the optimal parameter sets are used for each SVM. 5-fold cross-validation results of 

both binary classification and multi-class classification methods are presented. For 

both of the methods, the same folds are used to be able to compare the performance 

of binary classification method and multi-class classification method. All SNR 

values of TFIs between -20dB to 10dB are uniformly distributed and fairly separated 

between folds. 

 

The paper is organized as follows. Firstly, the mathematical expressions are given in 

Section 2. The TFA technique used in the proposed solution is expressed and LPI 

Radar Signal TFIs are shown in Section 3. Then, the proposed solution is explained 

in detail in Section 4. Section 5 contains the results and comparisons with results in 

the literature and then all sections are concluded in 6. 

 

 

2. Lpi Radar Signals 
 

Mathematical explanations of LPI Radar signals used for the proposed solution are 

given below.  

 

A. Frequency Modulation Continuous Wave (FMCW) 

Frequency modulation of FMCW signals is created by using increasing and 

decreasing frequency signals. Increasing and decreasing frequencies fi and fd are [1]: 

𝑓𝑖 = (𝑓0 −
∆𝐹

2
) +

∆𝐹

𝑡𝑚
𝑡       (1) 

𝑓𝑑= (𝑓0 +
∆𝐹

2
) −

∆𝐹

𝑡𝑚
𝑡       (2) 
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respectively, where f0 is the carrier frequency, t is time, ΔF is modulation bandwidth 

and tm is modulation period. The modulation bandwidth of 250, 500,750 and 1000Hz 

are used to generate FMCW signals.  

B. Binary Phase Shift Keying (BPSK) 
Phase modulation of the BPSK signal is provided by Barker Sequences with various 

lengths. A Barker Sequence B = [b0, b1, …, bn] contains +1’s and -1’s of length n ≥ 

2. In this paper, Barker Sequence length of 7, 11 and 13 are used to generate BPSK 

signals.  

C. Costas 
Costas signal contains a set of frequencies that are chosen from the available 

frequencies f1, f2, f3, …, fm. Frequency modulation of the carrier signals is provided 

by the set [22]. When creating the dataset to train SVMs, 3 different sets of 

frequencies with different lengths are used.  

D. Polyphase  
Polyphase signals' modulation is applied by phase functions given in equations (4) 

to (7). In order to approach a stepped or linear frequency modulation, the number of 

phase states is varied and the time spent at each phase state is constant. 5 different 

phase functions for polyphase signals are given [22]: 

Frank 

𝛷𝐹𝑅(𝑖, 𝑗) =
2𝜋

𝑁𝑝
(𝑖 − 1)(𝑗 − 1)       (3) 

P1  

𝛷𝑃1(𝑖, 𝑗) =  
−𝜋

𝑁𝑝
(𝑁𝑝 − (2𝑗 − 1)) ((𝑗 − 1)𝑁𝑝 + (𝑖 − 1))    (4) 

P2 

𝛷𝑃2(𝑖, 𝑗) = {
𝜋

2
[(

𝑁𝑝−1

𝑁𝑝
) − (

𝜋

𝑁𝑝
) (𝑖 − 1)]} [𝑁𝑝 + 1 − 2𝑗]    (5) 

where i, j=1…Np. Np is the number of phase states.  

 

P3 

𝛷𝑃3(𝑘) =
𝜋

𝑁𝑝
(𝑘 − 1)2        (6) 
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P4 

𝛷𝑃4(𝑘) = (
𝜋

𝑁𝑝
(𝑘 − 1)2 − 𝜋(𝑘 − 1)),      (7) 

where k=1, ..., Np and Np is the number of phase states. 

E. Polytime 
As it is stated earlier in the Polyphase section, the time spent at each phase state is 

constant. In Poly-time signals the number of phase states is user-defined and the time 

spent at the phase states is varied to approach a stepped or linear frequency 

modulation. Phase functions of Poly-time codes are [1]: 

T1 

𝛷𝑇1(𝑡) = 𝑚𝑜𝑑 {
2𝜋

𝑁𝑝
⌊(𝑚𝑡 − 𝑗𝑇)

𝑗𝑁𝑝

𝑇
⌋ , 2𝜋}      

(8) 

T2 

𝛷𝑇2(𝑡) = 𝑚𝑜𝑑 {
2𝜋

𝑁𝑝
⌊(𝑚𝑡 − 𝑗𝑇) (

2𝑗−𝑚+1

𝑇
)

𝑁𝑝

2
⌋ , 2𝜋}     

(9) 

T3 

𝛷𝑇3(𝑡) = 𝑚𝑜𝑑 {
2𝜋

𝑁𝑝
⌊

𝑁𝑝∆𝐹𝑡2

2𝑡𝑚
⌋ , 2𝜋}     

 (10) 

T4 

𝛷𝑇4(𝑡) = 𝑚𝑜𝑑 {
2𝜋

𝑁𝑝
⌊

𝑁𝑝∆𝐹𝑡2

2𝑡𝑚
−

𝑁𝑝∆𝐹𝑡

2
⌋ , 2𝜋},    

 (11) 

where  j = 0, 1, 2, …, m-1 and m is the number of frequency segments, 𝑁𝑝 is the 

number of phase states and T is overall code period. 
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3. Time-frequency Analysis Technique: choi-williams 
distribution 

 

Choi Williams Distribution (CWD) [13], [14] has been used to create time-frequency 

images of the LPI Radar signals. It is a time-frequency analysis technique that is 

used to extract data from the signal. CWD is included in Cohen’s generalized class 

as a time-frequency distribution. It uses an exponential kernel function while 

Wigner-Ville Distribution (WVD) uses a kernel as one. The exponential kernel 

function makes CWD different than other distributions. CWD is expressed in 

discrete form as: 

𝐶𝑊𝐷𝑥(𝑡, 𝜔) = 2 ∑ 𝑒−𝑗2𝜔𝜏∞
𝜏=−∞ ∑

1

√4𝜋𝑛2
𝜎⁄

∞
𝜏=−∞ 𝑒−𝜎(𝜇−𝑡)2 (4𝜏2)⁄ 𝑥(𝜇 + 𝜏)𝑥∗(𝜇 − 𝜏)   (12) 

where t is the time index, ω is the angular frequency, x(µ) is the time signal and x*(µ) 

is its complex conjugate, τ is the time delay and σ is scaling factor [15]. 

 

      
 
Figure 1. 12 LPI Radar signals TFIs that are created by using CWD. All signals created 

with a SNR value of 0dB. 

 

CWD images of each LPI Radar signal and No-Modulation signal have created at 16 

different SNR values, which varies -20dB to 10dB with a step of 2dBs. All of the 

signals are created 20 different times with 20 different random noises to make the 

effect of noise more realistic. It is mentioned in Section 2 that some of the signals 
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are created with different parameters. In Figure 1, 12 different LPI Radar signals at 

0dB are shown. 

 

4. PROPOSED LPI RADAR WAVEFORM CLASSIFICATION 

TECHNIQUE 

The block diagram of the proposed technique is given in Figure 2. To recognize 12 

different LPI waveforms given in Section 2 and the No-Modulation signal, signals 

are sampled at a sampling rate of 20 kHz. Then, Choi Williams Distribution is 

applied to the sampled data. The output CWD-TFI is automatically cropped 

according to the high energy regions on the image. Cropped images are resized to a 

fixed size in order to provide uniformity when creating the dataset. This process has 

been repeated for every image which has different waveforms, parameters and SNR 

values. A total of N (=33600) images have been created in RGB format, each with a 

dimension of 64x64 pixels. The resulting RGB images are transformed into feature 

vectors of size M (=64x64x3 = 12288). Since we have used RGB format instead of 

transforming TFIs into greyscale images, distinctive features of TFIs are preserved. 

All feature vectors are collected into a NxM matrix to create the dataset which is the 

input of PCA. With the application of PCA, a new NxKe dataset matrix is created 

using the features that contain the highest information. Ke is the number of features 

with the highest information in the feature vector. By this way, the data load is 

reduced. These principal components are used to train SVM. For one-against-all 

SVMs, the signal type to be trained is labelled as +1 and all other signal types are 

labelled as -1. For example, to train SVM for BPSK, the BPSK images are labelled 

as +1, other classes corresponding to 11 LPI signal types and No-Modulation signal 

are labelled as -1. While training the classifier, the parameters including kernel types 

and kernel parameters are optimized to obtain the best scenario. For each signal type, 

5 SVMs are trained by 5-fold cross-validation. A total of 65 SVMs are trained for 

one-against-all method and a total of 390 SVMs are trained for one-against-one 

method. At the end of this process, we have PCA centres and trained classifier. 

SVM is an algorithm that is generally used to classify the data with a boundary. The 

total distance between the closest feature vectors of both and the boundary is called 

margin. Assume (xi, yi) is a feature vector where xi is the feature and yi is the class 

label for i = 1, 2, …, N. 𝑥𝑖 ∈  𝐼𝑅𝑝 and 𝑦𝑖 ∈ {−1, 1}. 

A hyperplane is defined by 

{𝑥: 𝑓(𝑥) = 𝑥𝑇𝛽 + 𝛽0 = 0}     (13) 

where β is a unit vector. Classification rule is: 
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𝐺(𝑥) = 𝑠𝑖𝑔𝑛[𝑥𝑇𝛽 + 𝛽0].                      (14) 

The correct classification satisfies 𝑦𝑖𝑓(𝑥𝑖)  > 0 ∀𝑖. 

 

 

FIGURE 2. The flow diagram of the proposed LPI Radar Waveform classification 

technique. 

 

Then, a hyperplane that creates the biggest margin m between points of both classes 

can be written as [16]: 

𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 𝑚, 𝑖 = 1, … , 𝑁     (15) 

In classification, the feature vectors of classes can be linearly-separable or not. For 

a non-linearly separable case, it is possible to create more flexible boundaries that 

minimize the amount of misclassified vectors. By designing a hyperplane classifier 

into a new k-dimensional space using the vectors which are the closest to the decision 

boundary, the non-linear case can also be classified. Mapping vectors into a high 

dimensional space provided by kernel operation.  

It is stated that the computational complexity of SVM is independent of the 

dimensionality of the kernel space [17]. Thus, SVM can be used for a number of 

high dimensional models which make it a highly applicable algorithm. Since CWD 

creates a 3-dimensional TFI, the independence of computational complexity from 

the dimensions has become advantageous for the proposed technique.  

Some of the commonly used Kernel functions (Kf) are described as:  
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dth-Degree polynomial: 𝐾𝑓(𝑥, 𝑥′) = (1 + 〈𝑥, 𝑥′〉)𝑑 ,     

 (16) 

Radial basis: 𝐾𝑓(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−𝛾||𝑥 − 𝑥′||
2

),     

  (17) 

Hyperbolic tangent [16].: 𝐾𝑓(𝑥, 𝑥′) = 𝑡𝑎𝑛ℎ(𝑘1〈𝑥, 𝑥′〉 + 𝑘2)   

  (18) 

There is no practical method to choose the best kernel function yet. It is also a 

challenging problem. For this purpose, No-Modulation signal and 12 LPI Radar 

signals are trained by SVM using 3 different kernel functions. Linear, 2nd order 

polynomial and Radial Basis Function are used as Kernel Function for classification. 

Then, different Kernel Functions are used for different signal types by using Hyper-

Parameter Optimization. 

During the training process, Hyper-Parameter optimization is applied. There may be 

multiple boundaries created by SVM that classifies the data. The most important 

parameters that characterize the boundary are penalty factor and Kernel 

parameters. By using these parameters, dozens of boundaries can be created that 

give correct classification. Finding the boundary that provides the most effectivity 

with minimum error is the objective of the SVM algorithm. Therefore, it becomes 

necessary to optimize the penalty factor and kernel parameters. These parameters 

are called Hyper-Parameters of SVM.  

Bayesian Optimization [18] method is used for Hyper-Parameter Optimization. 

Bayesian Optimization is done by using a probabilistic model and an acquisition 

function. The probabilistic model is based on the observations that were made 

previously. The probabilistic model gives primary knowledge to find the locations 

of potential Hyper-Parameters. Acquisition function is used by defining an 

exploration ratio after each iteration and program evaluates whether the next point is 

over-exploiting or not. Exploration ratio provides the balance between exploring new 

points vs. concentrating near points. By exploring different points according to the 

given acquisition function, it results in a model. 

As acquisition function, expected improvement (EI) plus is used. 

 𝐸[𝐼(𝜆)] =  (𝑓𝑚𝑖𝑛 − 𝜇(𝛾))𝛷 (
𝑓𝑚𝑖𝑛−𝜇(𝑥)

𝜎
) +  𝜎𝜙 (

𝑓𝑚𝑖𝑛−𝜇(𝛾)

𝜎
)   (19) 

where γ is a model of predictions which follows the normal distribution, Φ(*) is 

standard normal distribution function and ϕ(*) is standard normal density function 

and fmin is the best-observed value so far [19]. 
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The blue points in Figure 3 show the explored Hyper-Parameter values with respect 

to estimated objective function values. As it can be understood from the model, the 

parameters with the highest estimated objective function values are the optimal 

Hyper-Parameters. 

As a conclusion, the best scenario for SVM is created by optimizing parameters and 

using different Kernel functions. 

 

FIGURE 3. The exploration of objective function vs. SVM parameters during Hyper-

Parameter Optimization 

However, SVM is a classifier that requires high computational cost for the training 

process. In order to reduce the computational cost, principal components of the data 

matrix are obtained by computing the eigenvalues and eigenvectors. Then, Ke largest 

eigenvalues are chosen to form a transformation matrix A that contains eigenvectors. 

Each 1xM (=1x12288) dimensional feature vector x transformed into a new 1xKe 

dimensional vector y that carries most of the information [20]. It can be calculated 

by 

y = ATx       (20) 

 

The correlation matrix Sy is determined by using (32)  

Sy = E [yyT] = E[ATxxTA] = ATSxA      (21) 
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where S is the diagonal matrix of eigenvalues. E [*] indicates the expected value of 

*. 

By using the mean square error approximation, the Ke value can be specified for 

given conditions.  

𝑥 = ∑ 𝑦(𝑖)𝑎𝑖
𝑀−1
𝑖=0  and 𝑥′ = ∑ 𝑦(𝑖)𝑎𝑖

𝐾𝑒−1
𝑖=0 . 

Representing x by using x’ gives a mean square error of 

𝐸[‖𝒙 − 𝒙′‖2] = 𝐸 [‖∑ 𝑦(𝑖)𝑎𝑖
𝑀−1
𝑖=𝐾𝑒

‖
2

]     (22) 

By eigenvector definition, the mean square error is determined using 

∑ 𝑎𝑖
𝑇𝐸[𝑥𝑥𝑇]𝑀−1

𝑖=𝐾𝑒
𝑎𝑖 =  ∑ 𝜆𝑖

𝑀−1
𝑖=𝐾𝑒

      (23) 

As a result, to specify a Ke for a given mean square error can be determined by (23), 

[17]. 

 

FIGURE 4. Percentage of variance vs. number of components to keep graph for PCA. 

In the proposed technique, the mean square error of 5% is used where the percentage 

of variance becomes smaller than 0.01%. The result of the change of percentage of 

variance value is shown in Figure 4. A trial and error process is applied to set a mean 

square error value. In fact, the mean squared error value can be increased with a very 

little amount of information loss. Also, it results in a considerable reduction in the 

data load. However, trying to reduce the data load with different mean squared error 

values which are greater than 5% result in a performance loss in classification. As 

can be seen in Figure 4, from a certain point, the change in the percentage of variance 

becomes much smaller than before, meaning that from this point, features after Kth 

feature will make minor differences in classification. 
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By using PCA, around 550 of 12288 features are kept for one-against-all 

classification, around 130 of 12288 for one-against-one classification to represent 

95% of each feature vector. The computational cost problem of SVM is reduced 

depending on PCA. The dataset with principal components makes the SVM an 

appropriate classification algorithm for LPI Radar waveform classification. 

Since there are C=13 classes, it is needed to train C*(C-1)/2 = 78 binary SVMs. 

These SVMs are used to construct DDAG. 

5. RESULTS 

In the proposed technique, one-against-one and one-against-all methods are applied. 

For the one-against-one method, DDAG is used to find the best class. DDAG 

structure is given in Figure 5. The Confusion Matrix of the one-against-one method 

is shown in Table 6. For the one-against-all method, the maximum score-values of 

13 SVMs are used to find the best class. The Confusion Matrix of the one-against-

all method is shown in Table 5.  

 

FIGURE 5. The Decision Directed Acyclic Graph for finding the best class out of 13 classes. 

(Not all of the nodes has been shown for the sake of clarity). 
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In addition, there are 4 important parameters that qualify the classification 

performance. Accuracy, recall, precision and F-measure. Accuracy, i.e. 

classification rate can be calculated by [21]:  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (24) 

Where TP is the correctly classified feature vectors with label +1, FP is the 

misclassified feature vectors with label +1 and TN is the correctly classified feature 

vectors with label -1, FN is the misclassified feature vectors with label -1. 

The overall accuracy of the one-against-all method is 98.73%. The poly-phase 

signals especially P1 and P4 are misclassified in between. The results of binary 

classification and multi-class classification are similar; the overall accuracy of the 

one-against-one method is 98.61%. 

The recall is the ratio of the total number of correctly classified vectors of the class 

with label +1 and all vectors of the class with label +1. The recall value closer to 1 

shows that the class with label +1 is correctly classified. 

For a given feature vector labelled as +1, the precision gives the percentage that the 

given vector is actually labelled as +1. Precision is given by [21]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (25) 

F-Measure represents both the precision and recall by taking their harmonic mean 

to save the balance in between. F-Measure is given by [21]: 

𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
    (26) 

Classification performance parameters of one-against-all and one-against-one 

methods are given in Table 1 and Table 2, respectively. 

Table 1. Accuracy, Recall, Precision, F-Measure values for one-against-all method 

Accuracy 0.98730 

Recall 0.98989 

Precision 0.99237 

F-Measure 0.99113 

 

Table 2. Accuracy, Recall, Precision, F-Measure values for one-against-one 

method 

Accuracy 0.98610 
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Recall 0.98996 

Precision 0.99174 

F-Measure 0.99085 

 

The recall, precision and F-measure values cannot be compared to existing methods 

because there are no such values presented in these articles.  

 

Table 3. Classification accuracy value comparison with other proposed techniques 
 Proposed 

Technique 

[3] [4] [5] [8] 

BPSK 98.96% 99.00% 66.17% 98.00% NC** 

COSTAS 100% 99.00% 77.67% 99.00% NC** 

LFM 100% 94.00% 68.58% 99.00% 95.00% 

FRANK 100% 89.00% 
65.83% 

NA 85.00% 

P1 87.35% 86.00% 86.00% 85.00% 

P2 98.8% 100% 68.08% 100% 95.00% 

P3 96.69% 91.00% 64.5% 98.00% 85.00% 

P4 84.55% 85.00% *64.08% 91.00% 85.00% 

T1 100% 97.00% 66.00% 84.00% NC** 

T2 100% 94.00% 94.50% 92.00% NC** 

T3 98.36% 95.00% 68.83% 91.00% NC** 

T4 96.72% 94.00% NC** 99.00% NC** 

BFSK*** NC** NC** NC** NC** 95.00% 

No Modulation 99.12% NC** NC** NC** 95.00% 

*In [4], P3 signal is taken as two different signal objects and one of this part and P4 are considered as 

one class. The other part of the P3 signal is taken as class P3. ** NC: Not Considered. *** BFSK signal 
stands for Binary Frequency Shift Keying and used only in [8]. 

Results of the proposed solution and [3], [4], [5] and [8] are given in Table 3. Since 

the precision and F-Measure values are not given in any of these, the reliability of 

these accuracy values can be arguable. In [3] the Confusion Matrix is created by 

using the results that have SNR value of -6dB. But Table 4 and Table 5 show the 

classification performance of all the SNR values examined including -18 and -20dB. 

Lower SNR values have substantial effects on classification performance. All of the 

accuracy values except the Costas Signal are higher in the proposed solution with 

the effect of lower SNRs. Therefore, the performance of the proposed solution can 

be said to be better. There is an abrupt change of classification performance for SNR 

values smaller than -12dB. In our technique, by the application of PCA, the 

confusing elements of the images are also eliminated, so the classification 

performance at these SNR values are also higher.  
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[4] proposes a different technique to classify Frank, P1, P3 and P4 codes. The 

Confusion Matrix is created by using lower SNR values so the accuracy values are 

lower than other techniques. But the point where the abrupt change occurs that is 

mentioned earlier is -14dB in [4]. For lower SNR values, the results are similar to 

the results obtained from the solution that we propose. However, the precision and 

F-Measure values are not mentioned in [4] either, so the overall results cannot be 

compared properly. 

LPI Radar waveform recognition technique that is proposed in [5] gives better results 

for P3 and P4 signals. For poly-time signals, especially for T1, T2 and T3, there are 

major differences in the accuracy. The results that we obtained are much higher than 

the results in [5]. Since the Frank signal is excluded in [5], the similarity with the 

other poly-phase codes are not examined in between. 

[8] used higher SNR values and fewer signal types for classification. However, their 

classification results are lower. For P4 signal, the classification performance is very 

close to the result that we obtained. But the resolution of the result of [8] is lower 

than ours and 84,55% can also be rounded to 85,00%. So they can be assumed to be 

the same. Simulations have been performed on the computer having 3.7 GHz 

processor and 16 GB memory. The required time to train one SVM in the one-

against-all method is 1838 seconds on average, including PCA and Hyper-Parameter 

Optimization. The required time to train one SVM in the one-against-one method is 

328 seconds on average, including PCA and Hyper-Parameter Optimization. 

 

6. CONCLUSIONS 

In this paper, an automatic LPI Radar classification method has been performed 

using SVM and Principal Component Analysis. SVMs are trained using methods of 

one-against-all and one-against-one with DDAG. Up to the PCA step, all distinctive 

features have been preserved.  

Table 4. Confusion Matrix of the one-against-all method. 

  

SVM RESULTS 

BPSK COSTAS FMCW FRANK NOMOD P1 P2 P3 P4 T1 T2 T3 T4 

A
C

T
U

A
L

 S
IG

N
A

L
 T

Y
P

E
 BPSK 0.9896 0.0000 0.0000 0.0000 0.0083 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0000 

COSTAS 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FMCW 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FRANK 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NOMOD* 0.0088 0.0000 0.0000 0.0000 0.9912 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

P1 0.0000 0.0000 0.0000 0.0000 0.0000 0.8735 0.0158 0.0065 0.1011 0.0000 0.0031 0.0000 0.0000 

P2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0031 0.9880 0.0029 0.0060 0.0000 0.0000 0.0000 0.0000 

P3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0069 0.0232 0.9669 0.0029 0.0000 0.0000 0.0000 0.0000 
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P4 0.0000 0.0000 0.0000 0.0000 0.0000 0.1113 0.0191 0.0172 0.8455 0.0069 0.0000 0.0000 0.0000 

T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

T2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0035 0.0000 0.0000 0.9836 0.0129 

T4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0328 0.9672 

*NOMOD abbreviation is used instead of No-Modulation signal for the sake of simplicity. 

 

Contrary to previous studies, operations such as averaging and converting to grey 

level are avoided. The Hyper-Parameters of SVMs has been optimized including 

kernel type by using Bayesian Optimization. The performances of methods have 

been obtained through simulations using different SNR levels. The overall accuracy 

level of 98.60% has been obtained from one-against-one and 98.73% has been 

obtained from the one-against-all method. The measure of classification 

performance is evaluated by calculating F-measures. It is observed that the 

classification performances are satisfactory compared to existing methods, except 

for -18 dB and -20 dB SNR values.  

For low SNR values, the accuracy levels are also low for existing methods. The 

computational complexity of the method is enough for real-world ESM applications 

since the number of feature vectors is reduced using SVD. It can be concluded that 

the confused waveform cannot be considered as a big problem since the main 

objective of the LPI classification is to assign the jamming method against the LPI 

Radar, and similar jamming methods can be applied to confused LPI waveforms. 

Table 5. Confusion Matrix of the one-against-one method. 

  

SVM RESULTS 

BPSK COSTAS FMCW FRANK NOMOD P1 P2 P3 P4 T1 T2 T3 T4 

A
C

T
U

A
L

 S
IG

N
A

L
 T

Y
P

E
 

BPSK 0.9969 0.0000 0.0000 0.0000 0.0083 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0000 

COSTAS 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FMCW 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

FRANK 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NOMOD 0.0055 0.0000 0.0000 0.0000 0.9945 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

P1 0.0000 0.0000 0.0000 0.0000 0.0000 0.8438 0.0250 0.0063 0.1250 0.0000 0.0000 0.0000 0.0000 

P2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0063 0.9625 0.0281 0.0031 0.0000 0.0000 0.0000 0.0000 

P3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0063 0.0469 0.9438 0.0031 0.0000 0.0000 0.0000 0.0000 

P4 0.0000 0.0000 0.0000 0.0000 0.0000 0.1063 0.0219 0.0188 0.8531 0.0000 0.0000 0.0000 0.0000 

T1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

T2 0.0000 0.0000 0.0000 0.0031 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9969 0.0000 0.0000 

T3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9688 0.0313 

T4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0250 0.9750 
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