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Abstract: Statistical randomness is a critical requirement for many applications. Generally, it is common to use a generator 

algorithm for statistical randomness. In this study, a generator algorithm proposed benefiting from chaotic systems. This 

proposed approach is based on chaotic maps with a simpler mathematical model compared to other chaotic system classes. So 

the generator has high practical applicability. In addition, optimization algorithms to guarantee statistical properties of 
generator.  
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Ayrık Zamanlı Kaotik Sistemlerin Doğrusal Olmayan Davranışını Temel Alan İstatistiksel 

Rasgelelik Üreteç Algoritması 
 

Öz: İstatistiksel rasgelelik birçok uygulama için kritik bir gereksinimdir. Genellikle istatistiksel rasgelelik için bir üreteç 

algoritması kullanılması yaygın bir yaklaşımdır. Bu çalışmada kaotik sistemlerden yararlanılarak bir üreteç algoritması 

önerilmiştir. Önerilen bu yaklaşım diğer kaotik sistem sınıflarına göre daha basit matematiksel model sahip kaotik haritaları 

temel almaktadır. Bu yüzden üretecin pratik uygulanabilirliğinin yüksektir. Ek olarak optimizasyon algoritmaları üretecin 
istatistiksel özelliklerini garanti etmektedir. 

 
Anahtar kelimeler: Rasgelelik, kaos, optimizasyon. 
 

1. Introduction 

 

Statistical randomness based on chaos theory is a hot topic  [1-3]. A raw literature review shows that over the 

last decade, the number of studies related to chaos-based random number generators has been over 15,000. At this 

point, a question comes to mind. Have chaotic systems been used with the most appropriate approach? The aim of 

this study is to search for answers to this question and to determine the chaotic system parameters which can 

produce the deterministic random numbers required by various applications with the using of optimization 

algorithms.  

The rest of the study has been organized as follows. In the second section, the general characteristics of 

chaotic systems are shortly explained. In the third section, randomness and deterministic random number 

generators are briefly introduced. In the fourth section, the details of the proposed method which show how to 

select of the chaotic system parameters to be used to provide the best randomness requirements by using 

optimization algorithms well-known in the literature are presented. The obtained results are discussed and the 

study is summarized in the last section. 

 

2. Chaotic Systems 

 

The relationship between the causes and consequences of real-world events is very complex. Chaotic systems 

is precisely based on this complex relationship. Irregular and unpredictable behavior of nonlinear systems is called 

chaos [1]. A small change in the initial conditions and control parameters of chaotic systems leads to very different 

outputs. This phenomenon is known as the butterfly effect and indicates that a very small change in a butterfly's 

flapping can trigger a hurricane. It is stated that the estimation of outputs in chaotic systems is impossible. In other 

words, a chaotic system is similar to a probabilistic system. But the source of the disorder is not the unpredictable 

external influences but the real dynamics of the system.  

There are various classes of chaotic systems such as discrete-time, continuous-time, time-delayed, spatial and 

hyper-chaotic. These chaotic system classes are ranked from simple to complex considering the mathematical 
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models they possess. This study has been based on discrete-time chaotic systems. Because these systems have a 

simpler structure than others. The most important reason for this preference is to ensure effectiveness by keeping 

the complexity of the deterministic-random number generator as low as possible. Two different discrete-time 

chaotic systems have been used in the study. The mathematical models of these chaotic systems are given in Table 

1 [1]. 

 

Table 1. Properties of some discrete time chaotic systems 

 
Chaotic Map Mathematical Model Initial Condition Control Parameters 

Logistic Map 𝑥𝑛+1 = 𝑎 ∗ 𝑥𝑛 ∗ (1 − 𝑥𝑛) 𝑥𝑛 ∈ [0,1] 𝑎 ∈ [3.5, 4] 
Circle Map 𝑥𝑛+1 = 𝑥𝑛 + 𝑎 −

𝑏

2𝜋
sin(2𝜋𝑥𝑛) mod1 𝑥𝑛 ∈ [0,1] a ∈ [0, 1], 𝑏 ∈ [0, 4𝜋] 

 
3. Random Number Generators 

 

Randomness is a fundamental characteristic required in many applications such as statistics, game theory, 

simulation, numerical analysis, entertainment and cryptology. Real world Random Number Generators (RNG) are 

divided into two basic classes. These classes are Deterministic RNG (also known as pseudo random number 

generators) and True RNG [3, 4]. 

Figure 1 shows the general design architecture of the Deterministic RNG (DRNG). In this general design 

architecture, 𝑟1, 𝑟2, … , 𝑟𝑛 ∈ 𝑅 shows random numbers, and 𝑠𝑛 ∈ 𝑆, shows the internal state. Here the S and R finite 

sets are called the state space and output space of the DRNG, respectively. The 𝜓: 𝑆 → 𝑅 output function generates 

the 𝑟𝑛 random number from the current 𝑠𝑛   internal state. The 𝑠𝑛 status is then updated to 𝑠𝑛+1: = 𝜑(𝑠𝑛)  using 

the 𝜑 state transition function. The initial internal state value 𝑠1  is updated using the seed value 𝑠0 in 𝑠1: = 𝜑(𝑠0)  
format or by using more complex designs. It is clear from 𝑠0 seed value that all 𝑠1, 𝑠2, … , 𝑠𝑛 inner states and 

𝑟1, 𝑟2, … , 𝑟𝑛 random numbers can be estimated. Therefore, the seed value must be selected randomly in safety-

priority applications and the state transition function and the output function must be sufficiently complex.  The 

disadvantage of DRNG is that the output values can be fully determined by the seed value and that future random 

numbers are only dependent on the current internal state. Therefore, the internal state must be protected even if 

the device is not activated. The advantages of DRNG are that they are cheaper since they do not need any dedicated 

hardware [3, 4]. 

 

 
 

Figure 1. General design architecture of DRNG 
 

One of the important sources for design and analysis of DRNG is Knuth's classic work called “The Art of 

Programming” [5]. Since the publication of this study, many RNG algorithms have been proposed and many 

researchers have continued to work on this hot topic. Ripley addressed the problems faced by personal computer 

users in order to produce random numbers in his study published in 1983 [6]. Ripley was developed effective 

methods of generating exponential, normal and Poisson distribution arrays. In 1990, L'Ecuyer solved the problem 

of generating uniform random variables for a user with a moderate computer use knowledge [7]. In a 1990 study 

by James, pseudo-random number generators for Monte Carlo calculations were addressed [8]. In another study 

conducted in 1990, Lagarias identified pseudo-random number generators based on number theory, one way 

functions and secret-key encryption systems [9]. Lagarias also summarizes the results of these generators on 

cryptanalysis. A comprehensive evaluation study on random number generators was performed by Ritter [10].  
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When the current literature is examined, it is seen that another important topic used in RNG design is chaos 

based randomness [11-18]. The close similarities between the two disciplines led the researchers to focus their 

attention on this subject. Because the complex relationship between the causes and consequences of real world 

events is one of the basic requirements expected from a RNG and is based on this complex relationship in chaotic 

systems. 

 

4. Proposed Method  

 

In the literature, a study was carried out to determine the optimal starting conditions and control parameters 

for the Logistic map using the brute force approach [19]. The pseudo-code of the algorithm is given in Figure 2. 

In the study proposed by Ozkaynak, it was very difficult to determine the most suitable values in infinite space 

and only an analysis study has been carried out using the 3 values after the comma. The complexity of the algorithm 

is O(n3), as can be easily seen from the pseudo-code. In other words, the problem is computationally difficult. 

Therefore, optimization algorithms are needed to find an approximate solution. 

 

 
 

Figure 2. The pseudo-code of the brute force algorithm in Ref [19] 

 

The optimization process tries to obtain the best solution among all solutions under the given conditions when 

a problem is solved. The variables that affect the performance of optimization and have values under our control 

are called decision variables. The objective function is created by analytically demonstrating the effects of decision 

variables on the objective. In most cases, only certain values of decision variables should be used. These limitations 

on the values of decision variables are called constraints. In other words, the goal of optimization is to find the 

best combination of objective functions. providing all constraints given among all possible combinations of 

decision variables. 

The unique aspect of the study is to realize RNG designs by determining the initial conditions and control 

parameters of chaotic systems using optimization algorithm. Objective function of optimization algorithm is 

randomness requirements. As a result of the literature review, it was determined that there was no study aiming at 

reaching this goal before. Although there are studies in the literature that use optimization algorithms for chaos 

control or chaotic parameter estimation, these studies are very different from the purpose of the proposed method. 

In the study, the initial conditions and control parameters of two different chaotic systems have been selected with 

seven well-known meta-heuristic optimization algorithms. The optimization algorithms [20. 21]: 

• Optimization algorithms based on Biological: Differential Evolution (DE), Particle Swarm Optimization 

(PSO), Symbiosis Organisms Search (SOS) Algorithm, 

• Optimization algorithms based on Physics and Chemistry: Gravitational Search Algorithm (GSA), 

Harmony Search Algorithm (HS), 

• Optimization algorithms based on Mathematics: Golden Sine Algorithm II (GoldSA-II). 

 

The parameters used in the comparison algorithms are given as follow: 

 

• PSO: Inertia Weight Damping Ratio = 0.99, Inertia Weight = 1, Global Learning Coefficient = 2.0, 

Personal Learning Coefficient = 1.5. 

• GSA: Rnorm = 2, Rpower = 1, Elitist Check = 1. 
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• HS: Harmony Memory Consideration Rate= 0.9, Fret Width Damp Ratio= 0.995, Fret Width = 0.02*( 

Upper Bound - Lower Bound), Pitch Adjustment Rate=0.1. 

• DE: Upper Bound of Scaling Factor=0.8, Lower Bound of Scaling Factor =0.2, Crossover 

Probability=0.2. 

• SOS: Benefit factor (BF): random number either 1 or 2. 

• ACO: Sample Size:40, Intensification Factor (Selection Pressure)= 0.5, Deviation-Distance Ratio=1. 

• GoldSA-II : Gold section constant=[-pi*rand, pi*rand], Golden ratio (τ)= 0.618033     

Analysis has been realized for 1,000,000 bits have been produced by using two discrete chaotic map outputs. 

After the generation of random number sequences, properties of statistical randomness have been checked using 

two different tests. First statistical randomness test is known as the monobit (frequency) test [22]. Definition of 

this test is that “Monobit test measures whether the number of 0s and 1s produced by the generator are 

approximately the same as would be expected for a truly random sequence.” Monobit test results are given in 

Table 2. Chaotic maps in Table 1 shows as F1 and F2 symbols, respectively. 

 

Table 2. Monobit test results for 1,000,000 random bit  

 
 PSO ACO DE GSA HS SOS GoldSA-II 

F1 258 68 238 1.484 592 416 212 

F2 88 132 624 14.854 9.220 15.604 670 

 

Another statistical randomness test is the chi-square test. Definition of this test is that “A chi-square statistic 

compares these substring proportions to the ideal 1/2. The statistic is referred to a chi-squared distribution with the 

degrees of freedom equal to the number of substrings. The chi-squared distribution is used to compare the 

goodness-of-fit of the observed frequencies of a sample measure to the corresponding expected” [22, 23]. In this 

test, the produced 1,000,000 bit has been divided into 4-bits lengths to produce 250,000 decimal numbers ranging 

from 0 to 15. In this case, according to the chi-square test, the expected frequency values are 15,625. Observed 

values for seven different optimization algorithms are given in Table 3. 

 

Table 3. Observed values for produce 250,000 decimal numbers ranging from 0 to 15 

 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PSO 
F1 15576 15653 15521 15667 15613 15591 15674 15594 15724 15612 15584 15720 15631 15603 15599 15638 

F2 15710 15486 15621 15893 15540 15480 15900 15442 15414 16006 15362 15419 15856 15468 15610 15793 

ACO 
F1 15616 15566 15623 15747 15594 15674 15685 15605 15659 15584 15552 15637 15623 15667 15605 15563 

F2 15613 15352 15710 15790 15758 15469 15787 15442 15504 15768 15719 15639 15553 15788 15469 15639 

DE 
F1 15706 15656 15555 15657 15592 15671 15568 15619 15566 15637 15595 15693 15538 15682 15624 15641 

F2 15720 15540 15698 15679 15838 15466 15793 15537 15482 15727 15415 15523 15673 15643 15549 15717 

GSA 
F1 14983 15631 15952 15416 15862 15661 15659 15664 15720 15477 15617 15589 15685 15689 15859 15536 

F2 14647 17172 16044 15831 17128 14118 16436 15185 17396 15205 15216 15376 15148 16189 14961 13948 

HS 
F1 15615 15553 15607 15681 15524 15648 15730 15712 15541 15615 15678 15642 15615 15703 15578 15558 

F2 16483 16125 16536 15322 16163 15417 13897 16233 16105 15603 14937 14923 15587 14756 16453 15460 

SOS 
F1 15671 15606 15597 15592 15576 15628 15622 15618 15785 15665 15563 15643 15607 15624 15593 15610 

F2 17135 16118 16168 15578 16398 14913 15510 15085 16209 15254 14847 15484 15593 15312 15312 15084 

GoldSA-II 
F1 15671 15660 15624 15577 15554 15653 15623 15684 15643 15582 15561 15610 15565 15687 15664 15642 

F2 15707 15627 15699 15567 15649 15659 15850 15263 15391 15704 15639 15746 15632 15829 15469 15569 

 

In the case study 1, random numbers have been generated between 0 and 15. Therefore, degree of freedom 

(DF) of chi-square test is 16. All confidence values are given in Table 4 for the degree of freedom 16. 

 

Table 4. Confidence values for degree of freedom 16 

 
 Confidence Values 

DF 0.995 0.975 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.002 0.001 

16 5.142 6.908 20.465 23.542 26.296 28.845 29.633 32.000 34.267 37.146 39.252 

 

In order to be able to say that the random numbers produced are statistically random, the calculated chi-square 

value should be smaller than the values in the Table 4. The calculated chi- square values for the seven different 

optimization algorithms are given in Table 5. The best, worst, average and standard deviation values are given in 
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the Table 5. The most appropriate chi square values are shown in bold font for the best and mean values, in the 

Table 5. Among the optimization algorithms, GoldSA-II algorithm has been found to have better results than other 

algorithms. However, it should not be overlooked that other algorithms meet the randomness requirements for 

many confidence values. 

 

Table 5. The chi- square test results for 1.000.000 random bit 

 
  PSO ACO DE GSA HS SOS GoldSA-II 

F1 

Best 2.7180 2.5686 2.5702 46.4393 3.9171 2.5446 1.9651 

Mean 3.9958 2.8057 3.5108 1.7950e+03 4.4168 3.7470 2.6258 

Worst 4.7456 3.1441 4.8901 6.4223e+03 4.7971 4.5102 3.0024 

Std 0.9422 0.2278 0.9242 2.6923e+03 0.3338 0.7433 0.4048 

F2 

Best 41.1837 19.9224 14.9336 1.0426e+03 528.8125 372.6726 22.0122 

Mean 251.3002 241.4392 205.3796 1.6048e+03 872.4748 482.8232 139.4131 

Worst 551.7382 507.1160 354.7210 2.4460e+03 1.5448e+03 664.1293 334.8357 

Std 188.6843 227.7812 150.2168 756.5389 419.9311 108.5574 122.3634 

 

In the above analysis, all optimizers have been run independently 5 times in equal population and iterations 

and the results have been recorded. The number of populations for chaotic system functions is 10 and the maximum 

number of function evaluations is 1.000. Table 6 shows the determined initial conditions and control parameters 

using seven optimization algorithm. Numerical deterioration is an important problem for chaotic systems [24, 25]. 

In order not to be affected by this problem, the highest precision provided by the computer where the analyzes 

have been performed has been used. Therefore, in order to show the numerical values in the best way, Table 6 is 

given in two parts. 

 

Table 6. Most Suitable System Parameters for for 1,000,000 random bit 

 
 Logistic Map (F1) 

 Xn a 

PSO 0.583587285455663 4 

ACO 0.747882339784262 4 

DE 0.312955856922984 4 

GSA 0.438200825697660 3.99647848943457 

HS 0.603238510606358 4 

SOS 0.269877194226175 4 

GoldSA-II 0.805314780517318 4 

 
 Circle Map (F4) 

 Xn a b 

PSO 0.765111672245320 1 11.502628728405833 

ACO 0.717488331494669 0.999999826893032 11.502276826049323 

DE 0.251024684144349 1 11.5022593721011 

GSA 0.589147901804019 0.707607013522381 10.313736784726066 

HS 0.492349236734390 0.978890082799524 11.718949046051932 

SOS 0.181617966853290 0.732578163414611 10.1026142685088 

GoldSA-II 0.100001102537958 1 11.5022370468944 

 
5. Conclusion and Discussion 

 

The purpose of this study is to determine the optimal initial conditions and control parameters of the chaotic 

systems to be used in the chaos based DRNG designs. Optimization algorithms have been used to achieve this 

purpose. The optimal initial conditions and control parameters for discrete-time chaotic systems have been 

obtained. All these results draw attention to the problems of doing various studies on the theoretical similarities 

between chaos and randomness. Therefore, in chaos-based RNG designs, the initial conditions and control 

parameters of the chaotic system should be selected in the most appropriate way. RNG design architecture and 

application specific randomness requirements must be taken into account when making this selection. In this study, 

a method has been proposed to make these choices in the most appropriate way. The parameters used in the analysis 

are given. Researchers who wish to work in this area can adapt the proposed method according to their 
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requirements. Therefore, after successful implementation of the proposed method, the outcomes are expected to 

contribute significantly to the literature of chaos-based randomness. 
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