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ABSTRACT

In the present study, we find the parametric equations of non-null W-curves through the semi skew-
symmetric matrix in three dimensional Lorentz-Minkowski space. Our technic provides more
simple but efficient method for find the parametric equations of these curves in comparison to
previous studies in mentioned space. Finally, we give some pictures of W-curves in polynomial
form.
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1. Introduction and Preliminaries

The curve γ is called a W-curve or curve with constant curvature if it has constant Frenet curvatures.
According to relativity theory, the free particles move on these curves in space. One can consider these
curves as an integral curve of the helicoidal vector field in Lie algebra or as a solution of the system of linear
homogeneous ordinary differential equations of first order with constant (Frenet curvatures) coefficients. These
curves widely investigated in Euclidean space ([1], [2]) and in Lorentz-Minkowski space ([5], [6]). The generic
parametric equations of unit speed W-curves in R2n+1 Euclidean space and R2n+1

1 Lorentz-Minkowski space
are given by

α(s) = as−→e0 +

n∑
i=1

ri (cos (µis)
−−−→e2i−1 + sin (µis)

−→e2i)

and
γ(s) = (a1 sinhλ1s+ b1 coshλ1s, a1 coshλ1s+ b1 sinhλ1s,

a2 sinλ2s+ b2 cosλ2s, a2 cosλ2s− b2 sinλ2s, ...,
an sinλns+ bn cosλns, an cosλns− bn sinλns, cs)

where {−→e0 ,−→e1 , ...,−→e2n} is orthonormal base of R2n+1 such that

a2 +

n∑
i=1

(riµi)
2
= 1

and

−a21λ21 + b21λ
2
1 + c2 +

n∑
i=2

(
a2i + b2i

)
λ2i = ∓1

respectively. If a = 0 then α lies on hypersphere, otherwise α fully lies in R2n+1. If c = 0, γ lies on S2n
1

pseudosphere or on H2n
1 pseudohyperbolic space otherwise γ fully lies in R2n+1

1 ([5], Theorem 3.4). In ([1],
Proof of Theorem 1, pp. 460-463), W−curves are characterized by chord property with the following condition,

〈γ(t)− γ(s), T (t)− T (s)〉 = 0 (C)
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where T = γ′(s) is unit tangent vector field of the curve. Öztürk and Yaylı ([5], Definition 3.1) called these
curves as C−curve and investigated the relations between W−curves and this curve in Lorentz-Minkowski
space. In [2], these curves characterized by algebraic methods with respect to study of [1]. Walrave [6] classified
all of W−curves by using some analysis technics in three dimensional Minkowski space. Besides in [5], curves
which are satisfy the condition (C) are investigated and given some characterizations about the Frenet vectors
of the curve.

The metric tensor (inner product) of Lorentz-Minkowski space is given by

〈u, v〉 = −u1v1 +
n∑
i=2

uivi

where u = (u1, u2, ..., un) and v = (v1, v2, ..., vn). In Lorentz-Minkowski space, vectors have different causal
characters such as if 〈v, v〉 > 0 or v = 0, 〈v, v〉 < 0 and 〈v, v〉 = 0 (v 6= 0) then v is called by spacelike, timelike and
lightlike (or null) vector respectively. Norm of any vector is given by ‖v‖ =

√
|〈v, v〉| [4]. For any regular curve

γ : I → Rn1 if 〈γ′, γ′〉 > 0, 〈γ′, γ′〉 < 0 or 〈γ′, γ′〉 = 0 then the curve is called by spacelike, timelike or lightlike
(null) curve respectively [3]. If 〈γ′(s), γ′(s)〉 = ∓1 for all s ∈ I then γ is called by unit speed curve. Frenet-Serret
formulae for non-null γ curve with 〈γ′′, γ′′〉 6= 0 in R3

1 are given by T ′

N ′

B′

 =

 0 κη 0
−κε 0 −τεη
0 −τη 0

 T
N
B


where {T,N,B} is the Frenet frame of the curve, that is N =

T ′

‖T ′‖
and B = T ×N such that 〈T, T 〉 = ε,

〈N,N〉 = η and 〈B,B〉 = −εη. In [5] unit tangent vector field of all W−curves (C−curves) characterized in
Rn1 by the following theorem.

Theorem 1.1. [5] Let γ : I → Rn1 be a unit speed non-null W−curve. Unit tangent vector field of γ is given by

T (s) = Aγ(s) + b

where A is n× n constant semi skew-symmetric matrix, and b ∈ Rn1 is constant column vector.

In this study, we consider the W−curves as an integral curve of its unit tangent vector field via Theorem
1.1 and we calculate the parametric equations of these curves by solve some differential equations which are
correspond to special cases of the generic semi skew-symmetric matrix in R3

1.

2. Matrix Methods and Elementary Approaches

In [6], Walrave used MacLaurin expansions and analytic approach for find the W−curves in 3−dimensional
Minkowski space. Instead of using approach of Walrave, we prefer the use algebraic method. Here, our technic
is more elementary and quite remarkable because of using only one matrix for finding all W−curves in R3

1.
Through the Theorem 1.1 we make some manipulations on the elements of generic semi skew-symmetric
matrix. First of all we give the generic form of the semi skew-symmetric matrix in R3

1 by

A =

 0 λ1 λ2
λ1 0 −λ3
λ2 λ3 0

 (2.1)

where 1 ≤ i ≤ 3, λi ∈ R. Here we examine the some special cases of (2.1) through the elements of A. Let we
consider only one λi is zero in the following three case.

Case 1. Let λ1 = 0 and λ2, λ3 are non-zero arbitrary constants in (2.1). In this case, semi skew-symmetric matrix
and Darboux rotation vector is given by

A1 =

 0 0 λ2
0 0 −λ3
λ2 λ3 0


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and −→w = (λ3,−λ2, 0) respectively. Through the Theorem 1.1 we consider the γ(t) = (γ1(t), γ2 (t) , γ3 (t)) is unit
speed curve and translation vector b = (c1, c2, 0) . Therefore we writeγ

′
1(t)
γ′2(t)
γ′3(t)
0

 =

 0 0 λ2 c1
0 0 −λ3 c2
λ2 λ3 0 0
0 0 0 0


γ1(t)γ2(t)
γ3(t)
1

 (2.2)

Thus solution of (2.2) is given by

γ1(t) =
λ2c3√
λ22 − λ23

e
√
λ2
2−λ2

3t − λ2c4√
λ22 − λ23

e−
√
λ2
2−λ2

3t +

(
c1 −

λ22c1 + λ2λ3c2
λ22 − λ23

)
t+ c5

γ2(t) = −
λ3c3√
λ22 − λ23

e
√
λ2
2−λ2

3t +
λ3c4√
λ22 − λ23

e−
√
λ2
2−λ2

3t +

(
c2 +

λ2λ3c1 + λ23c2
λ22 − λ23

)
t+ c6

γ3(t) = c3e
√
λ2
2−λ2

3t + c4e
−
√
λ2
2−λ2

3t − λ2c1 + λ3c2
λ22 − λ23

where 1 ≤ i ≤ 6, ci ∈ R and λ22 − λ23 > 0.

Case 2. Let λ2 = 0 and λ1, λ3 are non-zero arbitrary constants in (2.1). In this case, semi skew-symmetric matrix
and Darboux rotation vector is given by

A2 =

 0 λ1 0
λ1 0 −λ3
0 λ3 0


and −→w = (λ3, 0, λ1) respectively. Hence we haveγ

′
1(t)
γ′2(t)
γ′3(t)
0

 =

 0 λ1 0 c1
λ1 0 −λ3 0
0 λ3 0 c2
0 0 0 0


γ1(t)γ2(t)
γ3(t)
1

 (2.3)

Solution of (2.3) is given by

γ1(t) =
λ1c3√
λ21 − λ23

e
√
λ2
2−λ2

3t − λ1c4√
λ21 − λ23

e−
√
λ2
2−λ2

3t +

(
c1 −

λ21c1 − λ1λ3c2
λ21 − λ23

)
t+ c5

γ2(t) = c3e
√
λ2
1−λ2

3t + c4e
−
√
λ2
1−λ2

3t − λ1c1 − λ3c2
λ21 − λ23

γ3(t) =
λ3c3√
λ21 − λ23

e
√
λ2
1−λ2

3t − λ3c4√
λ21 − λ23

e−
√
λ2
1−λ2

3t +

(
c2 −

λ1λ3c1 − λ23c2
λ21 − λ23

)
t+ c6

where 1 ≤ i ≤ 6, ci ∈ R and λ21 − λ23 > 0.

Case 3. Let λ3 = 0 and λ1, λ2 are non-zero arbitrary constants in (2.1). In this case, semi skew-symmetric matrix
and Darboux rotation vector is given by

A3 =

 0 λ1 λ2
λ1 0 0
λ2 0 0


and −→w = (0,−λ2, λ1) respectively. Hence we haveγ

′
1(t)
γ′2(t)
γ′3(t)
0

 =

 0 λ1 λ2 0
λ1 0 0 c1
λ2 0 0 c2
0 0 0 0


γ1(t)γ2(t)
γ3(t)
1

 (2.4)

11 www.iejgeo.com

http://www.iej.geo.com


Matrix Methods On W-Curves

Solution of (2.4) is given by

γ1(t) = c3e
√
λ2
1+λ

2
2t + c4e

−
√
λ2
1+λ

2
2t − λ1c1 + λ2c2

λ21 + λ22

γ2(t) =
λ1c3√
λ21 + λ22

e
√
λ2
1+λ

2
2t − λ1c4√

λ21 + λ22
e−
√
λ2
1+λ

2
2t +

(
c1 −

λ21c1 + λ1λ2c2
λ21 + λ22

)
t+ c5

γ3(t) =
λ2c3√
λ21 + λ22

e
√
λ2
1+λ

2
2t − λ2c4√

λ21 + λ22
e−
√
λ2
1+λ

2
2t +

(
c2 −

λ1λ2c1 + λ22c2
λ21 + λ22

)
t+ c6

where 1 ≤ i ≤ 6, ci ∈ R.
Now we examine the special conditions of above cases.

Case 4. Let λ1 = 0 and λ2 = λ, λ3 = |λ| are non-zero arbitrary constants in (2.1). In this case, semi skew-
symmetric matrix and Darboux rotation vector is given by

A4 =

0 0 λ
0 0 − |λ|
λ |λ| 0


and −→w = (|λ| ,−λ, 0) respectively. Hence we haveγ

′
1(t)
γ′2(t)
γ′3(t)
0

 =

0 0 λ c1
0 0 − |λ| c2
λ |λ| 0 0
0 0 0 0


γ1(t)γ2(t)
γ3(t)
1

 (2.5)

Solution of (2.5) is given by

γ1(t) =
λ2

6
(c1 + sgn(λ)c2) t

3 + (λc3 + c1) t+ c4

γ2(t) = −
λ2

6
(sgn(λ)c1 + c2)t

3 + (c2 − |λ| c3) t+ c5

γ3(t) =
1

2
(λc1 + |λ| c2) t2 + c3

where c1 ∈ R>0, 2 ≤ i ≤ 5, ci ∈ R and

sgn(λ) =

{
1 , λ > 0
−1 , λ < 0

Case 5. By similar procedures above we take λ2 = 0 and λ1 = λ, λ3 = |λ| and we get

γ1(t) =
1

6
λ (λc1 − |λ| c2) t3 + (λc3 + c1)t+ c4

γ2(t) =
1

2
(λc1 − |λ| c2) t2 + c3

γ3(t) =
1

6
|λ| (λc1 − |λ| c2) t3 + (|λ| c3 + c2)t+ c5

where c1 ∈ R>0 and 2 ≤ i ≤ 5, ci ∈ R.
Case 6. If we take λ3 = 0 and λ1 = λ, λ2 = |λ|we get

γ1(t) = c3e
√
2|λ|t + c4e

−
√
2|λ|t − c1 + sgn(λ)c2

2λ

γ2(t) =
sgn(λ)√

2

(
c3e
√
2|λ|t − c4e−

√
2|λ|t

)
+
c1 − sgn(λ)c2

2
t+ c5

γ3(t) =
sgn(λ)√

2

(
c3e
√
2|λ|t − c4e−

√
2|λ|t

)
+
c2 − sgn(λ)c1

2
t+ c6

where c1 ∈ R>0 and 2 ≤ i ≤ 6, ci ∈ R.
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So far we considered only one λi is zero at previous cases. Now we take two of λi is zero in the following
cases.

Case 7. Let λ2 = λ3 = 0 and λ1 = λ 6= 0 in (2.1). In this case, semi skew-symmetric matrix and Darboux rotation
vector is given by

A5 =

0 λ 0
λ 0 0
0 0 0


and −→w = (0, 0, λ) respectively. Obviously we haveγ

′
1(t)
γ′2(t)
γ′3(t)
0

 =

0 λ 0 0
λ 0 0 0
0 0 0 c
0 0 0 0


γ1(t)γ2(t)
γ3(t)
1


The generic solution of above differential equation is given by

γ1(t) = a1 coshλt+ a2 sinhλt
γ2(t) = a1 sinhλt+ a2 coshλt
γ3(t) = ct

(2.6)

where a1, a2 ∈ R. Let we give the type of the curves which are correspond to special case of (2.6).

Theorem 2.1. Unit speed curve γ(s) = (γ1(s), γ2 (s) , γ3 (s)) in the form of (2.6) is given by one of the following cases.

1) If a2 = 0 and a1 = a 6= 0 then

γ(s) =

(
a cosh

λ

u
s, a sinh

λ

u
s,
c

u
s

)
is a spacelike hyperbolic helix with timelike normal where u =

√
c2 + a2λ2.

2) If a1 = 0 and a2 = a 6= 0 then one of the following cases occur.

i) If c2 − a2λ2 > 0 then

γ(s) =

(
a sinh

λ

u
s, a cosh

λ

u
s,
c

u
s

)
is a spacelike hyperbolix helix with spacelike normal where u =

√
c2 − a2λ2.

ii) If c2 − a2λ2 < 0 then

γ(s) =

(
a sinh

λ

u
s, a cosh

λ

u
s,
c

u
s

)
is a timelike hyperbolic helix where u =

√
a2λ2 − c2.

Proof. 1) Suppose that a2 = 0 and a1 = a 6= 0. Due to (2.6) we write γ(t) = (a coshλt, a sinhλt, ct) . Thus

〈γ′(t), γ′(t)〉 = c2 + a2λ2 > 0

and
〈γ′′(t), γ′′(t)〉 = −a2λ4 < 0

So γ is spacelike curve with timelike normal. If we consider ‖γ′(t)‖ =
√
c2 + a2λ2 = u then we get unit speed

curve

γ(s) =

(
a cosh

λ

u
s, a sinh

λ

u
s,
c

u
s

)
Besides the curvature and torsion of this curve κ =

aλ2

u2
and τ =

cλ

u2
are constant respectively. Inner product of

unit tangent vector field T of γ and −→v = (0, 0, 1)

〈T,−→v 〉 = c

u

13 www.iejgeo.com

http://www.iej.geo.com


Matrix Methods On W-Curves

is constant so −→v = (0, 0, 1) is the directrix of the rotation axis of this curve.
2) Suppose that a1 = 0 and a2 = a 6= 0. According to (2.6) we write γ(t) = (a sinhλt, a coshλt, ct) and
〈γ′(t), γ′(t)〉 = c2 − a2λ2.
i) Let 〈γ′(t), γ′(t)〉 = c2 − a2λ2 > 0. Therefore 〈γ′′(t), γ′′(t)〉 = a2λ4 > 0 and γ is spacelike curve with spacelike

normal. If we consider ‖γ′(t)‖ =
√
c2 − a2λ2 = u then we get unit speed curve

γ(s) =

(
a sinh

λ

u
s, a cosh

λ

u
s,
c

u
s

)

By straightforward calculations we get κ =
aλ2

u2
and τ =

cλ

u2
are constant and |τ | > κ. Similar to above we find

the directrix of the rotation axis of the curve as −→v = (0, 0, 1) .
ii) Let 〈γ′(t), γ′(t)〉 = c2 − a2λ2 < 0. If we consider ‖γ′(t)‖ =

√
a2λ2 − c2 = u then we get the equation of the

unit speed timelike curve as

γ(s) =

(
a sinh

λ

u
s, a cosh

λ

u
s,
c

u
s

)
and κ =

aλ2

u2
and τ = −cλ

u2
are constant such that |τ | < κ. Obviously −→v = (0, 0, 1) is the directrix of the rotation

axis of the curve.

Case 8. Let λ1 = λ3 = 0 and λ2 = λ 6= 0 in (2.1). In this case, semi skew-symmetric matrix and Darboux rotation
vector is given by

A6 =

0 0 λ
0 0 0
λ 0 0


and −→w = (0,−λ, 0) respectively. Hence we haveγ

′
1(t)
γ′2(t)
γ′3(t)
0

 =

0 0 λ 0
0 0 0 c
λ 0 0 0
0 0 0 0


γ1(t)γ2(t)
γ3(t)
1


Thus solution of the above differential equation is given by

γ1(t) = sgn(λ)c1e
|λ|t − sgn(λ)c2e−|λ|t + c3

γ2(t) = cs+ d

γ3(t) = c1e
|λ|t + c2e

−|λ|t

where 1 ≤ i ≤ 3, ci, d ∈ R.
Case 9. Let λ1 = λ2 = 0 and λ3 = λ 6= 0 in (2.1). In this case, semi skew-symmetric matrix and Darboux rotation
vector is given by

A7 =

0 0 0
0 0 −λ
0 λ 0


and −→w = (λ, 0, 0) respectively. By similar previous calculations we get the generic solution of γ(t) =
(γ1(t), γ2 (t) , γ3 (t)) as

γ1(t) = ct
γ2(t) = a cosλt
γ3(t) = a sinλt

(2.7)

where a ∈ R. Thus 〈γ′(t), γ′(t)〉 = a2λ2 − c2. Depends on to sign we have the following theorem.

Theorem 2.2. Unit speed curve γ(s) = (γ1(s), γ2 (s) , γ3 (s)) in the form of (2.7) is given by one of the following cases.
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1) If a2λ2 − c2 > 0 then

γ(s) =

(
c

u
s, a cos

λ

u
s, a sin

λ

u
s

)
is a spacelike circular helix where u =

√
a2λ2 − c2.

2) If a2λ2 − c2 < 0 then

γ(s) =

(
c

u
s, a cos

λ

u
s, a sin

λ

u
s

)
is timelike circular helix where u =

√
c2 − a2λ2.

Proof. 1) By straightforward calculations, the parametric equation, curvature and the torsion of this curve is

given by γ(s) =
(
c

u
s, a cos

λ

u
s, a sin

λ

u
s

)
, κ = a

(
λ

u

)2

and τ = c
λ

u2
respectively. Besides |τ | < κ and−→v = (1, 0, 0)

is the directrix of the rotation axis of the curve.
2) Similary the parametric equation, curvature and the torsion of this curve is given by γ(s) =(
c

u
s, a cos

λ

u
s, a sin

λ

u
s,

)
, κ = a

(
λ

u

)2

and τ = c
λ

u2
respectively where a > 0. Besides κ < |τ | and −→v = (1, 0, 0)

is the directrix of the rotation axis of the curve.

Example 2.1. Let we give the curve γ : I → R3
1 by

γ (s) =

(
1

6
λ |λ| s3,−1

6
λ2s3 + s,

1

2
|λ| s2

)
Obviously this curve is a unit speed spacelike W−curve. It can be easily seen that

〈γ (t)− γ (s) , T (t)− T (s)〉 = 0

where T is the unit tangent vector field of the curve. For λ = 1, this curve is illustared by Figure 1 (a).

Example 2.2. Let we give the curve γ : I → R3
1 by

γ (s) =

(
1

6
λ2s3 + s,

1

2
λs2,

1

6
λ |λ| s3

)
This curve is a unit speed timelike W−curve. It can be easily seen that

〈γ (t)− γ (s) , T (t)− T (s)〉 = 0

where T is the unit tangent vector field of the curve. For λ = 1, this curve is illustared by Figure 1 (b).

(a) Spacelike W-Curve (b) Timelike W-Curve

Figure 1. Semicubic W-Curves
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3. Conclusions

This study provides algebraic method for classify the W−curves by using only one semi skew-symmetric
matrix in three dimensional Lorentz-Minkowski space. Obviously this approach more elementary and more
useful in comparison to previous studies. One can obtain these curves in high dimensions or in different spaces
(whose have different metric tensor) by using the same approach.
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