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Abstract 
In this study, energy spectrum and corresponding wave function of Parity-Time (PT)-/non-PT- Symmetric and Non-Hermitian 

q-deformation Trigonometric Scarf Potential are obtained by using Path Integral method where P and T denotes parity and time 

operators, respectively. First, the kernel of this potential is derived in terms of the energy spectrum and the wave function by 

adopting parametric time. Then, the concomitant energy spectrum and the wave function are found by using the Green function 

stemming from the aforementioned kernel. 

Keywords: Trigonometric Scarf Potential, Path integral, PT Symmetry, Non Hermitian potential, Green’s Function 

 

Öz 

Bu çalışmada Parite-Zaman (PT)-/ PT-Simetrik ve Hermityen Olmayan q-deformasyonlu Trigonometrik Scarf Potansiyelinin 

enerji spektrumu ve karşılık gelen dalga fonksiyonu Path Integral yöntemi kullanılarak elde edilmiştir. P ve T burada parite ve 

zaman işlemcilerine karşılık gelmektedir. Öncelikle bu potansiyelin kerneli parametrik zaman kullanılarak enerji spektrumu ve 

dalga fonksiyonu cinsinden türetilmiştir. Daha sonra, bu kernelden elde edilen Green fonksiyonu ile enerji spektrumu ve dalga 

fonksiyonu bulunmuştur.  

Anahtar Kelimeler Trigonometrik Scarf Potansiyeli, Path integral, PT Simetri, Non Hermityen potansiyel, Green fonksiyonu 

 

I. INTRODUCTION 
It is the usual practice in quantum mechanics that any measurement of a physical quantity is expressible as an 

eigenvalue of an operator which is bound to be Hermitian. This common practice holds when there is no interaction 

with the environment i.e. when the system under scrutiny is isolated.  In the presence of an interaction, the 

Hamiltonian is not Hermitian. However, although PT-symmetric systems are not isolated, they act as Hermitian 

systems because they are in equilibrium and their energy levels are real [1,2].  An example of such an open quantum 

system is George Gamow's work on Alpha decay. In this study, it was shown that a particle can escape from the 

nucleus by tunneling at a rate that can be effectively defined by a complex energy eigenvalue. It has been found 

that the real and imaginary portions of these eigenvalues are related to the experimentally observed energy levels 

and widths of the respective nuclear resonances. Non-Hermitian concepts have been used in physics, nuclear and 

quantum, optical, microwave, electronic and mechanical systems in a number of sub-disciplines [3,4]. 

 

The exact solutions of the Schrödinger equation with potentials yielding real and complex eigenvalues are quite 

interesting. Analytical and numerical studies for various Hamiltonians with real and complex eigenvalues, which 

were first initiated by Bender and Boetcher, and then were continued by many authors [2-4, 16-18]. Following this 

line of research, we aim to obtain the energy spectrum and the wave functions of the PT-/Non-PT-Symmetric and 

non-Hermitian Scarf Potential using Feynman’s Path integral method in this work. The point of departure of the 

path integral method involves the calculation of the quantum mechanical amplitude over all possible paths 

associated with classical action, namely, the kernel [7].  

 

Trigonometric Scarf potential has been used in the construction of a periodic potential and employed in one-

dimensional crystal models in solid state physics. In this study, we will discuss the trigonometric Scarf potential 

based on q deformation. The hyperbolic potentials with q-deformation are defined as follows [9,12]: 
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Firstly, q deformation hyperbolic functions, which 

were introduced by Arai to obtain complete solutions 

of supersymmetric potentials, were later used by 

various authors for various potentials. The q parameter 

is used as an additional parameter to define interatomic 

interactions.  

 

This paper is organized as follows: In section 2.1, we 

derive the kernel of PT-Symmetric and q-deformed 

Trigonometric Scarf potentials. In section 2.2, we 

obtain the energy eigenvalues and the corresponding 

wave functions. In section 3, we find kernel, energy 

spectrum and wave functions of non-PT Symmetric 

and non- Hermitian q deformed Trigonometric Scarf 

potential. 

 

II. MATERIAL AND METHOD 
The kernel of a point particle moving in the potential 

V(x) in one dimension between the initial position x^' 

at time t^'=0 and final position x'' at time t'' has the 

following form [7]: 

 

 𝐾(𝑥′′, 𝑡′′; 𝑥′, 𝑡′) = ∫
𝐷𝑥𝐷𝑝

2𝜋
𝑒𝑥𝑝 {

𝑖

ℏ
∫ 𝑑𝑡[𝑝𝑥̇ −

𝑝2

2𝑚
− 𝑉(𝑥)]}                          (2) 

 

This expression is the sum of the amplitudes that 

includes the contribution from all possible paths, which 

includes all the information about the system. The 

kernel, also called the propagator, is the Green function 

of the Schrodinger equation, and it is also anything that 

expresses a wave function that spreads over time. The 

kernel is defined as the energy integral of the Green 

function as 

 

𝐾(𝑥′′, 𝑥′; 𝑇) =
1

2𝜋𝑖ℏ
∫ 𝑒𝑖𝐸𝑇/ℏ∞

−∞
 𝐺(𝑥′′, 𝑥′; 𝐸)𝑑𝐸                                                                              (3) 

 

Where 𝑇 = 𝑡′′ − 𝑡′. The time interval is divided into N 

parts and the kernel is expressed as the limit of the 

discrete time as follows 
 

𝐾(𝑥′′, 𝑥′, 𝑇)

= lim
𝑁→∞

∫ ∑ 𝑑𝑥𝑗 ∏ (
𝑑𝑝𝑗

2𝜋ℏ
)  exp {

𝑖

ℏ
∑[𝑝𝑗

𝑁+1

𝑗=1

𝛥𝑥𝑗

𝑁+1

𝑗=1

𝑁

𝑗=1

−
𝑝𝑗

2

2𝑚
− 𝑉(𝑥𝑗)]𝜖}      

(4) 

 

 

Here ∆𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1, 𝜖 = 𝑡𝑗 − 𝑡𝑗−1, 𝑡′ = 𝑡0 = 𝑡𝑎, 

𝑡′′ = 𝑡𝑁 = 𝑡𝑏.  By using this expression, the kernel of 

any potential is derived while the kernel of the system 

is derived by applying path integral method with the 

appropriate coordinate and momentum 

transformations. The energy spectrum and the Green’s 

function of the system are found using Equation (3). In 

particular, the Fourier that analyzes the Propagator 

gives all the energy eigenvalues and each Fourier 

coefficient gives the wave functions of each energy. 

Propagator therefore contains all the dynamic 

information about a quantum system. 

 

III. RESULTS 

3.1. The Kernel of the PT-Symmetric and q-

deformed Trigonometric Scarf potential 

The q-deformed trigonometric Scarf potential in its 

most general form reads [14-16]. 

 

𝑉(𝑥) = −
𝐴

𝑠𝑖𝑛𝑞
2𝛼𝑥

 (5) 

 

If A is real and 𝛼 → 𝑖𝛼 , PT-Symmetric and q-

deformed Trigonometric Scarf potential given by 

Equation (1)  becomes 

 

 𝑉(𝑥) =
𝐴

𝑠𝑖𝑛ℎ𝑞
2𝛼𝑥

 (6) 

 

 

Through Equation (4), the above potential yields the 

following kernel 

 

 

𝐾(𝑥′′, 𝑥′, 𝑇)

= lim
𝑁→∞

∫ ∑ 𝑑𝑥𝑗 ∏ (
𝑑𝑝𝑗

2𝜋ℏ
)  exp {

𝑖

ℏ
∑[𝑝𝑗

𝑁+1

𝑗=1

𝛥𝑥𝑗

𝑁+1

𝑗=1

𝑁

𝑗=1

−
𝑝𝑗

2

2𝑚
−

4𝐴𝑒−2𝛼𝑥𝑗

(1 + 𝑞𝑒−2𝛼𝑥𝑗)2
]𝜖}      

(7) 

 

By applying the position and momentum 

transformations below to the kernel above 

 𝑥 =
1

2𝛼
𝑙𝑛

𝑡𝑎𝑛ℎ2𝑦

𝑞
 ,     𝑝𝑥 = 𝛼𝑠𝑖𝑛ℎ𝑦𝑐𝑜𝑠ℎ𝑦𝑃𝑦   (8) 

 

Equation (7) now becomes 

 

𝐾(𝑦𝑎 , 𝑦𝑏; 𝑇) =  𝛼𝑠𝑖𝑛ℎ𝑦𝑏𝑐𝑜𝑠ℎ𝑦𝑏 ∫ 𝐷𝑦𝐷𝑝𝑦

× 𝑒𝑥𝑝 [𝑖 ∫ 𝑑𝑡 (𝑝𝑦𝑦̇

− 𝛼2𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦
𝑝𝑦

2

2𝜇

+ 4𝐴𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦)] 

 (9) 

since  position and momentum transformations yield 

the term 𝛼𝑠𝑖𝑛ℎ𝑦𝑏𝑐𝑜𝑠ℎ𝑦𝑏  due to the Jacobian. 

A new time parameter is defined to eliminate the 

multiplier in front of the kinetic energy. To this aim, it 

is included into the kernel in the form of a Lagrange 

multiplier [9,10,19,20]. 

 

𝑠𝑖𝑛ℎ𝑞𝑥 =
1

2
(𝑒𝑥 − 𝑞𝑒−𝑥),     𝑐𝑜𝑠ℎ𝑞𝑥 =

1

2
(𝑒𝑥 + 𝑞𝑒−𝑥)

 

𝑡𝑎𝑛ℎ𝑞𝑥 =
 𝑠𝑖𝑛ℎ𝑞𝑥

 𝑐𝑜𝑠ℎ𝑞𝑥
,    𝑠𝑒𝑐ℎ𝑞𝑥 =

1

 𝑐𝑜𝑠ℎ𝑞𝑥

 

𝑐𝑜𝑡ℎ𝑞𝑥 =
𝑐𝑜𝑠ℎ𝑞𝑥

𝑠𝑖𝑛ℎ𝑞𝑥
,    𝑐𝑜𝑠𝑒𝑐ℎ𝑞𝑥 =

1

 𝑠𝑖𝑛ℎ𝑞𝑥

 

𝑑

𝑑𝑥
𝑐𝑜𝑠ℎ𝑞𝑥 = 𝑠𝑖𝑛ℎ𝑞𝑥 ,   

𝑑

𝑑𝑥
 𝑠𝑖𝑛ℎ𝑞𝑥 = 𝑐𝑜𝑠ℎ𝑞𝑥

 

(1) 
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 𝑡 =
1

𝛼2 ∫
𝑑𝑠

𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦
      (10) 

 

This new time parameter can also be expressed as the 

Fourier transform of the Delta function [7,8] 

 

 

1 = ∫ 𝑑𝑆 ∫
𝑑𝐸

2𝜋

1

𝛼2𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦

× 𝑒𝑥𝑝 [𝑖 (𝐸𝑇 − ∫
𝑑𝑠𝐸

𝛼2𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦
)] 

  (11) 

 

Here S=sb-sa. Using Equation (10) and Equation (11), 

we can perform the calculation in Equation (9) as  

 

𝐾(𝑦𝑏, 𝑦𝑎; 𝑇) 

=
1

𝑖 𝛼𝑠𝑖𝑛ℎ𝑦𝑏𝑐𝑜𝑠ℎ𝑦𝑏
∫

𝑑𝐸

2𝜋
𝑒𝑖𝐸𝑇∞

−∞
∫ 𝐷𝑠 ∫ 𝐷𝑦𝐷𝑝𝑦𝑒

𝑖
4𝐴

𝛼2𝑆
              (12)                        

× exp [𝑖 ∫ 𝑑𝑠 (𝑝𝑦𝑦̇ −
𝑝𝑦

2

2𝜇
−

𝐸

2𝛼2

𝑠𝑖𝑛ℎ2𝑦
−

𝐸

2𝛼2

𝑐𝑜𝑠ℎ2𝑦
)] 

 

In order to make an equal contribution to the Jacobien 

at the beginning and end points, we need to symmetrize 

with respect to the points 𝑎 and 𝑏. Having done this, 

we have 
 

1

𝑠𝑖𝑛ℎ𝑦𝑏𝑐𝑜𝑠ℎ𝑦𝑏

=
1

√𝑠𝑖𝑛ℎ2𝑦𝑎𝑠𝑖𝑛ℎ2𝑦𝑏

exp (𝑖 ∫ 𝑑𝑠𝑖
𝑐𝑜𝑠ℎ2𝑦

𝑠𝑖𝑛ℎ2𝑦

𝑆

0

𝑦̇) (13) 

Thus  we can write Equation (12) as 

 

 

𝐾(𝑦𝑏, 𝑦𝑎; 𝑇) = ∫
𝑑𝐸

2𝜋
𝑒𝑖𝐸𝑇

∞

0

 

× ∫ 𝐷𝑠𝑒
𝑖

2µ(1+
4𝐴
𝛼2)𝑆 1

𝑖𝛼√𝑠𝑖𝑛ℎ2𝑦𝑎𝑠𝑖𝑛ℎ2𝑦𝑏

𝐾(𝑦𝑏, 𝑦𝑎; 𝑆) 

 (14) 

 

 

where 
 

𝐾(𝑦𝑏, 𝑦𝑎; 𝑆) = ∫ 𝐷𝑦𝐷𝑝𝑦𝑒𝑥𝑝 {𝑖 ∫ 𝑑𝑠 [𝑝𝑦𝑦̇ −
𝑝𝑦

2

2µ

𝑆

0

−
1

2µ
(

𝜅(𝜅 − 1)

𝑠𝑖𝑛ℎ2𝑦
−

𝛾(𝛾 − 1)

𝑐𝑜𝑠ℎ2𝑦

−
𝑖𝑝𝑦𝑐𝑜𝑠ℎ2𝑦

𝑠𝑖𝑛ℎ2𝑦
)]} 

(15) 

 

 

The constants κ and λ are found equal and read 

 

 𝜅 = 𝛾 =
1

2
[1 + √1 +

4𝜇𝐸

𝛼2
   ] (16) 

 

We make use of the following relation [9,10,19,20] in 

Equation (10) as well as Equation (15) 

 

 

𝑦̇𝑗 → 𝑦̇𝑗 ±
𝑖𝑐𝑜𝑠ℎ2𝑦

2𝜇𝑠𝑖𝑛ℎ2𝑦
    or  

𝑦𝑗−𝑦𝑗−1

∈
→

𝑦𝑗−𝑦𝑗−1

∈
 

±
𝑖𝑝𝑦𝑐𝑜𝑠ℎ2𝑦

2𝜇𝑠𝑖𝑛ℎ2𝑦
 

(17) 

 

However, note that the term above vanishes in the 

0   limit so that Equation (15) becomes the kernel 

of the well-known Pöschl Teller potential [11,12]. 

Therefore, using the solutions of the Poschl Teller 

potential, we can directly write the solution of the PT-

Symmetric and q-deformed Trigonometric Scarf 

potential as 
 

 

𝐾(𝑦𝑏 , 𝑦𝑎; 𝑆)

= ∑ 𝑒𝑥𝑝 [−𝑖(
𝑆

2𝜇
)(2𝑛 + 𝛾 − 𝜅 − 1)2

ѱ𝑛(𝑦𝑎)ѱ∗
𝑛

(𝑦𝑏)]

∞

𝑛=0

 
(18) 

 

Integrating over S to obtain the energy-dependent 

Green's function (see Equation (3)), we obtain  

 

𝐺(𝑥𝑏, 𝑥𝑎; 𝑆) =
1

𝑖𝛼√𝑠𝑖𝑛ℎ2𝑦𝑎𝑠𝑖𝑛ℎ2𝑦𝑏

 

× ∑ ∫
𝑑𝐸

2𝜋

𝑒𝑖𝐸𝑇

(𝜅 + 𝛾 − 2𝑛)2 − 1

∞

−∞

∞

𝑛=0

ѱ𝑛(𝑦𝑎)ѱ𝑛
∗ (𝑦𝑏) 

(19) 

 

Using Green’s function above, the kernel finally reads  

 

 

𝐾(𝑥𝑏, 𝑥𝑎; 𝐸)

= ∑ 𝑒−𝑖𝐸𝑛𝑇ѱ𝑛(𝑥𝑎)ѱ𝑛
∗ (𝑥𝑏)

∞

𝑛=0

= ∑ 𝑒𝑥𝑝 [−
1

8𝜇𝛼𝑞(𝑛 + 1)2
] 𝜑𝑛(𝑥𝑎)𝜑𝑛

∗(𝑥𝑏)

∞

𝑛=0

 

(20) 

 

3.2. Energy Spectrum and Wave functions  for PT-

Symmetric q-deformed Trigonometric Scarf 

Potential 

Integrating the kernel in Equation (20) over the action 

S and energy E, the energy eigenvalues are found as 

  

 𝐸𝑛 = −
𝛼2

8µ
(2𝑛 + 1 − √

8𝜇𝐴

𝛼2𝑞
+ 1)

2

 (21) 

 

The normalized wave functions in terms of Jacobi 

polynoms [21] are given by 
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𝜑(𝑥) =
𝑖

2√2√𝑛 + 1
 

× √4(𝑛 + 1)2 − (𝛾𝑛 − 𝜅𝑛)2
√

𝛤(𝑛 + 1)𝛤(−𝑛 − 1)

𝛤 (𝜅𝑛 + 𝑛 +
1
2

) 𝛤 (𝛾𝑛 + 𝑛 +
1
2

)
 

×
exp (𝜅𝑛 −

1
2

) 𝑥/2𝛼

(1 + 𝑒
𝑥
𝛼)

(𝜅𝑛+𝛾𝑛−
1
2)

𝑃𝑛

(𝜅𝑛−
1
2,𝛾𝑛−

1
2)

(
1 − 𝑒

𝑥
𝛼

1 + 𝑒
𝑥
𝛼

) 

(22) 

 

where 

 
𝜅𝑛 =

1

2
+

1

𝑛 + 1
[(𝑛 + 1)2 − 2𝜇𝛼2𝐴],    

𝛾𝑛 =
1

2
−

1

𝑛 + 1
[(𝑛 + 1)2 − 2𝜇𝛼2𝐴] 

(23) 

We see that PT symmetric q deformed Trigonometric 

Scarf potential has real energy eigenvalues as also 

verified in Ref. [12-15] through the direct calculation 

of the Schrödinger equation. 

3.3. Non-PT-Symmetric and non-Hermitian q-

deformed Trigonometric Scarf Potential 

Non-PT-Symmetric and non-Hermitian q-deformed 

Trigonometric Scarf Potential can be determined by 

considering 𝐴 → 𝐴 + 𝑖𝐵 and 𝑞 → 𝑖𝑞 and 𝛼 → 𝑖 𝛼. 

Following the similar steps in Sections (3.1) and (3.2), 

we obtain the energy eigenvalues and  corresponding 

wave functions for the Non-PT-Symmetric and non-

Hermitian q-deformed Trigonometric Scarf Potential. 

The discrete kernel for this potential reads 

 

 

𝐾(𝑥′′, 𝑥′, 𝑇)

= lim
𝑁→∞

∫ ∑ 𝑑𝑥𝑗 ∏ (
𝑑𝑝𝑗

2𝜋ℏ
)  exp {

𝑖

ℏ
∑[𝑝𝑗

𝑁+1

𝑗=1

𝛥𝑥𝑗 −
𝑝𝑗

2

2𝑚

𝑁+1

𝑗=1

𝑁

𝑗=1

−
4(𝐴 + 𝑖𝐵)𝑒−2𝛼𝑥𝑗

(1 + 𝑖𝑞𝑒−2𝛼𝑥𝑗)2
]𝜖} . 

(24) 

 

By taking the appropriate coordinate and momentum 

transformations, we can rearrange the kernel as  

 

 

𝐾(𝑦𝑎, 𝑦𝑏; 𝑇) =  𝑖𝛼𝑠𝑖𝑛ℎ𝑦𝑏𝑐𝑜𝑠ℎ𝑦𝑏 ∫ 𝐷𝑦𝐷𝑝𝑦

× 𝑒𝑥𝑝 [𝑖 ∫ 𝑑𝑡 (𝑝𝑦𝑦̇

+ 𝛼2𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦
𝑝𝑦

2

2𝜇

+ 4(𝐴+𝑖𝐵)𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦)] 

(25) 

 

One now defines the parametric time as 

 

 𝑡 =
1

𝛼2 ∫
𝑑𝑠

𝑠𝑖𝑛ℎ2𝑦𝑐𝑜𝑠ℎ2𝑦
 (26) 

 

in a similar manner as in section (3.2). If we follow the 

similar procedure in section (3.2), we obtain the energy 

eigenvalues of Non-PT Symmetric and non-Hermitian 

q-deformed Trigonometric Scarf Potential as 

 

 𝐸𝑛 = −
𝛼2

8µ
(2𝑛 + 1 − √−

8𝜇(𝐴 + 𝑖𝐵)

𝛼2𝑞
+ 1)

2

 (27) 

 

The normalized wave functions are 

 

 

𝜑(𝑥) =
𝑖

2√2√𝑛 + 1
 

× √4(𝑛 + 1)2 − (𝛾𝑛 − 𝜅𝑛)2
√

𝛤(𝑛 + 1)𝛤(−𝑛 − 1)

𝛤 (𝜅𝑛 + 𝑛 +
1
2

) 𝛤 (𝛾𝑛 + 𝑛 +
1
2

)
 

×
exp (𝜅𝑛 −

1
2

) 𝑖𝑥/2𝛼

(1 + 𝑒−𝑖
𝑥
𝛼)

(𝜅𝑛+𝛾𝑛−
1
2

)
𝑃𝑛

(𝜅𝑛−
1
2,𝛾𝑛−

1
2

)
(

1 − 𝑒−𝑖
𝑥
𝛼

1 + 𝑒−𝑖
𝑥
𝛼

) 

(28) 

 

where 𝜅𝑛 and γn are given exactly as in Equation (22). 

Hence, the energy spectra is real only if 𝑅𝑒(𝐴) = 0. 

This expression is identical to that given in Ref. [16]. 

 

IV. CONCLUSIONS 

In this study, we obtained the energy spectrum and the 

corresponding wave function of PT-/non-PT- 

Symmetric and non-Hermitian q-deformation 

Trigonometric Scarf Potential by using the Path 

Integral method. First of all, we derived the kernel of 

this potential using the method devised by Duru and 

Kleinert. We have defined parametric time in order to 

apply the path integral method and then derived the 

kernel in terms of the energy spectrum and wave 

function. We calculated the energy spectrum and wave 

function by using the Green function obtained from the 

kernel. In standard quantum mechanics, operators with 

real eigenvalues must be Hermitian. In this work, we 

provided an example where one can have real 

eigenvalues despite the underlying non-Hermiticity. 

The present study therefore sheds light on the structure 

of quantum theory and moreover can be used to 

understand the dynamics of the quantum mechanical 

systems interacting with the environment. 
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