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Abstract
In this paper, we characterize internal categories in the category of crossed semimodules and the category
of Schreier internal categories within monoids. Then we prove a natural equivalence between their
categories. This allows us to produce various examples of double categories.
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1. Introduction
Crossed modules, which are defined by Whitehead in [22, 23] as algebraic models for homotopy 2-types, have

been used with several branches of mathematics such as homotopy theory [6], homological algebra [10], and
algebraic K-theory [12]. The structure of a crossed module (A,B, ∂) has a pair of groups and a homomorphism ∂
with an action • of B on A satisfying ∂(b • a) = b∂(a)b−1 and ∂(a) • a′ = aa′a−1. The category of crossed modules is
naturally equivalent to several algebraic and combinatorial categories such as group-groupoids (or alternatively
called in literature as G-groupoids [5], geoup-groupoids [7] or 2-groups [2]). This equivalence has been generalized
in different ways: for example, by taking 2-groupoids with a single object [1]. The other one is the generalization
to monoids by taking special types of internal categories like Schreier internal categories in the category MON of
monoids using crossed semimodules by Patchkoria [15]. For the topological aspect of the results of [15], see [19].
For the 2-categorical approach to Schreier internal categories in MON using Schreier 2-categories with one object,
see [20]. Patchkoria also defined the category of Schreier internal groupoids in MON which is equivalent to the
category of crossed semimodules C = (A,B, ∂) where A is a group. This natural equivalence is the special case of
the main theorem of [16] by Porter.

Double groupoids, which should be thought of as internal groupoids in the category GPD of groupoids, were
introduced by Ehresmann in [8, 9] and have been used in mathematics and mathematical physics as an application
of categorical methods for some problems. As an example, one can see the reference [6] for the proof of the
2-dimensional Seifert-Van-Kampen Theorem using double groupoids. For an extension of topological quantum field
theories via double categories, see [11]. Brown and Spencer proved the categorical equivalence between crossed
modules and special double groupoids in the sense that the vertical and horizontal groupoids agree with a single
point [4]. Using this equivalence, normal and quotient objects in the category of crossed modules over groupoids
and of double groupoids with thin structures were compared and the corresponding structures related double
groupoids were characterized in [14] (see also [21]).

In this paper, we characterize internal categories in the category of crossed semimodules which are extensions of
internal categories in the category of crossed modules [17] and the category of Schreier internal categories in the
category MON of monoids which are general cases of double group-groupoids characterized in [18]. Finally, we
prove the categorical equivalence between their structures. This equivalence enables us to obtain more examples of
double categories.
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2. Preliminaries
A category C = (C0, C) consists of the set C0 of objects, the set C = ∪x,y∈C0

C(x, y) of morphisms where C(x, y)
is the set of morphisms from x to y with the source and the target maps s, t : C → C0, respectively, such that

s(c) = x, t(c) = y where x
c // y , the associative composition map m : C(y, z) × C(x, y) → C(x, z) usually

written as m(d, c) = d ◦ c and the unit map ε : C0 → C, ε(x) = 1x ∈ C(x, x) such that sε = tε = 1C0
, c ◦ 1x = c and

1x ◦ c′ = c′, where s(c) = t(c′) = x. A groupoid G = (G0, G) is a category in which all morphisms are invertible. For
further details, see [3, 13].

Let C be a category and D0, D be two objects of C with maps s, t, ε,m as morphisms of C such that satisfy the
usual category axioms where Ds ×t D is the pullback of s, t with π1, π2.

Ds ×t D
m // D

s //
t
// D0

ε
uu

Then D = (D0, D) is called an internal category in C, if the following conditions are satisfied:

IC 1. sε = tε = 1D0 ;

IC 2. sm = sπ2, tm = tπ1;

IC 3. m(1D ×m) = m(m× 1D) and

IC 4. m(εs, 1D) = m(1D, εt) = 1D.

For further details, see [13].
Let D and D′ be two internal categories in C. Then an internal functor F = (f0, f) : D → D′ consists of a pair of

morphisms f0 : D0 → D′0 and f : D → D′ in C such that

(i) s′f = f0s, t
′f = f0t,

(ii) ε′f0 = f1ε,

(iii) m′(f × f) = fm.

Thus we can construct the category of internal categories in an arbitrary category C with pullbacks where the
morphisms are internal functors (or morphisms of internal categories) as defined above. This category is denoted
by CAT(C).

LetM = (M0,M) be an internal category in the category MON of monoids. If for any c ∈ M there exists a
unique ĉ ∈ ker s such that

c = ĉ · εs(c),
thenM is called a Schreier internal category in MON and this condition is called the Schreier condition [15]. In a Schreier
internal category, the monoid multiplication and the composition of morphisms give the following interchange rule

(d ◦ c) · (d′ ◦ c′) = (d · d′) ◦ (c · c′) (2.1)

whenever compositions are defined. Using this rule, the composition of morphisms can be written in terms of the
monoid product as

d ◦ c = d̂ · ĉ · εs(c) (2.2)

for all c, d ∈M with t(c) = s(d). This means that d̂ ◦ c = d̂ · ĉ.
A Schreier internal groupoid in MON is a Schreier internal category in which all morphisms are invertible.
LetM,N be Schreier internal categories in MON. An internal functor F = (f0, f) :M→N such that f0 : M0 →

N0, f : M → N are morphisms of monoids is called a morphism of Schreier internal categories in MON.

M s ×t M
m //

f×f
��

M
s //
t
//

f

��

M0

f0

��

εuu

N s ×t N
m // N

s //
t
// N0

ε
ii
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Hence Schreier internal categories in MON form a category which we denote by SIC.

A double category denoted by C = (S,H, V, P ) consists of the sets S,H, V and P of squares, horizontal and
vertical morphisms (or edges) and points, respectively. The structure of a double category contains four compatible
category structures as partially shown in the following diagram:

S
sv //

tv
//

th

��

sh

��

Hεvoo

sH

��

tH

��
V

εh

OO

sV //

tV
// PεVoo

εH

OO

In a double category, vertical and horizontal morphisms can be composed as in an ordinary category, and squares
can be composed vertically and horizontally.

x

v

��

h // x1

v1

��
x

h //

v

��

x1
h1 //

v1

��

x2

v2

��

x
h1◦h //

v

��

x2

v2

��

α x
h //

w◦v

��

x1

w1◦v1

��

α β = β ◦h α y
k
//

w

��

y1

w1

��

= δ ◦v α

y
k
// y1

k1

// y2 y
k1◦k

// y2 δ z
l

// z1

z
l
// z1

Horizontal composition and vertical composition of squares must satisfy the following interchange rule:

(θ ◦h δ) ◦v (β ◦h α) = (θ ◦v α) ◦h (δ ◦v α).

A double category can be regarded as an internal category in the category CAT of all small categories as shown in
the following diagram:

(V, S)s×t(V, S)
(mv,mV ) // (V, S)

(sv,sV ) //

(tv,tV )
// (P,H)

(εv,εV )

		

where s = (sv, sV ), t = (tv, tV ). A double groupoid is a double category in which four underlying categories are
groupoids. For further details, see [4, 8, 9].

A crossed semimodule C = (A,B, ∂) consists of a pair of monoids A,B and a morphism ∂ : A→ B of monoids
with an action • : B ×A→ A of B on A satisfying

CSM 1. ∂(b • a) · b = b · ∂(a)

CSM 2. (∂(a) • a1) · a = a · a1,

for a, a1 ∈ A and b ∈ B [15].
Let C = (A,B, ∂) and C ′ = (A′, B′, ∂′) be crossed semimodules. A morphism of crossed semimodules is

a mapping f = 〈f1, f2〉 : C → C ′ where f1 : A → A′ and f2 : B → B′ are morphisms of monoids such that
f1(b • a) = f2(b) •′ f1(a) and f2∂ = ∂′f1.

B ×A • //

f2×f1

��

A

f1

��

∂ // B

f2

��
B′ ×A′

•′
// A′

∂′
// B′

Hence crossed semimodules and their morphisms form a category which we will denote by CSM.
The following theorem was proved by Patchkoria in [15]. Since we need some details of the proof, we give a

sketch proof in terms of our notation.
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Theorem 2.1. The category SIC of Schreier internal categories in MON is naturally equivalent to the category CSM of crossed
semimodules.

Proof: A functor δ : SIC → CSM is defined as an equivalence of categories. LetM = (M0,M) be a Schreier
internal category in MON. Then δ(M) = (A,B, ∂) is a crossed semimodule where A = ker s,B = M0, ∂ = t|ker s
and action of M0 on ker s is defined by (x • c) · εs(c) = εs(c) · c for all x ∈M0 and c ∈ ker s.

A functor γ : CSM → SIC is defined as a weak inverse of δ. Let C = (A,B, ∂) be a crossed semimodule. Then
γ(A,B, ∂) = (B,B n A, s, t, ε, ◦) is a Schreier internal category in MON where B n A is the semi-direct product
of monoids with the product (b, a) · (b′, a′) = (b · b′, a · (b • a′)). The structure maps are defined by s(b, a) = b,
t(b, a) = ∂(a) · b, ε(b) = (b, eA) where eA is the identity element of A and the composition of morphisms is defined
by (∂(a) · b, a1) ◦ (b, a) = (b, a1 · a). Since (b, a) = (eB , a) · (b, eA), all morphisms satisfy the Schreier condition where
eB is the identity element of B.

In order to define a natural transformation η :M→ γδ(M), a map ηM is defined to be identity on objects, and
is defined by ηM(c) = (s(c), ĉ) for c ∈M .

In order to define a natural transformation µ : 1CSM → δγ, a map µC is defined to be identity on B and is defined
by a 7→ (eB , a) on A. 2

The following results can be obtained as restrictions of this equivalence.

Corollary 2.1. [15] The category SIG of Schreier internal groupoids in MON is equivalent to the category of crossed
semimodules (A,B, ∂) where A is a group.

Theorem 2.2. [5] The category of group-groupoids is equivalent to the category of crossed modules over groups.

3. Internal categories in crossed semimodules

Some properties of internal categories in the category CM of crossed modules are examined in [17]. In this
section, we shall characterize internal categories in the category CSM of crossed semimodules and generalise
some results given in [17]. Since the category MON of monoids has pullbacks then we can talk about internal
categories in MON. Let C = (C0, C, s, t, ε,m) be an internal category in CSM. This means that C consists of a pair of
crossed semimodules C0 = (A0, B0, ∂0), C = (A,B, ∂) and four morphisms of crossed semimodules s = 〈sA, sB〉,
t = 〈tA, tB〉, ε = 〈εA, εB〉, m = 〈mA,mB〉which are called the source and the target maps, the identity object map
and the composition map, respectively, as shown in the following diagram:

A sA ×tA A
mA //

∂×∂
��

A
sA //
tA
//

∂

��

A0

∂0

��

εA
uu

B sB ×tB B
mB // B

sB //
tB
// B0

εB

ii

Since sε = 〈sA, sB〉〈εA, εB〉 = 〈sAεA, εBsB〉 = 〈1A0
, 1B0
〉 = 1C0

, the condition [IC 1] is satisfied. The other
conditions [IC 1]-[IC 4] can be proved using a similar way.

Example 3.1. Let C0 = (A,B, ∂) be a crossed semimodule. Since C = (A × A,B × B, ∂ × ∂) is also a crossed
semimodule where the action ofB×B onA×A is defined by (b, b′)•(a, a′) = (b•a, b′•a′), then C = (C0, C, s, t, ε,m)
becomes an internal category in CSM where the structure maps are defined by s = 〈π1, π1〉, t = 〈π2, π2〉, εA(a) =
(a, a), εB = (b, b) and (a′, a′′) ◦ (a, a′) = (a, a′′), (b′, b′′) ◦ (b, b′) = (b, b′′), for a, a′, a′′ ∈ A, b, b′, b′′ ∈ B.

Example 3.2. Let C = (A,B, ∂) be a crossed semimodule. Then C = (C,C, s, t, ε,m) is an internal category in CSM
where the structure maps are identities.

Lemma 3.1. Let C = (C0, C, s, t, ε,m) be an internal category in CSM. Then

(i) sA(aa′) = sA(a)sA(a
′), tA(aa

′) = tA(a)tA(a
′), sB(bb

′) = sB(b)sB(b
′), tB(bb

′) = tB(b)tB(b
′),

(ii) εA(xx′) = εA(x)ε(x
′), εB(yy

′) = εB(y)εB(y
′),

(iii) ∂0sA = sB∂, ∂0tA = tB∂, ∂εA = εB∂0,
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(iv) sA(b • a) = sB(b) • sA(a), tA(b • a) = tB(b) • tA(a), εA(y • x) = εB(y) • εA(x),

for a, a′ ∈ A, x, x′ ∈ A0, b, b
′ ∈ B, y, y′ ∈ B0.

Proof: The proof is clear, since s = 〈sA, sB〉, t = 〈tA, tB〉, ε = 〈εA, εB〉 are morphisms of crossed semimodules.
2

Lemma 3.2. Let C = (C0, C, s, t, ε,m) be an internal category in CSM. Then

(i) (a1a
′
1) ◦ (aa′) = (a1 ◦ a)(a′1 ◦ a′), (b1b′1) ◦ (bb′) = (b1 ◦ b)(b′1 ◦ b′)

(ii) (b1 ◦ b) • (a1 ◦ a) = (b1 • a1) ◦ (b • a),

(iii) ∂mA = mB(∂ × ∂),

for a, a′, a1, a′1 ∈ A, b, b′, b1, b′1 ∈ B such that sA(a1) = tA(a), sA(a
′
1) = tA(a

′), sB(b1) = tB(b) and sB(b′1) = tB(b
′).

Proof: The proof is clear, since m = 〈mA,mB〉 is a morphism of crossed semimodules. 2

The conditions (i)-(ii) are called interchange rules.

Definition 3.1. Let C and C′ be two internal categories in CSM. An internal functor F = (f, g) : C → C′ is called
morphism of internal categories in CSM, if f0 : A0 → A′0, f : A → A′, g0 : B0 → B′0, f : B → B′ such that
f = (f0, f), g = (g0, g) are functors and 〈f0, g0〉, 〈f, g〉 are crossed semimodule morphisms.

A0

��

{{

f0 // A′0

zz

��

A
f //

;;
;;

��

A′

��

::
::

B0 g0
//

{{

B′0

zz
B

;;
;;

g
// B′

::
::

Hence we form the category of internal categories in CSM, which we denote by CAT(CSM).

4. Internal categories in Schreier internal categories

We know that double categories are internal categories in the category CAT of small categories. In this section, we
characterize internal categories in the category SIC of Schreier internal categories in MON and generalize some results
given in [18]. Let K = (M,N , s, t, ε,m) be an internal category in SIC. This means that K contains a pair of Schreier
internal categoriesM = (M0,M),N = (N0, N) in MON and four morphisms s = (s0, s1), t = (t0, t1), ε = (ε0, ε1)
and m = (m0,m1) of SIC as internal functors which are called the source and the target maps, the identity object
map, and the composition map, respectively, as partially shown in the following diagrams:

(M0,M)s×t(M0,M)
(m0,m1) // (M0,M)

(s0,s1) //

(t0,t1)
// (N0, N)

(ε0,ε1)

��

Here the set of squares is M , the sets of horizontal and vertical morphisms are N and M0, respectively, and the
set of points is N0.

M
s1 //

t1
//

tM

��

sM

��

Nε1oo

sN

��

tN

��
M0

εM

OO

s0 //

t0
// N0ε0oo

εN

OO
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The composition mM is the horizontal composition of squares, and it will be denoted by mh or ◦h when no
confusion arises. The compositionm1 of the categoryM is the vertical composition of squares, and it will be denoted
by mv or ◦v when no confusion arises. Hence we replace s1, t1, ε1, sM , tM , εM by sv, tv, εv, sh, th, εh, respectively.
Due to Schreier condition, we write

α = α̂ · εhsh(α), n = n̂ · εNsN (n)

for α ∈M,n ∈ N . This structure denoted by C = (M,N,M0, N0) is a generalization of the double group-groupoid
concept, which is defined in [18].

Example 4.1. Given a Schreier internal category C in MON, then C = (M,M0,M,M0) is an internal category in SIC
with the trivial structural maps.

M
s //

t
//

1

��
1

��

Mεoo

1

��
1

��
M0

1

OO

s //

t
// M0εoo

1

OO

Lemma 4.1. Let C = (S,H, V, P ) be an internal category in SIC.

S
sv //

tv
//

th

��

sh

��

Hεvoo

sH

��

tH

��
V

εh

OO

sV //

tV
// PεVoo

εH

OO

Then the following interchange rules are satisfied:

(i) (α4 ◦v α2) ◦h (α3 ◦v α1) = (α4 ◦h α3) ◦v (α2 ◦h α1)

(ii) (α2 ◦h α1) · (α′2 ◦h α′1) = (α2 · α′2) ◦h (α1 · α′1)

(iii) (α3 ◦v α1) · (α′3 ◦v α′1) = (α3 · α′3) ◦v (α1 · α′1)

whenever one side of the equations makes sense, for α1, α2, α3, α4 ∈ S.

Lemma 4.2. Let C = (S,H, V, P ) be an internal category in SIC. Then the compositions of morphisms can be written in
terms of the monoid operation as follows:

(i) β ◦h α = β̂ · α̂ · εhsh(α),

(ii) k ◦ h = k̂ · ĥ · εHsH(h).

for α, β, δ ∈ S and k, h ∈ H , whenever all compositions above are defined.

Definition 4.1. Let C and C′ be two internal categories in SIC. A morphism F = (fs, fh, fv, fp) : C→ C′ of double
categories such that fs : S → S′, fh : H → H ′, fv : V → V ′ and fp : P → P ′ are monoid homomorphisms is called
morphism of internal categories in SIC.

H

����

{{

fh // H ′

zz

����

S
fs //

;;
;;

����

S′

::
::

����

P
fp

//

{{

OO

P ′

OO

zz
V

OO

;;
;;

fv

// V ′

OO

::
::
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Hence we form the category of internal categories in SIC which we denote by CAT(SIC).

Theorem 4.1. The categories CAT(SIC) and CAT(CSM) are equivalent.

Proof: A functor δ : CAT(SIC) → CAT(CSM) is defined as in the following way. Let C = (S,H, V, P ) be
an internal category in SIC. Then we obtain crossed semimodules (A,B, ∂), (A0, B0, ∂0) from Schreier internal
categories (V, S), (P,H), respectively, where A = ker sv, B = V, ∂ = tv|ker sv and A0 = ker sH , B = P, ∂0 = tH |ker sH .

ker sh

∂

��

sv //

tv
// ker sH

∂0

��

εvoo

V
sV //

tV
// PεVoo

Here the action of V on ker sv is defined by such that

(v • α) · εh(v) = εh(v) · α

and the action of P on ker sH is defined by such that

(p • h) · εH(p) = εH(p) · h

where p ∈ P, h ∈ ker sH , v ∈ V and α ∈ ker sh. We shall prove that 〈sv, sV 〉 is a morphism of crossed semimodules.
Clearly sV ∂ = ∂0sv , tV ∂ = ∂0tv and ∂εv = εH∂0. Since εHsV = svεh, we write(

sV (v) • sv(α)
)
· εHsV (v) = εHsV (v) · sv(α)

= svεh(v) · sv(α)
= sv(εh(v) · α)
= sv((v • α) · εh(v))
= sv(v • α) · svεh(v)
= sv(v • α) · εHsV (v).

Let h =
(
sV (v) • sv(α)

)
· εHsV (v). Since h ∈ H , sHεH = 1H and sV (v) • sv(α) ∈ ker sH , we have

εHsH(h) = εHsH

(
sV (v) • sv(α)

)
· εHsHεHsV (v) = εHsV (v).

Let k = sv(v • α) · εHsV (v). Similarly we get

εHsH(k) = εHsV (v).

Therefore, under the Schreier condition, we have

sv(v • α) = sV (v) • sv(α).

Using a similar way, we get 〈tv, tV 〉 and 〈εv, εV 〉 are morphisms of crossed semimodules.

Let F = (fs, fh, fv, fp) : (S,H, V, P ) → (S′, H ′, V ′, P ′) be a morphism of CAT(SIC). Then δ(F ) = (f, g) is a
morphism of CAT(CSM) where f = (fh, fs|ker sh), g = (fp, fv|ker sH ). We will only prove that 〈fs|ker sh , fv|ker sH 〉 is a
morphism of crossed semimodules. Since fsεh = εHfv , we get

fs(v • α) · fsεh(v) = fs((v • α) · εh(v))
= fs(εh(v) · α)
= fsεh(v) · fs(α)
= εHfv(v) · fs(α)
= (fv(v) • fs(α)) · εHfv(v)
= (fv(v) • fs(α)) · fsεh(v).
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Let α′ = fs(v • α) · fsεh(v). Since α′ ∈ S′, s′hfs = fvsh, ε′hfv = fsεh, shεh = 1S and fs(v • α) ∈ ker s′H , we have

ε′hs
′
h(α
′) = ε′hs

′
hfs(v • α) · ε′hs′hfsεh(v) = ε′hfvshεh(v) = ε′hfv(v) = fsεh(v).

Let β′ = (fv(v) • fs(α)) · fsεh(v). Using a similar way, we get

ε′hs
′
h(β
′) = fsεh(v).

Hence, under the Schreier condition, we have

fs(v • α) = fv(v) • fs(α).

Now we define a functor γ : CAT(CSM) → CAT(SIC) as a weak inverse of the functor δ. Given an internal
category C = (C0, C, s, t, ε,m) in CSM where C0 = (A0, B0, ∂0), C = (A,B, ∂) are crossed semimodules and
s = 〈sA, sB〉, t = 〈tA, tB〉, ε = 〈εA, εB〉, m = 〈mA,mB〉 are morphisms of crossed semimodules, we obtain Schreier
internal categories (B,B nA) and (B0, B0 nA0) by the Theorem 2.1 as partially shown in the following diagram:

B nA
sB×sA //

tB×tA
//

th

��

sh

��

B0 nA0εB×εAoo

s

��

t

��
B

εh

OO

sB //

tB
// B0εBoo

ε

OO

Here pairs (b, a) are squares and (b0, a0), (d0, c0) are horizontal morphisms as

b0
(b0,a0) //

b

��

∂0(a0) · b0

∂(a)·b

��
(b, a)

d0
(d0,c0)

// ∂0(c0) · d0

for b0, d0 ∈ B0, b ∈ B, a0, c0 ∈ A0, a ∈ A where a0
a // c0 . The horizontal composition of squares is defined by

(∂(a) · b, c) ◦h (b, a) = (b, c · a)

where
(∂0(a0) · b0, c0) ◦ (b0, a0) = (b0, c0 · a0).

The vertical composition of squares is defined by

(d, c) ◦v (b, a) = (d ◦ b, c ◦ a)

whenever d ◦ b, c ◦ a are defined. The product of squares are defined by

(b, a) · (b′, a′) = (b · b′, a · (b • a′))

where b, b′ ∈ B, a, a′ ∈ A. Since (b, a) = (eB , a) · (b, eA), all squares satisfy the Schreier condition.

b0
(b0,a0) //

b

��

∂0(a0) · b0

∂(a)·b

��

eB0

(eB0
,a0) //

eB

��

∂0(a0)

∂(a)

��

b0
(b0,eA0

)
//

b

��

b0

b

��
(b, a) = (eB , a) · (b, eA)

d0
(d0,c0)

// ∂0(c0) · d0 eB0 (eB0
,c0)

// ∂0(c0) d0
(d0,eA0

)
// d0

Let F = (f, g) be a morphism of CAT(CSM) where f = (f0, f), g = (g0, g). Then

γ(F ) = (g × f, g0 × f0, g, g0)
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is a morphism of CAT(CSM).

In order to prove 1CAT(SIC)
∼= γδ, we define a natural transformation

η : C→ γδ(C)

through a map ηC such that to be identity on points and on vertical morphisms,

ηC(h) = (sH(h), ĥ), ηC(α) = (sh(α), α̂),

for h ∈ H,α ∈ S. We will verify that ηC preserves monoid multiplication and vertical and horizontal compositions.

ηC(α · α′) = ηC

(
α̂ · εhsh(α) · α̂′ · εhsh(α′)

)
= ηC

(
α̂ · (sh(α) • α̂′) · εhsh(α) · εhsh(α′)

)
= ηC

(
α̂ · (sh(α) • α̂′) · εhsh(α · α′)

)
= (sh(α · α′), α̂ · (sh(α) • α̂′))
= (sh(α) · sh(α′), α̂ · (sh(α) • α̂′))
= (sh(α), α̂) · (sh(α′), α̂′)
= ηC(α) · ηC(α′)

for α, α′ ∈ S,

ηC(β ◦h α) = ηC(β̂ · α̂ · εhsh(α)) = (sh(α), β̂ · α̂) = (sh(β), β̂) ◦h (sh(α), α̂) = ηC(β) ◦h ηC(α)

whenever β ◦h α is defined for β, α ∈ S. Since

δ ◦v α = (δ̂ · εhsh(δ)) ◦v (α̂ · εhsh(α)) = (δ̂ ◦v α̂) · (εhsh(δ) ◦v εhsh(α)) = (δ̂ ◦v α̂) · εhsh(δ ◦v α),

under the Schreier condition, we can write

ηC(δ ◦v α) = (sh(δ) ◦ sh(α), δ̂ ◦v α̂) = (sh(δ), δ̂) ◦v (sh(α), α̂) = ηC(δ) ◦v ηC(α).

In order to prove 1CAT(CSM)
∼= δγ, we define a natural transformation

µ : 1CAT(CSM) → δγ,

through a map µC which is defined to be identity on A0 and B0, µC(a) = (eB , a) and µC(a0) = (eB0 , a0) for
a ∈ A, a0 ∈ A0.

Other details are straightforward, and so is omitted. 2

Then we can write the following corollary as a restriction of this theorem.

Corollary 4.1. The category of double group-groupoids is equivalent to the category of internal categories in the category CM
of crossed modules.
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