Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics

Mosayeb Zohrehvand*

(Communicated by Arif Salimov)

Abstract

Let (M, g) be a Riemannian manifold and $T M$ be its tangent bundle. In the present paper, we study infinitesimal projective transformations on $T M$ with respect to the Levi-Civita connection of a class of (pseudo-)Riemannian metrics \tilde{g} which is a generalization of the three classical lifts of the metric g. We characterized this type of transformations and then we prove that if $(T M, \tilde{g})$ admits a non-affine infinitesimal projective transformation, then M and $T M$ are locally flat.

Keywords: Lift metrics; infinitesimal projective transformations; Riemannian manifold; tangent bundle; locally flat.
AMS Subject Classification (2020): Primary: 53B21 ; Secondary: 53C07; 53C22.

1. Introduction

Let M be an n-dimensional $(n>1) C^{\infty}$ connected manifold and $T M$ be its tangent bundle. In this paper, we denote the set of all tensor fields of type (r, s) on M and $T M$ by $\Im_{s}^{r}(M)$ and $\Im_{s}^{r}(T M)$, respectively. Also, we use \sim for any geometric object on $T M$, for example, \tilde{V} is a vector field on $T M$, but V is a vector field on M.

Let ∇ be an affine connection on a manifold M. A transformation f on M is called a projective transformation if it preserves the geodesics as set points. An affine transformation may be characterized as a projective transformation which preserves the geodesics with the affine parameter.

A vector field V on M with the local one parameter group $\left\{f_{t}\right\}$ is called an infinitesimal projective (affine) transformation if every f_{t} be a projective (affine) transformation. It is well known that a vector field V on M is an infinitesimal projective transformation if there exists an one form Ω on M such that

$$
\left(L_{V} \nabla\right)(X, Y)=\Omega(X) Y+\Omega(Y) X
$$

for any $X, Y \in \Im_{0}^{1}(M)$, where L_{V} is the Lie derivation with respect to V. The one form Ω is called the associated one form of V. Also, the vector field V is an infinitesimal affine transformation, if $\Omega=0$ [16].

Let $g=\left(g_{j i}\right)$ be a Riemannian metric on M. It is well-known that we can define from g several (pseudo)Riemannian metrics on $T M$, where they are called the lift metrics of g, as follow: 1) complete lift metric or lift metric II is denoted by $g^{C}, 2$) diagonal lift metric or Sasaki metric or lift metric I+III is denoted by g^{S}, 3) lift metric I +II and 4) lift metric II +III , where $\mathrm{I}:=g_{j i} d x^{j} d x^{i}, \mathrm{II}:=2 g_{j i} d x^{j} \delta y^{i}$ and III:= $g_{j i} \delta y^{j} \delta y^{i}$ are bilinear differential forms defined globally on $T M$. It should be noted that in literature $\mathrm{I}:=g_{j i} d x^{j} d x^{i}$ is called the vertical lift of g and denoted by g^{V}. For more details on lift metrics, one can refer to[17].

The problems of existing infinitesimal projective transformations on M and $T M$, have been studied by many authors, e.g. $[3,5,6,7,8]$ and $[10,11,12,13,14,15]$. These studies show that the existence of infinitesimal projective transformations on M or $T M$ might lead to some global results. For example in [10], it is proved that if M, which is a complete Riemannian manifold with the parallel Ricci tensor, admits a non-affine infinitesimal projective transformation, then M is a space of positive constant curvature. Also it is proved in [11] that if a

[^0]simply contact Riemannian manifold M admits a non-affine infinitesimal projective transformation, then M is isometric to a unit sphere.

In [6], [7] and [12], the following theorem is proved.
Theorem A: Let (M, g) be a complete Riemannian manifold and $T M$ its tangent bundle. If $T M$, with 1) complete lift metric or 2) Sasaki metric or 3) lift metric II + III, admits a non-affine infinitesimal projective transformation, then M and $T M$ are locally flat.
Abbassi and Sarih in [1] defined the g-natural metrics on $T M$, and in [2] studied a subclass of this metrics, that is displayed as

$$
\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V},
$$

where α, β and γ are real constants with $\alpha>0$ and $\alpha(\alpha+\gamma)-\beta^{2}>0$. As we said that g^{S}, g^{C} and g^{V} are the diagonal lift, the complete lift and the vertical lift of the Riemannian metric g, respectively. It is obvious that \tilde{g} is a Riemannian metric on $T M$.
In [4], fiber-preserving projective vector fields with respect to the Levi-Civita connection from this subclass of g-natural metric are considered. It is proved that the Theorem A is true about of this class of metrics.

In this paper, we study the infinitesimal projective transformations on $T M$ with respect to the Levi-Civita connection of the pseudo-Riemannian metric $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$, where α, β and γ are real constants and $\alpha(\alpha+\gamma)-\beta^{2} \neq 0$. In this case, one can see that \tilde{g} is a generalization of the above metrics.

In fact, we have the following Theorems:
Theorem 1.1. Let (M, g) be an n-dimensional Riemannian manifold and $T M$ be its tangent bundle with (pseudo)Riemannian metric $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$, where α, β and γ are real constants with $\alpha \neq 0$ and $\lambda:=\alpha(\alpha+\gamma)-\beta^{2} \neq 0$. Then \tilde{V} is an infinitesimal projective transformation with the associated one form $\tilde{\Omega}$ on $T M$ if and only if there exist $\varphi, \psi \in C^{\infty}(M), B=\left(B^{h}\right), D=\left(D^{h}\right) \in \Im_{0}^{1}(M)$ and $A=\left(A_{i}^{h}\right), C=\left(C_{i}^{h}\right) \in \Im_{1}^{1}(M)$, satisfying

1. $\left(\tilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\left(B^{h}+y^{a} A_{a}^{h}, D^{h}+y^{a} C_{a}^{h}+y^{h} y^{a} \Phi_{a}\right)$,
2. $\left(\tilde{\Omega}_{i}, \tilde{\Omega}_{\bar{i}}\right)=\left(\partial_{i} \psi, \partial_{i} \varphi\right)=\left(\Psi_{i}, \Phi_{i}\right)$,
3. $\nabla_{j} \Psi_{i}=0, \nabla_{i} \Phi_{j}=0$,
4. $\nabla_{i} A_{j}^{h}=\Phi_{j} \delta_{i}^{h}-\frac{\alpha^{2}}{2 \lambda} D^{a} R_{a i j}^{h}$,
5. $R_{b j a}^{h} A_{i}^{a}=0, R_{j i b}^{a} A_{a}^{h}=0$,
6. $B^{a} \nabla_{a} R_{b j i}^{h}=R_{b j i}^{a} \nabla_{a} B^{h}-R_{b j a}^{h} \nabla{ }_{i} B^{a}-R_{a j i}^{h} C_{b}^{a}-R_{b a i}^{h} C_{j}^{a}$,
7. $\nabla_{i} C_{j}^{h}=\Psi_{i} \delta_{j}^{h}+B^{a} R_{i a j}^{h}+\frac{\alpha \beta}{2 \lambda} D^{a} R_{a j i}^{h}$,
8. $R_{k j i}^{a}\left(\beta \nabla_{a} B^{h}-\beta C_{a}^{h}+\alpha \nabla_{a} D^{h}\right)=0$,
9. $L_{B} \Gamma_{j i}^{h}=\nabla_{j} \nabla_{i} B^{h}+B^{a} R_{a j i}^{h}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}-\frac{\alpha \beta}{2 \lambda} D^{a}\left(R_{a j i}^{h}+R_{a i j}^{h}\right)$,
10. $\nabla_{j} \nabla_{i} D^{h}=-\frac{\beta^{2}}{\lambda} D^{a} R_{j a i}^{h}+\frac{\alpha(\alpha+\gamma)}{2 \lambda} D^{a} R_{j i a}^{h}$,
11. $\beta D^{a} \nabla_{j} R_{b a i}^{h}=-\beta\left(R_{b a j}^{h} \nabla_{i} D^{a}+R_{b a i}^{h} \nabla_{j} D^{a}\right)-\beta R_{j i b}^{a} \nabla_{a} D^{h}$ $-\beta R_{b a i}^{h}\left(2 \frac{\beta^{2}}{\alpha} \nabla_{j} B^{a}-2 \frac{\beta^{2}}{\alpha} C_{j}^{a}-\nabla_{j} D^{a}\right)$,
where $\left(\tilde{V}^{h}, \tilde{V}^{\bar{h}}\right):=\tilde{V}^{a} E_{a}+\tilde{V}^{\bar{a}} E_{\bar{a}}=\tilde{V}$, and $\left(\tilde{\Omega}_{i}, \tilde{\Omega}_{\bar{i}}\right):=\tilde{\Omega}_{a} d x^{a}+\tilde{\Omega}_{\bar{a}} \delta y^{a}=\tilde{\Omega}$.
Theorem 1.2. Let (M, g) be an n-dimensional Riemannian manifold and $T M$ be its tangent bundle with the (pseudo)Riemannian metric $\tilde{g}=\beta g^{C}+\gamma g^{V}$, where β and γ are real constants with $\beta \neq 0$. Then \tilde{V} is an infinitesimal projective transformation with the associated one form $\tilde{\Omega}$ on $T M$ if and only if there exist $\varphi, \psi \in C^{\infty}(M), B=\left(B^{h}\right), D=\left(D^{h}\right) \in$ $\Im_{0}^{1}(M)$ and $A=\left(A_{i}^{h}\right), C=\left(C_{i}^{h}\right) \in \Im_{1}^{1}(M)$, satisfying
12. $\left(\tilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\left(B^{h}+y^{a} A_{a}^{h}, D^{h}+y^{a} C_{a}^{h}+y^{h} y^{a} \Phi_{a}\right)$,
13. $\left(\tilde{\Omega}_{i}, \tilde{\Omega}_{\bar{i}}\right)=\left(\partial_{i} \psi, \partial_{i} \varphi\right)=\left(\Psi_{i}, \Phi_{i}\right)$,
14. $\nabla_{j} \Psi_{i}=0, \nabla_{i} \Phi_{j}=0$,
15. $\nabla_{i} A_{j}^{h}=\Phi_{j} \delta_{i}^{h}$,
16. $A_{i}^{a} R_{b j a}^{h}=0, \quad R_{b j i}^{a} A_{a}^{h}=0$,
17. $\nabla_{i} C_{j}^{h}=\Psi_{j} \delta_{i}^{h}+B^{a} R_{i a j}^{h}$,
18. $L_{B} \Gamma_{j i}^{h}=\nabla_{j} \nabla_{i} B^{h}+B^{a} R_{a j i}^{h}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}$,
19. $L_{D} \Gamma_{j i}^{h}=\nabla_{j} \nabla_{i} D^{h}+D^{a} R_{a j i}^{h}=0$,
20. $B^{a} \nabla_{a} R_{b j i}^{h}=-R_{a j i}^{h} \nabla_{b} B^{a}-R_{b j a}^{h} \nabla_{i} B^{a}-R_{b a i}^{h} C_{j}^{a}+R_{b j i}^{a} C_{a}^{h}$,
where $\left(\tilde{V}^{h}, \tilde{V}^{\bar{h}}\right):=\tilde{V}^{a} E_{a}+\tilde{V}^{\bar{a}} E_{\bar{a}}=\tilde{V}$, and $\left(\tilde{\Omega}_{i}, \tilde{\Omega}_{\bar{i}}\right):=\tilde{\Omega}_{a} d x^{a}+\tilde{\Omega}_{\bar{a}} \delta y^{a}=\tilde{\Omega}$.
Theorem 1.3. Let (M, g) be a complete Riemannian manifold and $T M$ be its tangent bundle with the (pseudo)Riemannian metric $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$, where α, β and γ are real constants with $\alpha(\alpha+\gamma)-\beta^{2} \neq 0$. If $(T M, \tilde{g})$ admits a non-affine infinitesimal projective transformation, then M and $T M$ are locally flat.
Thus the Theorem A is true about of the (pseudo-)Riemannian metric $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$, where $\alpha(\alpha+$ $\gamma)-\beta^{2} \neq 0$. It would be mentioned that the equation $R_{b j i}^{a} A_{a}^{h}=0$ is eliminated in [6], [7] and [12].

2. Preliminaries

In this section, we give the basic definitions and results on M and $T M$ that are needed later. The details of them can be founded in [17, 18]. In here, indices a, b, c, i, j, k, \ldots have range in $\{1,2, \ldots, n\}$.
Let M be an n-dimensional C^{∞} connected manifold. The coordinate systems on M are denoted by $\left(U, x^{i}\right)$, where U is the coordinate neighborhood and x^{i} the coordinate functions. Let $T_{x} M$ denotes the tangent space of M at x and $T M:=\bigcup_{x \in M} T_{x} M$ is the tangent bundle of M. The elements of $T M$ are denoted by (x, y) where $y \in T_{x} M$ and the natural projection $\pi: T M \rightarrow M$ is given by $\pi(x, y):=x$.
Let (M, g) be a Riemannian manifold, ∇ be the Levi-Civita (Riemannian) connection of g and $\Gamma_{j i}^{h}$ be the coefficients of ∇, i.e. $\nabla_{\partial_{j}} \partial_{i}=\Gamma_{j i}^{h} \partial_{h}$, with respect to the frame field $\left\{\partial_{h}:=\frac{\partial}{\partial x^{h}}\right\}$.
Using the Levi-Civita Connection ∇, we define the local frame field $\left\{E_{i}, E_{\bar{i}}\right\}$ on each induced coordinate neighborhood $\pi^{-1}(U)$ of $T M$, as follow:

$$
E_{i}:=\partial_{i}-y^{b} \Gamma_{b i}^{h} \partial_{\bar{h}}, \quad E_{\bar{i}}:=\partial_{\bar{i}},
$$

where $\partial_{\bar{i}}:=\frac{\partial}{\partial y^{i}}$. This frame field is called the adapted frame of $T M$. The dual frame of $\left\{E_{i}, E_{\bar{i}}\right\}$ is $\left\{d x^{h}, \delta y^{h}\right\}$, where $\delta y^{h}:=d y^{h}+y^{b} \Gamma_{a b}^{h} d x^{a}$. By the straightforward calculation, we have the following lemmas.
Lemma 2.1. The Lie brackets of the adapted frame of TM satisfy the following identities:

1. $\left[E_{j}, E_{i}\right]=y^{b} R_{i j b}^{a} E_{\bar{a}}$,
2. $\left[E_{j}, E_{\overline{\bar{i}}}\right]=\Gamma_{j i}^{a} E_{\bar{a}}$,
3. $\left[E_{\bar{j}}, E_{\bar{j}}\right]=0$,
where $R=\left(R_{i j b}^{a}\right)$ is the curvature tensor of ∇.
Lemma 2.2. Let $\tilde{V}=\left(\tilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\tilde{V}^{h} E_{h}+\tilde{V}^{\bar{h}} E_{\bar{h}}$ be a vector field on $T M$. Then
4. $\left[\tilde{V}, E_{i}\right]=-\left(E_{i} \tilde{V}^{a}\right) E_{a}+\left(\tilde{V}^{c} y^{b} R_{i c b}^{a}-\tilde{V}^{\bar{b}} \Gamma_{b i}^{a}-E_{i} \tilde{V}^{\bar{a}}\right) E_{\bar{a}}$,
5. $\left[\tilde{V}, E_{\bar{i}}\right]=-\left(E_{\bar{i}} \tilde{V}^{a}\right) E_{a}+\left(\tilde{V}^{b} \Gamma_{b i}^{a}-E_{\bar{i}} \tilde{V}^{\bar{a}}\right) E_{\bar{a}}$.

From the Riemannian metric $g=\left(g_{j i}\right)$ on a manifold M, one can see that
I: $g_{j i} d x^{j} d x^{i}$,
II: $2 g_{j i} d x^{j} \delta y^{i}$,
III: $g_{j i} \delta y^{j} \delta y^{i}$,
are quadratic differential forms which globally defined on $T M$ and also
II: $2 g_{j i} d x^{j} \delta y^{i}$,

```
I+II: }\mp@subsup{g}{ji}{}d\mp@subsup{x}{}{j}d\mp@subsup{x}{}{i}+2\mp@subsup{g}{ji}{}d\mp@subsup{x}{}{j}\delta\mp@subsup{y}{}{i}
I+III: }\mp@subsup{g}{ji}{}d\mp@subsup{x}{}{j}d\mp@subsup{x}{}{i}+\mp@subsup{g}{ji}{}\delta\mp@subsup{y}{}{j}\delta\mp@subsup{y}{}{i}\mathrm{ ,
II+III: 2g jid dx j}\delta\mp@subsup{y}{}{i}+\mp@subsup{g}{ji}{}\delta\mp@subsup{y}{}{j}\delta\mp@subsup{y}{}{i
```

are Riemannian or pseudo-Riemannian metrics on $T M$. It would be mentioned that the metric II is called the complete lift metric and denoted by g^{C}, the metric I+III is called the Sasakian metric and denoted by g^{S}, and quadratic form I is called the vertical lift and denoted by g^{V}. For more details, one can refer to [16].

Abbassi and Sarih in [2] studied a subclass of Riemannian g-natural metrics on $T M$ that is denoted by $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$, where α, β and γ are constants with $\alpha>0$ and $\alpha(\alpha+\gamma)-\beta^{2}>0$.

Here, we consider pseudo-Riemannian metric $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$ on $T M$, where α, β and γ are constants with $\alpha(\alpha+\gamma)-\beta^{2} \neq 0$. In this case, one can see that \tilde{g} is a generalization of the above metrics, for example, if put $\alpha=\beta=1$ and $\gamma=-1$, then $\tilde{g}=g^{S}+g^{C}-g^{V}$ is the lift metric II+III.

The coefficients of Levi-Civita connection $\tilde{\nabla}$ of the metric $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$, with respect to the adapted frame $\left\{E_{i}, E_{\bar{i}}\right\}$ are computed in [2]. In fact, we have the following Lemma.

Lemma 2.3. Let $\tilde{\nabla}$ be the Levi-Civita connection of the metric $\tilde{g}=\alpha g^{S}+\beta g^{C}+\gamma g^{V}$ on TM, where α, β and γ are constants with $\lambda:=\alpha(\alpha+\gamma)-\beta^{2} \neq 0$. Then we have

$$
\begin{aligned}
\tilde{\nabla}_{E_{j}} E_{i} & =\left\{\Gamma_{j i}^{h}+\frac{\alpha \beta}{2 \lambda} y^{k}\left(R_{k j i}^{h}+R_{k i j}^{h}\right)\right\} E_{h}+y^{k}\left(\frac{\beta^{2}}{\lambda} R_{j k i}^{h}-\frac{\alpha(\alpha+\gamma)}{2 \lambda} R_{j i k}^{h}\right) E_{\bar{h}}, \\
\tilde{\nabla}_{E_{j}} E_{\bar{i}} & =\frac{\alpha^{2}}{2 \lambda} y^{k} R_{k i j}^{h} E_{h}+\left(\Gamma_{j i}^{h}-\frac{\alpha \beta}{2 \lambda} y^{k} R_{k i j}^{h}\right) E_{\bar{h}}, \\
\tilde{\nabla}_{E_{\bar{j}}} E_{i} & =\frac{\alpha^{2}}{2 \lambda} y^{k} R_{k j i}^{h} E_{h}-\frac{\alpha \beta}{2 \lambda} y^{k} R_{k j i}^{h} E_{\bar{h}}, \\
\tilde{\nabla}_{E_{\bar{j}}} E_{\bar{i}} & =0 .
\end{aligned}
$$

where $\Gamma_{j i}^{h}$ denotes the coefficients of Riemannian connection ∇ with respect to g.

3. Proof of Theorems

In this section, we prove Theorems 1.1 and 1.3 because Theorem1.2 can be proved in a similar way.

Proof of Theorem1.1

Because the sufficient conditions are easy to proof, we only prove the necessary conditions. Let $\tilde{V}=$ $\tilde{V}^{h} E_{h}+\tilde{V}^{\bar{h}} E_{\bar{h}}$ be an infinitesimal projective transformation and $\tilde{\Omega}=\tilde{\Omega}_{h} d x^{h}+\tilde{\Omega}_{\bar{h}} \delta y^{h}$ its the associated one form on $T M$, thus for any $\tilde{X}, \tilde{Y} \in \Im_{0}^{1}(T M)$ we have

$$
\begin{equation*}
\left(L_{\tilde{V}} \tilde{\nabla}\right)(\tilde{X}, \tilde{Y})=\tilde{\Omega}(\tilde{X}) \tilde{Y}+\tilde{\Omega}(\tilde{Y}) \tilde{X} \tag{3.1}
\end{equation*}
$$

$\operatorname{From}\left(L_{\tilde{V}} \tilde{\nabla}\right)\left(E_{\bar{j}}, E_{\bar{i}}\right)=\tilde{\Omega}\left(E_{\bar{j}}\right) E_{\bar{i}}+\tilde{\Omega}\left(E_{\bar{i}}\right) E_{\bar{j}}$ and Lemma 2.3 we have

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{h}-\frac{\alpha^{2}}{2 \lambda} y^{k}\left(R_{i k a}^{h} \partial_{\bar{j}} \tilde{V}^{a}+R_{j k a}^{h} \partial_{\bar{i}} \tilde{V}^{a}\right)=0, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{\bar{h}}+\frac{\alpha \beta}{2 \lambda} y^{k}\left(R_{i k a}^{h} \partial_{\bar{j}} \tilde{V}^{a}+R_{j k a}^{h} \partial_{\bar{i}} \tilde{V}^{a}\right)=\tilde{\Omega}_{\bar{j}} \delta_{i}^{h}+\tilde{\Omega}_{\bar{i}} \delta_{j}^{h} \tag{3.3}
\end{equation*}
$$

One can see that (3.2) is rewritten as follows:

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{h}=\frac{\alpha^{2}}{2 \lambda}\left\{\partial_{\bar{j}}\left(y^{b} R_{i b a}^{h} \tilde{V}^{a}\right)+\partial_{\bar{i}}\left(y^{b} R_{j b a}^{h} \tilde{V}^{a}\right)\right\} . \tag{3.4}
\end{equation*}
$$

By differentiaiting from (3.4) with respect to y^{k}, we have

$$
\begin{align*}
\partial_{\bar{k}} \partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{h} & =\frac{\alpha^{2}}{2 \lambda}\left\{\partial_{\bar{k}} \partial_{\bar{j}}\left(y^{b} R_{i b a}^{h} \tilde{V}^{a}\right)+\partial_{\bar{k}} \partial_{\bar{i}}\left(y^{b} R_{j b a}^{h} \tilde{V}^{a}\right)\right\} \\
& =\frac{\alpha^{2}}{2 \lambda}\left\{\partial_{\bar{j}} \partial_{\bar{i}}\left(y^{b} R_{i b a}^{h} \tilde{V}^{a}\right)+\partial_{\bar{j}} \partial_{\bar{k}}\left(y^{b} R_{j b a}^{h} \tilde{V}^{a}\right)\right\} \tag{3.5}\\
& =\frac{\alpha^{2}}{2 \lambda}\left\{\partial_{\bar{i}} \partial_{\bar{k}}\left(y^{b} R_{i b a}^{h} \tilde{V}^{a}\right)+\partial_{\bar{i}} \partial_{\bar{j}}\left(y^{b} R_{j b a}^{h} \tilde{V}^{a}\right)\right\} .
\end{align*}
$$

From (3.5), we obtain that

$$
\begin{equation*}
\partial_{\bar{k}} \partial_{\bar{j}}\left(\partial_{\bar{i}} \tilde{V}^{h}-\frac{\alpha^{2}}{\lambda} y^{b} R_{i b a}^{h} \tilde{V}^{a}\right)=0 \tag{3.6}
\end{equation*}
$$

Thus we can put

$$
\begin{equation*}
P_{j i}^{h}:=\partial_{\bar{j}}\left(\partial_{\bar{i}} \tilde{V}^{h}-\frac{a^{2}}{\lambda} y^{b} R_{i b a}^{h} \tilde{V}^{a}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i}^{h}+y^{b} P_{b i}^{h}=\partial_{\bar{i}} \tilde{V}^{h}-\frac{\alpha^{2}}{\lambda} y^{b} R_{i b a}^{h} \tilde{V}^{a} \tag{3.8}
\end{equation*}
$$

where $P_{j i}^{h}$ and A_{i}^{h} are functions on M. By a straightforward calculation, we see that $A=\left(A_{i}^{h}\right) \in \Im_{1}^{1}(M)$ and $P=\left(P_{j i}^{h}\right) \in \Im_{2}^{1}(M)$.
By using (3.2), we have

$$
\begin{equation*}
P_{j i}^{h}+P_{i j}^{h}=2 \partial_{j} \partial_{\bar{i}} \tilde{V}^{h}-\frac{\alpha^{2}}{\lambda} y^{b}\left(R_{i b a}^{h} \partial_{\bar{j}} \tilde{V}^{a}+R_{j b a}^{h} \partial_{\bar{i}} \tilde{V}^{a}\right)=0 . \tag{3.9}
\end{equation*}
$$

This means that $P_{j i}^{h}$ is antisymmetric with respect to i, j and thus we have

$$
\begin{equation*}
2 P_{j i}^{h}=P_{j i}^{h}-P_{i j}^{h}=\frac{\alpha^{2}}{\lambda}\left\{\partial_{\bar{i}}\left(y^{b} R_{j b a}^{h} \tilde{V}^{a}\right)-\partial_{\bar{j}}\left(y^{b} R_{i b a}^{h} \tilde{V}^{a}\right)\right\} . \tag{3.10}
\end{equation*}
$$

Therefore

$$
\begin{align*}
2 y^{j} P_{j i}^{h} & =\frac{\alpha^{2}}{\lambda}\left\{y^{j} \partial_{\bar{i}}\left(y^{b} R_{j b a}^{h} \tilde{V}^{a}\right)-y^{j} \partial_{\bar{j}}\left(y^{b} R_{i b a}^{h} \tilde{V}^{a}\right)\right\} \\
& =-\frac{2 \alpha^{2}}{\lambda} y^{j} R_{i j a}^{h} \tilde{V}^{a}-\frac{\alpha^{2}}{\lambda} y^{j} y^{b} R_{i b a}^{h} \partial_{\bar{j}} \tilde{V}^{a} \tag{3.11}
\end{align*}
$$

By substituting (3.11) into (3.8), we obtain

$$
\begin{equation*}
\partial_{\bar{i}} \tilde{V}^{h}=A_{i}^{h}-\frac{\alpha^{2}}{2 \lambda} y^{j} y^{b} R_{i b a}^{h} \partial_{\bar{j}} \tilde{V}^{a} \tag{3.12}
\end{equation*}
$$

so we have

$$
\begin{equation*}
y^{i} \partial_{\bar{i}} \tilde{V}^{h}=y^{i} A_{i}^{h} \tag{3.13}
\end{equation*}
$$

Substituting (3.13) into (3.12), we obtain

$$
\begin{equation*}
\partial_{i} \tilde{V}^{h}=A_{i}^{h}-\frac{\alpha^{2}}{2 \lambda} y^{b} y^{c} R_{i b a}^{h} A_{c}^{a} \tag{3.14}
\end{equation*}
$$

from which

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{h}=-\frac{\alpha^{2}}{2 \lambda} y^{b}\left(R_{i b a}^{h} A_{j}^{a}+R_{i j a}^{h} A_{b}^{a}\right) . \tag{3.15}
\end{equation*}
$$

On the other hand, by substituting (3.14) into (3.2), we have

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{h}=\frac{\alpha^{2}}{2 \lambda} y^{b}\left(R_{i b a}^{h} A_{j}^{a}+R_{j b a}^{h} A_{i}^{a}\right)-\frac{\alpha^{4}}{4 \lambda} y^{b} y^{c} y^{d}\left(R_{i b a}^{h} R_{j c e}^{a} A_{d}^{e}+R_{j b a}^{h} R_{i c e}^{a} A_{d}^{e}\right) . \tag{3.16}
\end{equation*}
$$

Comparing (3.15) and (3.16), we obtain

$$
\begin{equation*}
\alpha\left(2 R_{j b a}^{h} A_{i}^{a}+R_{j i a}^{h} A_{b}^{a}+R_{i b a}^{h} A_{j}^{a}\right)=0, \tag{3.17}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\alpha\left(R_{j b a}^{h} A_{i}^{a}+R_{i b a}^{h} A_{j}^{a}\right)=0 \tag{3.18}
\end{equation*}
$$

By use of (3.18) and the first Bianchi identity, we have

$$
\begin{equation*}
\alpha\left(R_{b j a}^{h} A_{i}^{a}\right)=0 \tag{3.19}
\end{equation*}
$$

thus

$$
\begin{equation*}
R_{b j a}^{h} A_{i}^{a}=0, \tag{3.20}
\end{equation*}
$$

by virtue of $\alpha \neq 0$.
Substituting (3.20) into (3.14), we obtain

$$
\begin{equation*}
\tilde{V}^{h}=B^{h}+A_{a}^{h} y^{a} \tag{3.21}
\end{equation*}
$$

where B^{h} are certain functions on M. One can see that $B=\left(B^{h}\right) \in \Im_{0}^{1}(M)$.
Substituting (3.21) into (3.3), we have

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{\bar{h}}=\tilde{\Omega}_{\bar{j}} \delta_{i}^{h}+\tilde{\Omega}_{\bar{i}} \delta_{j}^{h} \tag{3.22}
\end{equation*}
$$

Contracting i and h in (3.22)

$$
\begin{equation*}
\tilde{\Omega}_{\bar{j}}=\partial_{\bar{j}} \tilde{\varphi} \tag{3.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\varphi}:=\frac{1}{n+1} \partial_{\bar{a}} \tilde{V}^{\bar{a}} \tag{3.24}
\end{equation*}
$$

Substituting (3.23) into (3.22), we get

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{\bar{h}}=\partial_{\bar{j}} \tilde{\varphi} \delta_{i}^{h}+\partial_{\bar{i}} \tilde{\varphi} \delta_{j}^{h} \tag{3.25}
\end{equation*}
$$

By a similar way, one can see that there exist $\Phi=\left(\Phi_{i}\right) \in \Im_{1}^{0}(M), D=\left(D^{h}\right) \in \Im_{0}^{1}(M)$ and $C=\left(C_{i}^{h}\right) \in \Im_{1}^{1}(M)$, satisfying

$$
\begin{equation*}
\tilde{\Omega}_{\bar{i}}=\Phi_{i} \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{V}^{\bar{h}}=\Phi_{a} y^{a} y^{h}+C_{a}^{h} y^{a}+D^{h} \tag{3.27}
\end{equation*}
$$

From $\left(L_{\tilde{V}} \tilde{\nabla}\right)\left(E_{\bar{j}}, E_{i}\right)=\tilde{\Omega}_{\bar{j}} E_{i}+\tilde{\Omega}_{i} E_{\bar{j}}$ and by use of (3.21), (3.26) and (3.27), we obtain

$$
\begin{align*}
\Phi_{j} \delta_{i}^{h} & =\left(\nabla_{i} A_{j}^{h}+\frac{\alpha^{2}}{2 \lambda} D^{a} R_{a j i}^{h}\right)+\frac{y^{b}}{2 \lambda}\left\{\alpha ^ { 2 } \left(B^{a} \nabla_{a} R_{b j i}^{h}-R_{b j i}^{a} \nabla_{a} B^{h}\right.\right. \\
& \left.\left.+R_{b j a}^{h} \nabla_{i} B^{a}+R_{a j i}^{h} C_{b}^{a}+R_{b a i}^{h} C_{j}^{a}\right)+\alpha \beta R_{b j i}^{a} A_{a}^{h}\right\} \\
& +\frac{y^{b} y^{c}}{2 \lambda} \alpha^{2}\left(A_{c}^{a} \nabla_{a} R_{b j i}^{h}-R_{b j i}^{a} \nabla_{a} A_{c}^{h}+R_{b j a}^{h} \nabla_{i} A_{c}^{a}+2 \Phi_{c} R_{b j i}^{h}\right) . \tag{3.28}
\end{align*}
$$

Contracting i and h in (3.28), we have

$$
\begin{equation*}
\Phi_{i}=\frac{1}{n} \nabla_{a} A_{i}^{a} \tag{3.29}
\end{equation*}
$$

From (3.28) we get

$$
\begin{gather*}
\nabla_{i} A_{j}^{h}=\Phi_{j} \delta_{i}^{h}-\frac{\alpha^{2}}{2 \lambda} D^{a} R_{a j i}^{h} \tag{3.30}\\
\alpha\left(B^{a} \nabla_{a} R_{b j i}^{h}-R_{b j i}^{a} \nabla_{a} B^{h}+R_{b j a}^{h} \nabla_{i} B^{a}+R_{a j i}^{h} C_{b}^{a}+R_{b a i}^{h} C_{j}^{a}\right)+\beta R_{b j i}^{a} A_{a}^{h}=0 \tag{3.31}
\end{gather*}
$$

and

$$
\begin{equation*}
A_{t}^{a} \nabla_{a} R_{b j i}^{h}+A_{c}^{a} \nabla_{a} R_{b j i}^{h}=R_{b j i}^{a} \nabla_{a} A_{c}^{h}+R_{c j i}^{a} \nabla_{a} A_{b}^{h}-R_{b j a}^{h} \nabla_{i} A_{c}^{a}-R_{c j a}^{h} \nabla_{i} A_{b}^{a}-2 \Phi_{c} R_{b j i}^{h}-2 \Phi_{b} R_{c j i}^{h} . \tag{3.32}
\end{equation*}
$$

From (3.29) and (3.30) we have

$$
\begin{equation*}
\Phi_{i}=\nabla_{i} A_{a}^{a}-\frac{\alpha^{2}}{2 \lambda} R_{a i} D^{a}=\frac{1}{n} \nabla_{a} A_{i}^{a} . \tag{3.33}
\end{equation*}
$$

From $\left(L_{\tilde{V}} \tilde{\nabla}\right)\left(E_{\bar{j}}, E_{i}\right)=\tilde{\Omega}_{\bar{j}} E_{i}+\tilde{\Omega}_{i} E_{\bar{j}}$ and using (3.20), (3.21) and (3.27) we obtain

$$
\begin{align*}
\tilde{\Omega}_{i} \delta_{j}^{h} & =\left(\nabla_{i} C_{j}^{h}-B^{s} R_{i s j}^{h}-\frac{\alpha \beta}{2 \lambda} R_{a j i}^{h} D^{a}\right)-\frac{y^{b}}{2 \lambda}\left\{\alpha \beta \left(B^{a} \nabla_{a} R_{b j i}^{h}+R_{b j a}^{h} \nabla_{i} B^{a}\right.\right. \\
& \left.\left.+R_{a j i}^{h} C_{b}^{a}+R_{b a i}^{h} C_{j}^{a}-R_{b j i}^{a} C_{a}^{h}\right)+\alpha^{2} R_{b j i}^{a} \nabla_{a} D^{h}+2 \lambda\left(\nabla_{i} \Phi_{j} \delta_{b}^{h}+\nabla_{i} \Phi_{b} \delta_{j}^{h}\right)\right\} \\
& +\frac{y^{b} y^{c}}{2 \lambda}\left\{\alpha^{2}\left(R_{b j i}^{a} B^{d} R_{a d c}^{h}-R_{b j i}^{a} \nabla_{a} C_{c}^{h}\right)-\alpha \beta\left(A_{c}^{a} \nabla_{a} R_{b j i}^{h}+R_{b j a}^{h} \nabla_{i} A_{c}^{a}\right.\right. \\
& \left.\left.+R_{b j i}^{h} \Phi_{c}-R_{b j i}^{a} \Phi_{a} \delta_{c}^{h}\right)\right\}-y^{b} y^{c} y^{d} \frac{\alpha^{2}}{2 \lambda} R_{b j i}^{a} \nabla_{a} \Phi_{c} \delta_{d}^{h} . \tag{3.34}
\end{align*}
$$

Contracting h and j in (3.34), we obtain

$$
\begin{align*}
n \tilde{\Omega}_{i} & =\left(\nabla_{i} C_{a}^{a}+\frac{\alpha \beta}{2 \lambda} R_{a i} D^{a}\right)+\frac{y^{b}}{2 \lambda}\left\{\alpha \beta\left(B^{a} \nabla_{a} R_{b i}^{h}+R_{b a} \nabla_{i} B^{a}+R_{a i} C_{b}^{a}\right)\right. \\
& \left.+\alpha^{2} R_{b e i}^{a} \nabla_{a} D^{e}+2 \lambda(n+1) \nabla_{i} \Phi_{b}\right\}+\frac{y^{b} y^{c}}{2 \lambda}\left\{\alpha^{2}\left(R_{b e i}^{a} B^{d} R_{a d c}^{e}-R_{b e i}^{a} \nabla_{a} C_{c}^{e}\right)\right. \\
& \left.+\alpha \beta\left(A_{c}^{a} \nabla_{a} R_{b i}+R_{b a} \nabla_{i} A_{c}^{a}+R_{b i} \Phi_{c}\right)\right\}, \tag{3.35}
\end{align*}
$$

where $R_{j i}$ is the Ricci tensor of M which is defined by $R_{j i}:=R_{s j i}^{s}$.
Substituting (3.35) into (3.34) and comparing the both side, we get

$$
\begin{equation*}
\nabla_{i} C_{j}^{h}=\Psi_{i} \delta_{j}^{h}+B^{a} R_{i a j}^{h}+\frac{\alpha \beta}{2 \lambda} R_{a j i}^{h} D^{a} \tag{3.36}
\end{equation*}
$$

where $\Psi_{i}:=\frac{1}{n}\left(\nabla_{i} C_{a}^{a}+\frac{\alpha \beta}{2 \lambda} R_{a i} D^{a}\right)$, and

$$
\begin{align*}
2 \lambda\left(n \nabla_{i} \Phi_{j} \delta_{k}^{h}-\nabla_{i} \Phi_{k} \delta_{j}^{h}\right) & =n\left\{-\alpha \beta\left(B^{a} \nabla_{a} R_{b j i}^{h}+R_{b j a}^{h} \nabla_{i} B^{a}+R_{h j i}^{h} C_{b}^{a}+R_{b a i}^{h} C_{j}^{a}-R_{b j i}^{a} C_{a}^{h}\right)-\alpha^{2} R_{b j i}^{a} \nabla_{a} D^{h}\right\} \\
& -\delta_{j}^{h}\left\{\alpha \beta\left(B^{a} \nabla_{a} R_{b i}+R_{b a} \nabla_{i} B^{a}+R_{a i} C_{b}^{a}\right)+\alpha^{2} R_{a k i}^{c} \nabla_{c} D^{a}\right\} . \tag{3.37}
\end{align*}
$$

One can see that the last part of right hand side in (3.35) vanishes.
Contracting h and k in (3.37), we obtain

$$
\begin{equation*}
-2 \lambda(n-1) \nabla_{i} \Phi_{j}=\alpha \beta\left(B^{a} \nabla_{a} R_{j i}+R_{j a} \nabla_{i} B^{a}+R_{i a} C_{j}^{a}\right)+\alpha^{2} R_{a j i}^{c} \nabla_{c} D^{a} \tag{3.38}
\end{equation*}
$$

Using (3.38), we can rewritten (3.35) and (3.37) as follows:

$$
\begin{equation*}
\tilde{\Omega}_{i}=\Psi_{i}+2 y^{k} \nabla_{i} \Phi_{k}, \tag{3.39}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \lambda\left(\nabla_{i} \Phi_{b} \delta_{j}^{h}-\nabla_{i} \Phi_{j} \delta_{b}^{h}\right)=\alpha \beta\left(B^{a} \nabla_{a} R_{b j i}^{h}+R_{b j a}^{h} \nabla_{i} B^{a}+R_{a j i}^{h} C_{b}^{a}+R_{b a i}^{h} C_{j}^{h}-R_{b j i}^{a} C_{a}^{h}\right)+\alpha^{2} R_{b j i}^{a} \nabla_{a} D^{h} . \tag{3.40}
\end{equation*}
$$

From $\left(L_{\tilde{V}} \tilde{\nabla}\right)\left(E_{j}, E_{i}\right)=\tilde{\Omega}_{j} E_{i}+\tilde{\Omega}_{i} E_{j}$ and using (3.20), (3.21), (3.27) and (3.39), we obtain

$$
\begin{align*}
\Psi_{j} \delta_{i}^{h} & +\Psi_{i} \delta_{j}^{h}+2 y^{b}\left(\nabla_{j} \Phi_{b} \delta_{i}^{h}+\nabla_{i} \Phi_{b} \delta_{j}^{h}\right)=\nabla_{j} \nabla_{i} B^{h}+B^{a} R_{a j i}^{h} \\
& +\frac{\alpha \beta}{2 \lambda} D^{a}\left(R_{a j i}^{h}+R_{a i j}^{h}\right)+\frac{y^{b}}{2 \lambda}\left\{2 \lambda \nabla_{j} \nabla_{i} A_{b}^{h}+\alpha \beta\left(B ^ { a } \left(\nabla_{a} R_{b j i}^{h}\right.\right.\right. \\
& \left.+\nabla_{a} R_{b i j}^{h}\right)-\left(R_{b j i}^{a}+R_{b i j}^{a}\right) \nabla_{a} B^{h}+\left(R_{b a i}^{h}+R_{b i a}^{h}\right) \nabla_{j} B^{a} \\
& \left.+\left(R_{b a j}^{h}+R_{b j a}^{h}\right) \nabla_{i} B^{a}+\left(R_{a j i}^{h}+R_{a i j}^{h}\right) C_{b}^{a}\right)-2 \beta^{2} R_{j b i}^{a} A_{a}^{h} \\
& \left.+\alpha(\alpha+\gamma) R_{j i b}^{a} A_{a}^{h}+\alpha^{2}\left(R_{b a i}^{h} \nabla_{j} D^{a}+R_{b a j}^{h} \nabla_{i} D^{a}\right)\right\} \\
& +\frac{y^{b} y^{c}}{2 \lambda}\left\{\alpha \beta \left(A_{c}^{a}\left(\nabla_{a} R_{b j i}^{h}+\nabla_{a} R_{b i j}^{h}\right)-\left(R_{b j i}^{a}+R_{b i j}^{a}\right) \nabla_{a} A_{c}^{h}\right.\right. \\
& \left.+\left(R_{b a i}^{h}+R_{b i a}^{h}\right) \nabla_{j} A_{c}^{a}+\left(R_{b a j}^{h}+R_{b j a}^{h}\right) \nabla_{i} A_{c}^{a}+\Phi_{b}\left(R_{c j i}^{h}+R_{c i j}^{h}\right)\right) \\
& \left.-\alpha^{2}\left(R_{b a i}^{h} B^{d} R_{j d c}^{a}+R_{b a j}^{h} B^{d} R_{i d c}^{a}-R_{b a i}^{h} \nabla_{j} C_{c}^{a}+R_{b a j}^{h} \nabla_{i} C_{c}^{a}\right)\right\} \tag{3.41}
\end{align*}
$$

and

$$
\begin{align*}
0 & =\nabla_{j} \nabla_{i} D^{h}+\frac{\beta^{2}}{\lambda} R_{j a i}^{h} D^{a}-\frac{\alpha(\alpha+\gamma)}{2 \lambda} R_{j i a}^{h} D^{a}+\frac{y^{b}}{2 \lambda}\left\{2 \lambda \left(\nabla_{j} \nabla_{i} C_{b}^{h}\right.\right. \\
& \left.-\nabla_{j}\left(B^{c} R_{i c b}^{h}\right)\right)+2 \beta^{2}\left(B^{a} \nabla_{a} R_{j b i}^{h}+R_{a b i}^{h} \nabla_{j} B^{a}+R_{j b a}^{h} \nabla_{i} B^{a}\right. \\
& \left.+R_{j a i}^{h} C_{b}^{a}-R_{j b i}^{a} C_{a}^{h}\right)-\alpha(\alpha+\gamma)\left(B^{a} \nabla_{a} R_{j i b}^{h}+R_{a i b}^{h} \nabla_{j} B^{a}\right. \\
& \left.+R_{j a b}^{h} \nabla_{i} B^{a}+R_{j i a}^{h} C_{b}^{a}-R_{j i b}^{a} C_{a}^{h}\right)-\alpha \beta\left(R_{b a i}^{h} \nabla_{i} D^{a}+R_{b a j}^{h} \nabla_{i} D^{a}\right. \\
& \left.\left.+\left(R_{b j i}^{a}+R_{b i j}^{a}\right) \nabla_{a} D^{h}\right)\right\}+\frac{y^{b} y^{c}}{2 \lambda}\left\{\left(2 \lambda \nabla_{j} \nabla_{i} \Phi_{b}+\alpha(\alpha+\gamma) R_{j i b}^{a} \Phi_{a}\right.\right. \\
& \left.-2 \beta^{2} R_{j b i}^{a} \Phi_{a}\right) \delta_{c}^{h}+2 \beta^{2}\left(A_{c}^{a} \nabla_{a} R_{j b i}^{h}+R_{a b i b}^{h} \nabla_{j} A_{c}^{a}+R_{j b a}^{h} \nabla_{i} A_{c}^{a}\right) \\
& -\alpha(\alpha+\gamma)\left(A_{c}^{a} \nabla_{a} R_{j i b}^{h}+R_{a i b}^{h} \nabla_{j} A_{c}^{a}+R_{j a b}^{h} \nabla_{i} A_{c}^{a}\right) \\
& +\alpha \beta\left(\left(R_{b j i}^{a}+R_{b i j}^{a}\right) B^{d} R_{a d c}^{h}+R_{b a i}^{h} B^{d} R_{j d c}^{a}+R_{b a j}^{h} B^{d} R_{i d c}^{a}\right. \\
& \left.\left.-\left(R_{b j i}^{a}+R_{b i j}^{a}\right) \nabla_{a} C_{c}^{h}-R_{b a i}^{h} \nabla_{j} C_{c}^{a}-R_{b a j}^{h} \nabla_{i} C_{c}^{a}\right)\right\} \\
& -y^{b} y^{c} y^{d} \frac{\alpha \beta}{2 \lambda}\left(R_{b j i}^{a}+R_{b i j}^{a}\right) \nabla_{a} \Phi_{c} \delta_{d}^{h} . \tag{3.42}
\end{align*}
$$

Comparing both side of (3.41), we obtain

$$
\begin{equation*}
L_{B} \Gamma_{j i}^{h}=\nabla_{j} \nabla_{i} B^{h}+B^{a} R_{a j i}^{h}=\Psi_{j} \delta_{i}^{h}+\Psi_{i} \delta_{j}^{h}-\frac{\alpha \beta}{2 \lambda} D^{a}\left(R_{a j i}^{h}+R_{a i j}^{h}\right), \tag{3.43}
\end{equation*}
$$

and

$$
\begin{align*}
2 \lambda \nabla_{j} \nabla_{i} A_{b}^{h} & =-\alpha \beta\left\{B^{a}\left(\nabla_{a} R_{b j i}^{h}+\nabla_{a} R_{b i j}^{h}\right)+\left(R_{b j i}^{a}+R_{b i j}^{a}\right) \nabla_{a} B^{h}\right. \\
& \left.-\left(R_{b a i}^{h}+R_{b i a}^{h}\right) \nabla_{j} B^{a}-\left(R_{b a j}^{h}+R_{b j a}^{h}\right) \nabla_{i} B^{b}-\left(R_{a j i}^{h}+R_{a i j}^{h}\right) C_{b}^{a}\right\} \\
& +2 \beta^{2} R_{j b i}^{a} A_{a}^{h}-\alpha(\alpha+\gamma) R_{j i b}^{a} A_{a}^{h}-\alpha^{2}\left(R_{b a i}^{h} \nabla_{j} D^{a}+R_{b a j}^{h} \nabla_{i} D^{a}\right) \\
& +4 \lambda\left(\nabla_{j} \Phi_{b} \delta_{i}^{h}+2 \nabla_{i} \Phi_{b} \delta_{j}^{h}\right) . \tag{3.44}
\end{align*}
$$

Substituting (3.30) into (3.44), we have

$$
\begin{align*}
\lambda\left(4 \nabla_{j} \Phi_{b} \delta_{i}^{h}\right. & \left.+2 \nabla_{i} \Phi_{b} \delta_{j}^{h}\right)=\alpha \beta\left\{B^{a}\left(\nabla_{a} R_{b j i}^{h}+\nabla_{a} R_{b i j}^{h}\right)-\left(R_{b j i}^{a}\right.\right. \\
& \left.+R_{b i j}^{a}\right) \nabla_{a} B^{h}+\left(R_{b a i}^{h}+R_{b i a}^{h}\right) \nabla_{j} B^{a}+\left(R_{b a j}^{h}+R_{b j a}^{h}\right) \nabla_{i} B^{a} \\
& \left.+\left(R_{a j i}^{h}+R_{a i j}^{h}\right) C_{b}^{a}\right\}-2 \beta^{2} R_{j b i}^{a} A_{a}^{h}+\alpha(\alpha+\gamma) R_{j i b}^{a} A_{a}^{h} \\
& +\alpha^{2}\left(2 R_{b a i}^{h} \nabla_{j} D^{a}+R_{b a j}^{h} \nabla_{i} D^{a}-D^{a} \nabla_{j} R_{a b i}^{h}\right) . \tag{3.45}
\end{align*}
$$

Contracting i and h in (3.45) and using (3.38), we get

$$
\begin{equation*}
-2 \lambda(n+2) \nabla_{j} \Phi_{b}=\alpha \beta\left(B^{a} \nabla_{a} R_{b j}+R_{b a} \nabla_{j} B^{a}+R_{a j} C_{b}^{a}\right)-\alpha^{2} R_{b c j}^{a} \nabla_{a} D^{c} . \tag{3.46}
\end{equation*}
$$

From (3.38) and (3.46), we obtain

$$
\begin{equation*}
\nabla_{j} \Phi_{k}=0 . \tag{3.47}
\end{equation*}
$$

From (3.39) and (3.47), we get

$$
\begin{equation*}
\tilde{\Omega}_{i}=\Psi_{i} . \tag{3.48}
\end{equation*}
$$

Substituting (3.31) and (3.47) into (3.45)

$$
\begin{equation*}
\alpha^{2} \nabla_{j}\left(R_{a b i}^{h} D^{a}\right)=\alpha R_{b a i}^{h}\left(\alpha \nabla_{j} D^{a}-\beta C_{j}^{a}+\beta \nabla_{j} B^{a}\right)+\alpha R_{b a j}^{h}\left(\alpha \nabla_{i} D^{a}-\beta C_{i}^{a}+\beta \nabla_{i} B^{a}\right)+\lambda R_{j i b}^{a} A_{a}^{h} . \tag{3.49}
\end{equation*}
$$

From (3.49), we get

$$
\begin{equation*}
R_{j i b}^{a} A_{a}^{h}=0 . \tag{3.50}
\end{equation*}
$$

Using from (3.31), (3.40), (3.47) and (3.50) we have

$$
\begin{equation*}
R_{b j i}^{a}\left(\beta \nabla_{a} B^{h}-\beta C_{a}^{h}+\alpha \nabla_{a} D^{h}\right)=0 . \tag{3.51}
\end{equation*}
$$

Contracting i and h in (3.41) and using (3.21), (3.27) and (3.47), we obtain

$$
\begin{align*}
(n+1) \Psi_{j} & =\nabla_{j} \nabla_{a} B^{a}-\frac{\alpha \beta}{2 \lambda} R_{a j} D^{a}-\frac{y^{b}}{2 \lambda}\left\{\alpha \beta\left(B^{a} \nabla_{a} R_{b j}+R_{b a} \nabla_{j} B^{a}+R_{a j} C_{b}^{a}\right)+\alpha^{2} R_{b a j}^{c} \nabla_{c} D^{a}\right\} \\
& -\frac{y^{b} y^{c}}{2 \lambda} \alpha \beta\left\{A_{c}^{a} \nabla_{a} R_{b j}+2 R_{b j} \Phi_{c}-\frac{\alpha^{2}}{2 \lambda}\left(R_{b a} R_{d c j}^{a} D^{d}+R_{b a j}^{d} R_{e c d}^{a} D^{e}\right)\right\} \tag{3.52}
\end{align*}
$$

Comparing (3.52) with (3.35), we get

$$
\begin{equation*}
\Psi_{i}=\frac{1}{n+1}\left(\nabla_{i} \nabla_{a} B^{a}-\frac{\alpha \beta}{2 \lambda} R_{a i} D^{a}\right)=\frac{1}{n}\left(\nabla_{i} C_{a}^{a}+\frac{\alpha \beta}{2 \lambda} R_{a i} D^{a}\right) . \tag{3.53}
\end{equation*}
$$

If we define $\psi:=\frac{1}{2 n+1}\left(\nabla_{a} B^{a}+C_{a}^{a}\right)$, from (3.53), one can see that

$$
\begin{equation*}
\partial_{i} \psi=\Psi_{i} . \tag{3.54}
\end{equation*}
$$

From (3.42), we have

$$
\begin{equation*}
\nabla_{j} \nabla_{i} D^{h}=-\frac{\beta^{2}}{\lambda} R_{j a i}^{h} D^{a}+\frac{\alpha(\alpha+\gamma)}{2 \lambda} R_{j i a}^{h} D^{a} \tag{3.55}
\end{equation*}
$$

and

$$
\begin{align*}
2 \lambda\left(\nabla_{j} \nabla_{i} C_{b}^{h}\right. & \left.-\nabla_{j}\left(B^{c} R_{i c b}^{h}\right)\right)=-2 \beta^{2}\left(B^{a} \nabla_{a} R_{j b i}^{h}+R_{a b i}^{h} \nabla_{j} B^{a}+R_{j b a}^{h} \nabla_{i} B^{a}\right. \\
& \left.+R_{j a i}^{h} C_{b}^{a}-R_{j b i}^{a} C_{a}^{h}\right)+\alpha(\alpha+\gamma)\left(B^{a} \nabla_{a} R_{j i b}^{h}+R_{a i b}^{h} \nabla_{j} B^{a}\right. \\
& \left.+R_{j a b}^{h} \nabla_{i} B^{a}+R_{j i a}^{h} C_{b}^{a}-R_{j i b}^{a} C_{a}^{h}\right)+\alpha \beta\left(R_{b a i}^{h} \nabla_{i} D^{a}\right. \\
& \left.+R_{b a j}^{h} \nabla_{i} D^{a}+\left(R_{b j i}^{a}+R_{b i j}^{a}\right) \nabla_{a} D^{h}\right) . \tag{3.56}
\end{align*}
$$

If $\beta \neq 0$, we put $\varphi=A_{a}^{a}-\frac{\alpha}{\beta}\left(\frac{n}{2 n+1} \nabla_{a} B^{a}-\frac{n+1}{2 n+1} C_{a}^{a}\right)$ and one can see that

$$
\begin{equation*}
\partial_{i} \varphi=\Phi_{i} . \tag{3.57}
\end{equation*}
$$

If $\beta=0$, from (3.55), we have

$$
\begin{equation*}
\nabla_{j} \nabla_{a} D^{a}=-\frac{\alpha(\alpha+\gamma)}{2 \lambda} R_{j a} D^{a} \tag{3.58}
\end{equation*}
$$

Thus, we put $\varphi:=A_{a}^{a}+\frac{\alpha}{\alpha+\gamma} \nabla_{a} D^{a}$ and from (3.33) and (3.58), one can see that

$$
\begin{equation*}
\partial_{i} \varphi=\Phi_{i} . \tag{3.59}
\end{equation*}
$$

Substituting (3.31), (3.36) and (3.51) into (3.56), we get

$$
\begin{align*}
2 \lambda \nabla_{j} \Psi_{i} \delta_{b}^{h} & =\alpha(\alpha+\gamma)\left(B^{a} \nabla_{a} R_{j i b}^{h}+R_{a i b}^{h} \nabla_{j} B^{a}+R_{j a b}^{h} \nabla_{i} B^{a}+R_{j i a}^{h} C_{b}^{a}\right. \\
& \left.-R_{j i b}^{a} C_{a}^{h}\right)-2 \beta^{2}\left(R_{a b i}^{h} \nabla_{j} B^{a}-R_{a b i}^{h} C_{j}^{a}\right)+\alpha \beta\left\{\nabla_{j}\left(R_{b a i}^{h} D^{a}\right)\right. \\
& \left.+R_{b a j}^{h} \nabla_{i} D^{a}+R_{b a i}^{h} \nabla_{j} D^{a}-R_{i j b}^{a} \nabla_{a} D^{h}\right\} . \tag{3.60}
\end{align*}
$$

Contracting i and h, and j and h, separatly in (3.60), we have

$$
\begin{align*}
2 \lambda \nabla_{j} \Psi_{b} & =\alpha(\alpha+\gamma)\left(-B^{a} \nabla_{a} R_{j b}-R_{a b} \nabla_{j} B^{a}+R_{j a b}^{c} \nabla_{c} B^{a}\right. \\
& \left.-R_{j a} C_{b}^{a}-R_{j a b}^{c} C_{c}^{a}\right)-\alpha \beta\left(R_{a j b}^{c}+R_{a b j}^{c}\right) \nabla_{c} D^{a}, \tag{3.61}
\end{align*}
$$

and

$$
\begin{align*}
2 \lambda \nabla_{b} \Psi_{i} & =-\alpha(\alpha+\gamma)\left(-B^{a} \nabla_{a} R_{i b}-R_{a b} \nabla_{i} B^{a}+R_{i a b}^{c} \nabla_{c} B^{a}\right. \\
& \left.-R_{i a} C_{b}^{a}-R_{i a b}^{c} C_{c}^{a}\right)+\alpha \beta\left(R_{a i b}^{c}+R_{a b i}^{c}\right) \nabla_{c} D^{a} . \tag{3.62}
\end{align*}
$$

From (3.61) and (3.62), we get

$$
\begin{equation*}
\nabla_{j} \Psi_{i}+\nabla_{i} \Psi_{j}=0 \tag{3.63}
\end{equation*}
$$

On the other hand, from (3.61) and (3.63), we have

$$
\begin{equation*}
4 \lambda \nabla_{j} \Psi_{i}=-\alpha(\alpha+\gamma)\left(R_{a i}\left(\nabla_{j} B^{a}-C_{j}^{a}\right)-R_{j a}\left(\nabla_{i} B^{a}-C_{i}^{a}\right)-R_{j i a}^{b}\left(\nabla_{b} B^{a}-C_{b}^{a}\right)\right) . \tag{3.64}
\end{equation*}
$$

Contracting h and j in (3.31),

$$
\begin{equation*}
R_{b a} \nabla_{i} B^{a}=-B^{a} \nabla_{a} R_{b i}-R_{a i} C_{b}^{a}-R_{b a i}^{c}\left(\nabla_{c} B^{a}-C_{c}^{a}\right) \tag{3.65}
\end{equation*}
$$

Substituting (3.65) into (3.64) and using the first Binachi identity, we get

$$
\begin{equation*}
\nabla_{j} \Psi_{i}=0 \tag{3.66}
\end{equation*}
$$

Substituting (3.66) into (3.60) and by use of (3.31), (3.36) and (3.51) we obtain

$$
\begin{equation*}
\beta D^{a} \nabla_{j} R_{b a i}^{h}=-\beta\left(R_{b a j}^{h} \nabla_{i} D^{a}+R_{b a i}^{h} \nabla_{j} D^{a}\right)-\beta R_{j i b}^{a} \nabla_{a} D^{h}-\beta R_{b a i}^{h}\left(2 \frac{\beta^{2}}{\alpha} \nabla_{j} B^{a}-2 \frac{\beta^{2}}{\alpha} C_{j}^{a}-\nabla_{j} D^{a}\right) . \tag{3.67}
\end{equation*}
$$

This completes the proof.

Proof of Theorem 1.3

Let \tilde{V} be a non-affine infinitesimal projective transformation on $T M$. We put $X^{h}:=A_{a}^{h} \Phi^{a}$, then from (3.30) and (3.47) we have

$$
L_{X} g_{j i}=\nabla_{j} X_{i}+\nabla_{i} X_{j}=2\left(\Phi_{a} \Phi^{a}\right) g_{j i}
$$

where $X_{i}:=g_{i h} X^{h}$.
Similarly, we define $Y^{h}:=\left(\nabla_{a} B^{h}-C_{a}^{h}\right) \Psi^{a}$. Then, by using (3.36), (3.43) and (3.66), we get

$$
L_{Y} g_{j i}=\left(\nabla_{j} \nabla_{a} B_{i}-\nabla_{j} C_{a i}\right) \Psi^{a}+\left(\nabla_{i} \nabla_{a} B_{j}-\nabla_{i} C_{a j}\right) \Psi^{a}=2\left(\Psi_{a} \Psi^{a}\right) g_{j i}
$$

Therefore X and Y are infinitesimal homothetic transformations.
To complete the proof of theorem, we need the following Lemma, which is proved in [9].
Lemma 3.1. If a complete Riemannian manifold M admits a non-isometric infinitesimal homothetic transformation, then M is locally flat.

If M is not locally flat, by use of Lemma 3.1, X and Y are infinitesimal isometric transformations and thus $\Phi_{i}=\Psi_{i}=0$. Therefore \tilde{V} is an infinitesimal affine transformation, which is a contradiction. Thus M is locally flat. It is easy to see that $T M$ is also locally flat.

References

[1] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41 (1), 71-92 (2005).
[2] Abbassi, M. T. K., Sarih, M.: On Riemannian g-natural metrics of the form $a g^{s}+b g^{h}+c g^{v}$ on the tangent bundle of a Riemannian manifold (M, g). Mediterr. J. Math. 2 (1), 19-43 (2005).
[3] Dan'shin, A.: Infinitesimal projective transformations in the tangent bundle of general space of path. Izv. Vyssh. Uchebn. Zaved. Mat. 41 (9), 8-12 (1997).
[4] Gezer, A., Bilen, L.: Projective vector fields on the tangent bundle with a class of Riemannian metrics. C. R. Acad. Bulgare Sci. 71 (5), 587-596 (2018).
[5] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on contact Riemannian manifolds. J. Hokkaido Univ. Educ. Nat. Sci. 51 (1), 1-7 (2000).
[6] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with the horizontal lift connection. J. Hokkaido Univ. Educ. Nat. Sci. 52 (1), 1-5 (2001).
[7] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 7 (13), $489-503$ (2002).
[8] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles. In: M. Anastasiei, P.L. Antonelli (editors). Finsler and Lagrange Geometries. New York, USA: Springer Science+Business Media, Springer Netherlands. 91-98 (2003).
[9] Kobayashi, S.: A theorem on the affine transformation group of a Riemannian manifold. Nagoya Math. J. 9, 39-41 (1955).
[10] Nagano, T.: The projective transformation on a space with parallel Ricci tensor. Kodai Math. J. 11 (3), 131-138 (1959).
[11] Okumura, M.: On infinitesimal conformal and projective transformation of normal contact spaces. Tohoku Math. J. 14 (4), 389-412 (1962).
[12] Yamauchi, K.: On Riemannian manifolds admitting infinitesimal projective transformations. Hokkaido Math. J. 16 (2), 115-125 (1987).
[13] Yamauchi, K.: On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll. 19, 49-55 (1998).
[14] Yamauchi, K.: On infinitesimal projective transformations of tangent bundle with the metric II+III. Ann. Rep. Asahikawa Med. Coll. 20, 67-72 (1999).
[15] Yamauchi, K.: On infinitesimal projective transformations of tangent bundles over Riemannian manifolds. Mathematica Japonica 49 (3), 433-440 (1999).
[16] Yano, K.: The Theory of Lie Derivatives and Its Applications. Franklin Classics Trade Press (2018).
[17] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles: differential geometry. Marcel Dekker Inc., New York (1973).
[18] Yano, K., Kobayashi, S.: Prolongation of tensor fields and connections to tangent bundles I, II, III. J. Math. Soc. Japan 18 (2), $194-210$ (1966), 18 (3), 236-246 (1966), 19 (4), 486-488 (1967).

Affiliations
Mosayeb Zohrehvand
Address: Malayer University, Faculty of Mathematical Sciences and Statistic, Dept. of Mathematics, Malayer-Iran.
E-MAIL: m.zohrevand61@gmail.com, m.zohrehvand@malayeru.ac.ir ORCID ID: orcid.org/0000-0002-3876-4060

[^0]: Received : 21-05-2019, Accepted : 22-12-2019

 * Corresponding author

