Novel Lyapunov-type inequality for fractional boundary value problem

Rabah KHALDI ${ }^{1}$
${ }^{1}$ Laboratory of Advanced Materials, Department of Mathematics, Badji Mokhtar Annaba University, P.O. Box 12, 23000 Annaba, Algeria.
rkhadi@yahoo.fr

Received: 16.12.2019, Accepted: 20.02.2020, Published: 22.02.2020

Abstract

In this paper, we establish a new Lyapunov-type inequality for a differential equation involving Caputo fractional derivatives subject to non-local boundary conditions. As an application to the corresponding eigenvalue problem is also discussed.

Keywords: Fractional derivative, Lyapunov inequality, Green's function, Eigenvalue problem.
Mathematics Subject Classification: 34A08, 26A33.

1 Introduction

In this work, we obtain Lyapunov type inequality for the following fractional differential equation

$$
\begin{equation*}
{ }^{C} D_{0^{+}}^{\alpha} u(t)+q(t) u(t)=0, a \leq t \leq b, \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
u(a)=0, u^{\prime}(a)=\xi u(b), \tag{2}
\end{equation*}
$$

where $1<\alpha \leq 2,0<\xi<\frac{1}{b-a},{ }^{C} D_{a^{+}}^{\alpha}$ denotes the Caputo derivative of order α and q is a continuous function on $[a, b]$.

The Lyapunov inequality and its generalizations have many applications in different fields such in oscillation theory, asymptotic theory, disconjugacy, eigenvalue problems. The classical Lyapunov inequality [7] states that, if u is a nontrivial solution of the Hill's equation

$$
u^{\prime \prime}(t)+q(t) u(t)=0, a<t<b
$$

subject to Dirichlet-type boundary conditions:

$$
u(a)=u(b)=0,
$$

then

$$
\int_{a}^{b}|q(t)| d t>\frac{4}{b-a}
$$

where $q:[a, b] \rightarrow \mathbb{R}$ is a real and continuous function.
Recently, more generalized Lyapunov-type inequalities have been obtained for fractional differential equations $[2,3,4]$ and conformable derivative differential equations in [1,5]. For more results on Lyapunov-type inequalities for fractional differential equations, we refer to the recent survey of Ntouyas et al. [8].

2 Preliminaries

We recall the concept of fractional integral and derivative of order $p>0$. For details on the subject we refer the reader to $[6,9,10]$

Definition 1 The Riemann-Liouville fractional integral of a function f is defined by

$$
I_{a^{+}}^{p} f(t)=\frac{1}{\Gamma(p)} \int_{a}^{t} \frac{f(s)}{(t-s)^{1-p}} d s
$$

Definition 2 The Caputo derivatives of order $p>0$, of a function f is defined by:

$$
{ }^{C} D_{a^{+}}^{p} f(t)=I_{a^{+}}^{n-p} f^{(n)}(t)
$$

where n is the smallest integer greater or equal than p.
We also recall the following composition rule of fractional operators.
Proposition 3 Let $n-1<p<n$ and $f \in C^{n}[a, b]$. Then

$$
I_{a^{+}}^{p C} D_{a^{+}}^{p} f(t)=f(t)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(t-a)^{k}
$$

3 Lyapunov inequality

Next we transform the problem (1)-(2) to an equivalent integral equation.
Lemma 4 Assume that $1<\alpha \leq 2$ and $0<\xi<\frac{1}{b-a}$. The function u is a solution to the boundary value problem (1)-(2) if and only if u satisfies the integral equation

$$
\begin{equation*}
u(t)=\int_{a}^{b} G(t, r) q(r) u(r) d r \tag{3}
\end{equation*}
$$

where

$$
G(t, s)=\frac{1}{\Gamma(\alpha)}\left\{\begin{array}{c}
(t-s)^{\alpha-1}+\frac{\xi(t-a)}{(1-\xi(b-a))}(b-s)^{\alpha-1}, a \leq s \leq t \leq b \tag{4}\\
\frac{\xi(t-a)}{(1-\xi(b-a))}(b-s)^{\alpha-1}, a \leq t \leq s \leq b
\end{array}\right.
$$

is the Green's function of problem (1)-(2).

Proof. Using Proposition3 we obtain that u is a solution of (1)-(2) if and only if it satisfies the following equation:

$$
\begin{equation*}
u(t)=I_{a^{+}}^{\alpha} q(t) u(t)+a_{0}+a_{1}(t-a), \tag{5}
\end{equation*}
$$

from the conditions $u(a)=0$, we obtain $a_{0}=0$ and the boundary condition $u^{\prime}(a)=$ $\xi u(b)$ yields

$$
a_{1}=\frac{\xi}{1-\xi(b-a)} \frac{1}{\Gamma(\alpha)} \int_{a}^{b}(b-s)^{\alpha-1} q(s) u(s) d s
$$

Substituting a_{0} and a_{1} in (5), we get

$$
\begin{aligned}
u(t)= & \frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-s)^{\alpha-1} q(s) u(s) d s \\
& +\frac{\xi(t-a)}{(1-\xi(b-a)) \Gamma(\alpha)} \int_{a}^{b}(b-s)^{\alpha-1} q(s) u(s) d s,
\end{aligned}
$$

from which the intended result follows.
In the next Lemma we give the property of the Green function G that will be needed in the sequel.

Lemma 5 Assume that $1<\alpha \leq 2$ and $0<\xi<\frac{1}{b-a}$. Then, for all $s, t \in[0,1]$ the Green function $G(t, r)$ given in (4) is non negative, continuous and satisfies the following property:

$$
\max _{(s, t) \in[a, b]^{2}} G(t, s)=\frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a))} \max \left\{1, \frac{\xi(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}(b-a)\right\} .
$$

Moreover,

$$
G(t, s)=\frac{\xi(\alpha-1)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a)) \alpha^{\alpha}}(b-a)^{\alpha},
$$

if and only if, $s=t=\frac{b+(\alpha-1) a}{\alpha}$ and

$$
G(t, s)=\frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a))},
$$

if and only if $(t, s)=(b, 0)$.
Proof. Obviously $G(t, s)$ is continuous and $G(t, s) \geq 0$ for $s, t \in[0,1]$.
Firstly, For $a \leq s \leq t \leq b$ and fix $s \in[a, b]$, we have

$$
\max _{s \leq t \leq b}\left[(t-s)^{\alpha-1}+\frac{\xi(t-a)}{(1-\xi(b-a))}(b-s)^{\alpha-1}\right]=\frac{(b-s)^{\alpha-1}}{(1-\xi(b-a))},
$$

so,

$$
\begin{equation*}
\max _{a \leq s \leq t \leq b} G(t, s)=\frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a))} . \tag{6}
\end{equation*}
$$

Now, for $a \leq t \leq s \leq b$, and fix $t \in[a, b]$, we have

$$
\max _{t \leq s \leq b} \frac{\xi(t-a)}{(1-\xi(b-a))}(b-s)^{\alpha-1}=\frac{\xi(t-a)}{(1-\xi(b-a))}(b-t)^{\alpha-1} .
$$

Define the function

$$
h(t)=(t-a)(b-t)^{\alpha-1},
$$

by differentiating the function h, it yields

$$
h^{\prime}(t)=(b-t)^{\alpha-2}[b+(\alpha-1) a-\alpha t] .
$$

We can see that $h^{\prime}(t)=0$ for $t_{0}=\frac{b+(\alpha-1) a}{\alpha} \in(a, b), h^{\prime}(t)<0$ for $t>t_{0}$ and $h^{\prime}(t)>0$ for $t<t_{0}$. Hence, the function $h(t)$ has a unique maximum given by

$$
\begin{aligned}
\max _{t \in[a, b]} h(t) & =h\left(t_{0}\right) \\
& =\frac{(b-a)}{\alpha}\left[\frac{(\alpha-1)}{\alpha}(b-a)\right]^{\alpha-1} .
\end{aligned}
$$

So,

$$
\begin{align*}
\max _{a \leq t \leq s \leq b} G(t, s) & =\max _{a \leq t \leq b} G(t, t)=G\left(t_{0}, t_{0}\right) \\
& =\frac{\xi}{\Gamma(\alpha)(1-\xi(b-a))} \frac{(b-a)}{\alpha}\left[\frac{(\alpha-1)}{\alpha}(b-a)\right]^{\alpha-1} \\
& =\frac{\xi(\alpha-1)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a)) \alpha^{\alpha}}(b-a)^{\alpha} . \tag{7}
\end{align*}
$$

Finally, from (6) and (7) we get

$$
\max _{(s, t) \in[a, b]^{2}} G(t, s)=\frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a))} \max \left\{1, \frac{\xi(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}(b-a)\right\}
$$

Next, we state and prove the Lyapunov inequality for problem (1)-(2).
Theorem 6 (Lyapunov Inequality). Assume that $1<\alpha \leq 2,0<\xi<\frac{1}{b-a}$. If the fractional boundary value problem (1)-(2) has a nontrivial continuous solution, then

$$
\begin{equation*}
\int_{a}^{b}|q(r)| d r>\frac{\Gamma(\alpha)(1-\xi(b-a))}{(b-a)^{\alpha-1} \max \left\{1, \frac{\xi(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}(b-a)\right\}} . \tag{8}
\end{equation*}
$$

Proof. Let $X=C[a, b]$ be the Banach space endowed with norm $\|u\|=\max _{t \in[a, b]}|u(t)|$. It follows from Lemma 4 that a solution $u \in X$ to the boundary value problem (1)-(2) satisfies

$$
\begin{aligned}
|u(t)| & \leq \int_{a}^{b}|G(t, r)||q(r)||u(r)| d r \\
& \leq\|u\| \int_{a}^{b}|G(t, r)| q(r) d r
\end{aligned}
$$

Now, applying Lemma 5 to equation (3), it yields

$$
|u(t)|<\frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a))} \max \left\{1, \frac{\xi(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}(b-a)\right\}\|u\| \int_{a}^{b}|q(r)| d r
$$

Hence,

$$
\|u\|<\frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)(1-\xi(b-a))} \max \left\{1, \frac{\xi(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}(b-a)\right\}\|u\| \int_{a}^{b}|q(r)| d r
$$

from which the inequality (8) follows. This completes the proof of Theorem.

3.0.1 Application to a fractional eigenvalue problem

We give an application of the Lyapunov-type inequality (8) for the following eigenvalue problem (EVP)

$$
\begin{gathered}
{ }^{C} D_{b^{-}}^{\alpha} D_{a^{+}}^{\beta} u(t)=\lambda u(t), a<t<b, \lambda \in \mathbb{R}, \\
u(a)=0, u^{\prime}(a)=\xi u(b),
\end{gathered}
$$

From Theorems, the next result immediately follows.
Corollary 7 Assume that $1<\alpha \leq 2,0<\xi<\frac{1}{b-a}$. If λ is an eigenvalue to the fractional boundary value problem (EVP), then

$$
|\lambda|>\frac{\Gamma(\alpha)(1-\xi(b-a))}{(b-a)^{\alpha} \max \left\{1, \frac{\xi(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}(b-a)\right\}} .
$$

References

[1] T. Abdeljawad, J. Alzabut \& F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivatives. Adv. Differ. Equ. 2017, 321 doi:10.1186/s13662-017-1383-z
[2] R. A. C. Ferreira, Novel Lyapunov-type inequalities for sequential fractional boundary value problems, RACSAM Rev. R. Acad. A, 113 2019, 171-179.
[3] A. Guezane-Lakoud, R. Khaldi and D. F.M. Torres, Lyapunov-type inequality for a fractional boundary value problem with natural conditions, SeMA 75 2018, 157-162
[4] R. Khaldi and A Guezane-Lakoud, On a generalized Lyapunov inequality for a mixed fractional boundary value problem, AIMS Mathematics, 4(3) 2019, 506-515.
[5] R. Khaldi and A. Guezane-Lakoud, Lyapunov inequality for a boundary value problem involving conformable derivative, Prog. Frac. Diff. Appl. 3 (4) 2017, 323-329.
[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006.
[7] A. M. Lyapunov, Problème général de la stabilité du mouvement, (French Translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse 2 (1907), 27-247, Reprinted as Ann. Math. Studies, No, 17, Princeton, 1947.
[8] S. K. Ntouyas, B. Ahmad, T. P. Horikis, Recent Developments of Lyapunov-Type Inequalities for Fractional Differential Equations. In: Andrica D., Rassias T. (eds) Differential and Integral Inequalities. Springer Optimization and Its Applications, vol 151. Springer, Cham, (2019).
[9] I. Podlubny, Fractional Differential Equation, Academic Press, Sain Diego, 1999.
[10] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.

Rabah Khaldi, ORCID: https://orcid.org/0000-0002-6462-4424

