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Abstract — Non-linear unconstrained optimization methods constitute excellent 
neural network training methods characterized by their simplicity and efficiency. In 
this paper, we propose a new preconditioned conjugate gradient neural network 
training algorithm which guarantees descent property with standard Wolfe condi-
tion. Encouraging numerical experiments verify that the proposed algorithm pro-
vides fast and stable convergence. 
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1 Introduction 
The batch training of the multi-layer feed-forward neural network (MFN) can be formu-
lated as non-linear unconstrained minimization problem [4,11,15,16,17].  Namely 

    ,  ),(  min n
kk RwwE ∈          )1(               

 where kw  is the weight vector, 𝐸𝐸 is the batch error measure defined as the sum of 
squared differences error functions over the entire training set, defined by 
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pj TO −   is the squared differences between the actual  j-th output  layer neu-

ron for pattern  𝑃𝑃 and the target output value.  The scalar P is an index over input-output 
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pairs,  the general purpose of  the training is to search an optimal set of connection 
weights w in the manner that the error of the network output  can be minimized. The 
weight update equation for any training algorithm has the iterative form: 

    kkkk dww α+=+1          )3(               

 Where nRw ∈1  is a given starting point, kα  is a learning rate or(step size) with 0≥kα , 

and kd  is a search direction which satisfies 0<k
T
k dg .  

 The gradient )( kk wEg ∇= easily can be obtained by means of back-propagation of errors 
through the layers. Many minimization methods have been applied to the training MFN. 
Examples include back-propagation(BP) [9,10,21], conjugate gradient [7,14,18] and 
quasi-Melton's method [1,3,4]. BP method minimizes the error function using the steepest 
descent, namely kk gd −= , with fixed (heuristically chosen) step-size [21]. The standard 
BP algorithm which often behaves very badly on large-scale problems and which success 
depends of the user dependent parameters learning rate [5,13]. 
 Conjugate gradient methods and quasi-newton methods that are  
applicable to large-scale problems. The conjugate gradient methods are  
iterative methods of the form (3) with search direction defined by :  

    kkkk dgd β+−= ++ 11                                                                                     (4) 

  where 11 gd −=  , kβ  is a scalar, some famous formulae for kβ  are: 
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here kkk ggy −= +1 , (FR) Fletcher-Reeves method [8],  (HS) denotes the Hestenes and 
Stiefel [12], (PR) denotes the Polak and Ribiere [20].  
  Recently, Birgin and Matinez [6] proposed a spectral conjugate gradient method by 
combining conjugate gradient method and spectral method  in the following way:   

  ,11 kkkk
SCG
k sgd βθ +−= ++                     (6)   

where kθ  is parameter. In the Quasi-Newton methods [2] the search directions define by: 

  111 +++ −= kk
QN
k gHd                       (7)  

where nnIH *1 =  is the identity matrix and kH  updated by rank-one for example symmet-
ric rank-one is 
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or rank-2 such as DFP method 
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 (Daved-Fletcher-Powell) see [2]. 
 The learning rate parameter kα  must be determined by some one dimensional line search 

along the search direction kd . In our method, the learning rate achieved by the line search 
technique, must satisfy the standard Wolfe (WC) [22] conditions given by   

k
T
kkkk dgwEwE ρα+≤+ )()( 1                       
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  or strong Wolfe conditions (SWC)    
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k dgdg σ≥+1 .                         

  This paper is organized as follows. In Section (2) new preconditioned training conjugate 
gradient method suggested. The sufficient descent condition are presented in section (3). 
In section (4) global convergence of the new preconditioned conjugate gradient method 
established. Numerical results are reported in section (5). 

2 Derivation of new preconditioned conjugate gradient method 
In the quasi-Newton methods, an approximation matrix kH  of  the invers  Hessian 

)(2
kwE∇  is updated such that the new matrix 1+kH  satisfies the following quasi-Newton 

equation[2 ] : 
     kkk syH =+1                                (10) 

  where kkk xxs −= +1 .  
  In order to determine the new search direction we use the following quadratic equation: 

      
2SCGQN ddQ −=                     (11) 

Subject to 0>kθ  and kH is symmetric and positive definite. With simple algebra we get 
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From equations (13) and (14) we get: 
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Therefor the new (PKZ say) search direction can be defined as 
     kkk

PKZ
k sgd *

1
*

1 βθ +−= ++                 (16) 

We summarize the above method as the following algorithm: 

2.1    Algorithm (The PKZ algorithm)  
Step( 0): Given  an  initial   starting   point  nRw ∈1   and  610−=ε ,  

                 consider 11 gd −= ,
1

1
1
g

=α ,  and 1=k . 

Step(1): Test  for  convergence,  If  ε<kg , stop  kw   is optimal. Else go 
               to step 2. 
Step(2): Compute kα satisfying the Wolfe line search and update the variable    

kkkk dww α+=+1  and compute 1+kf  , 1+kg  , ky  and ks . 
Step(3):  Direction  computation : compute    *θ ,  *

kβ  and PKZ
kd 1+  from (13) , (14) and  

               (16). If   Powell   restart   is  satisfied  then 1
*

1 ++ −= kkk gd θ , else PKZ
k dd =+1  

               , compute initial guess for 
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3 The Descent Property  and  Descent Algorithm 
 Since the conjugate gradient methods belong to the descent methods for solving uncon-
strained optimization problems, the new method should be chosen such that  

   011 ≤++ k
T
k dg if a line search is used. Furthermore, the sufficient descent condition is 

       2
111 +++ −≤ kk

T
k gcdg  for   0≥k  and 0>c                               (17) 

Theorem 3.1 Suppose *θ  is positive parameter  and step size kα  satisfies (WC or SWC) 
Wolfe conditions, then the search directions generated by (16)are descent directions for 
all .k  
Proof.  By induction, for initial direction (k=0) we have : 

02
11111 <−=⇒−= ggdgd T                          (18) 

Now let the theorem be true for all k, i.e. 

          .0<k
T
k gd                          (19) 
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To complete the proof, we have to show that the theorem is true for all 1+k . Multiplying 
(16) by T

kg 1+ , we have 
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Since 1+kH  is a positive definite matrix, namely,   

0111 >+++ kk
T
k gHg                          (21) 

from (20) and (21) we get :  

011111 <−= +++++ kk
T
k

PKZ
k

T
k gHgdg .                                  (22) 

 

4 Global convergence property  
In order to establish the global convergence of the proposed method. We assume that the 
following assumption always holds. 
Assumption 1 
 i- The level set { })()(: 1wEwERwS n ≤∈=  is bounded, namely, there exists a constant 

0>B  such that 

 Bw ≤     for all  Sw∈ .                                 (23) 

ii- In some neighbourhood N  of ,S E  is continuously differentiable, and its gradient is 
Lipschitz continuous, namely, there exist  0>L  such that: 

  Nyx,   )()( ∈∀−≤− yxLygxg  .                                 (24) 

Lemma 1 Suppose Assumption(1) holds. Consider any iteration of (3) and(4), where kd  

satisfies 0<k
T
k dg  for +∈ Nk  and kα  satisfies the Wolf line search conditions (WC or 

SWC) . Then 

 If     ∞=∑
≥1

2

1
k kd

  then 0inf =kgLim   as ∞→k                                  (25) 

More details can be found in [23]. 
  Now, we give the following Theorem of global convergence for the PKZ conjugate gra-
dient method. 
 
 
Theorem 4.1 Suppose that Assumption 1. holds and E  is strongly convex. If { }kw  ob-

tained by PKZ algorithm, then we have either 01 =+kg  for some k  or 
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       0inflim =
∞→ kk

g  .                                       (26) 

Proof.  If  01 ≠+kg  for all k , then there exists 0>µ  such that µ>+1kg . Now by the 

equations(13), (15) and (16), we obtain : 
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Utilizing Lipschtiz condition we have : 
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Therefore by lemma 1 we get 
0inf =kgLim                    

which completes the proof. 
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5 Experiments and Results 
A computer simulation has been developed to study the performance of the learning algo-
rithms. The simulations have been carried out using MATIAB(7.6) the performance of the 
PKZ has been evaluated and compared with the following batch training algorithms: 

1-Clasical Backpropagation (CPB). 
2-Daved-Fletcher-Powell (DFP) Quasi- Newton algorithm. 
3-Polak-Ribier conjugate gradient(PRCG) method. 

The algorithms were tested using the initial weights, initialized by the Nguyen –widrow me-
thod [19] and received the same sequence of input patterns. The weights of network are up-
dated only after the entire set of patterns to be learned has been presented.             
For each of the test problems, a table summarizing the performance of the algorithms for si-
mulations that reached solution is presented. The reported parameters are min  the minimum 
number of epochs for 100 simulation, mean the mean value of epochs for 100 simulation, 
Max the maximum number of epochs for 100 simulation, Tav the average of total time for 
100 simulations and Such, the succeeded simulations out of 100 trails within error function 
evaluations limit.  If an algorithm fails to converge within the above limit considered that it 
fails to train the MFN, but its epoch are not included in the statically analysis  of the algo-
rithm, one gradient and one error function evaluations are necessary at each epoch. 
Problem 1 (Continuous Function  Approximation)  

The first test problem we consider is the approximation of the continuous trigonomet-
ric function: )3cos(*)sin()( xxxf = . The network architecture for this problem is 1-15-1 
FNN (thirty weights, sixteen biases) is trained to approximate the function f(x), where  
x∈[-π,π] and the network is trained until the sum of the squares of the errors becomes 
less than the error goal 0.0005, comparative results are shown in Table 1. 

 
Table 1: Results of simulations for the function approximation  problem 

 
Algorithms Min Max Mean Tav Succ 
CBP fail -- -- --  0.0% 
DFP 31 459   98.97 4.86 100% 

PR 60 529 115.27 4.96   85% 
PKZ 36 475   95.13 4.83 100% 

 
Form Table 1, we conclude that the algorithm PKZ is the best algorithm with simulations 
accuracy and success, number of epochs and the time. 
Problem 2 (XOR Problem) 
The second problem we have been encountered is the XOR Boolean function problem, 
which is considered as a classical problem for the MFN training. The XOR function maps 
two binary inputs to a single binary output. As it is well known this function is not line-
arly separable. The network architectures for this binary classification problem consists of 
one hidden layer with 3 neurons and an output layer of one neuron. The termination crite-
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rion is set to 0005.02 ≤ε  within limit of 1000 epochs, Table 2 summarizes the result of 
all algorithms i.e for 100 simulations the minimum epoch for each algorithm  are listed in 
the first column (Min), the maximum epoch for each algorithm are listed in the second 
column, third column contains (Mean) the mean value of epochs and (Tav) is the average 
of time for 100 simulations and last columns contains the percentage of succeeds of the 
algorithms in 100 simulation.  

 
Table 2: Results of simulations for the XOR function 

 
Algorithms Min Max Mean Tav Succ 

CBP 205 1000 573 4.8966 98% 

DFP 5 28 7.44 2.318 100% 

PR 7 31 9.61 2.702 100% 

PKZ 7 30 8.22 2.411 100% 

 
Form Table 2, we conclude that the algorithm PKZ is the best algorithm with simulations 
accuracy and success, number of epochs and the time. 
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