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This paper deals with the oscillation of third-order nonlinear differential equations with
neutral terms involving positive and negative nonlinear parts. An example is provided to
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1. Introduction
We are concerned with oscillatory properties of all solutions of the third-order nonlinear

differential equation with mixed neutral terms

d

dt

(
a(t)

(
d2

dt2

[
x(t) + p1(t)xβ(σ(t)) − p2(t)xδ(σ(t))

])α)
= q(t)xγ(τ(t)) + c(t)xλ(ω(t))

(1.1)
for t ≥ t0 > 0. For convenience in what follows we set y(t) := x(t) + p1(t)xβ(σ(t)) −
p2(t)xδ(σ(t)). We assume throughout that the following conditions are satisfied:

(C1) α, β, γ, δ, and λ are the ratios of odd positive integers;
(C2) a, p1, p2, q, c : [t0, ∞) → (0, ∞) are continuous functions;
(C3) τ , σ, ω : [t0, ∞) → R are continuous and nondecreasing functions such that τ(t) ≤

t, σ(t) ≤ t, ω(t) ≥ t, and limt→∞ τ(t) = limt→∞ σ(t) = limt→∞ ω(t) = ∞;
(C4) h(t) := σ−1(τ(t)) ≤ t and limt→∞ h(t) = ∞, where σ−1 is the inverse of σ.

We also assume
A(t, t0) :=

∫ t

t0
a−1/α(s)ds → ∞ as t → ∞. (1.2)
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A solution of equation (1.1) is a function x ∈ C ([tx, ∞),R) for some tx ≥ t0 with y ∈
C2 ([tx, ∞),R), a (y′′)α ∈ C1 ([tx, ∞),R), and (1.1) is satisfied on [tx, ∞). Only those
solutions of (1.1) existing on a half-line [tx, ∞) and satisfying

sup {|x(t)| : T1 ≤ t < ∞} > 0 for any T1 ≥ tx

are under consideration here. Moreover, it is assumed that (1.1) in fact has such solu-
tions. A solution x(t) of (1.1) is called oscillatory if it has arbitrarily large zeros, and
nonoscillatory otherwise.

The study of the oscillatory behavior of solutions of functional differential equations has
been a very active area of research due in part to its applications in science and engineering.
We refer to the monographs [1,2,13,22] and the papers [3,4,11,12,14–17,19–21,26,27,29]
for recent results of this type.

Applications of neutral delay differential equations can be found in the study of high
speed electrical networks involving lossless transmission lines as those that can be found
in computers (see also [28]). They also arise, for example, as the Euler equation for
variational problems involving delay equations.

Beginning with the classic work of Sturm on second-order linear equations, the oscilla-
tion of solutions of differential equations has been the object of study by many authors
using many different techniques. In the last three decades, oscillation theory for neu-
tral delay differential equations of the second order and retarded delay equations of the
third order has been well developed; for example, see the monographs [5,13,22], the papers
[3,4,10–12,15,17,21,25–27,29], and the included references. By comparison to second-order
neutral delay differential equations, considerably less work has appeared on the oscillation
and asymptotic behavior of solutions of third-order neutral differential equations [17, 18].
As best we can tell, there appears to be no results for the type of third order differential
equations with mixed nonlinear neutral terms considered here. Our aim here is to initiate
the study of oscillation of (1.1) with β < 1 and δ > 1 as well as for the case β < δ ≤ 1
by making comparisons to first order differential inequalities whose oscillatory behaviors
are known. Our results here are new even in the case of equation (1.1) with p1(t) = 0, or
p2(t) = 0, or p1(t) = p2(t) = 0.

2. Oscillation of (1.1) for β < 1 and δ > 1
In this section we present some oscillation criteria for equation (1.1) in the case where

β < 1 and δ > 1. (2.1)

To obtain our results, we need the following lemma.

Lemma 2.1 ([23]). If X and Y are nonnegative, then

Xφ + (φ − 1)Y φ − φXY φ−1 ≥ 0 for φ > 1 (2.2)

and
Xφ − (1 − φ)Y φ − φXY φ−1 ≤ 0 for 0 < φ < 1, (2.3)

where equality holds if and only if X = Y .

For notational purposes, let

A(v, u) :=
∫ v

u
a−1/α(s)ds,

and for any function p ∈ C ([t0, ∞), (0, ∞)), we set

g1(t) := (δ − 1)δδ/(1−δ)pδ/(δ−1)(t)p1/(1−δ)
2 (t),

g2(t) := (1 − β)ββ/(1−β)pβ/(β−1)(t)p1/(1−β)
1 (t),
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and
Q(t) := q(t)

(p2(h(t)))γ/δ
.

The first of our oscillation results is as follows.

Theorem 2.2. Let conditions (C1)–(C4), (1.2), and (2.1) hold. Assume that there exist a
function p ∈ C ([t0, ∞), (0, ∞)) and nondecreasing functions µ, ξ, η ∈ C ([t0, ∞),R) such
that

lim
t→∞

(g1(t) + g2(t)) = 0, (2.4)

and
µ(t) < t, ρ(t) := ω(µ(µ(t))) > t and h(t) ≤ ξ(t) ≤ η(t) ≤ t. (2.5)

If for all constants κ0, κ1 ∈ (0, 1) the first-order delay differential inequality

Y ′(t) + κ0q(t) [τ(t)A(ξ(t), τ(t))]γ Y γ/α(ξ(t)) ≤ 0, (2.6)

the first-order advanced differential inequality

y′(t) − κ1

∫ t

µ(t)
a−1/α(u)

(∫ u

µ(u)
c(s)ds

)1/α

du

 yλ/α(ρ(t)) ≥ 0, (2.7)

and the first-order delay differential inequalities

W ′(t) + Q(t)
(∫ h(t)

t0
A(s, t0)ds

)γ/δ

W γ/αδ(h(t)) ≤ 0, (2.8)

and
X ′(t) + Q(t) [(ξ(t) − h(t))A(η(t), ξ(t))]γ/δ Xγ/αδ(η(t)) ≤ 0, (2.9)

have no positive solutions, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1), say x(t) > 0, x(σ(t)) > 0, x(τ(t)) >
0, and x(ω(t)) > 0 for t ≥ t1 for some t1 ≥ t0. If the solution x(t) is eventually negative
the proof is similar, so we omit the details here as well as in other proofs in the paper.
Then, for t ≥ t1, it follows from (1.1) that(

a(t)
(
y′′(t)

)α)′ = q(t)xγ(τ(t)) + c(t)xλ(ω(t)) > 0, (2.10)

hence a(t) (y′′(t))α is increasing and eventually does not change its sign, say on [t2, ∞)
for some t2 ≥ t1. Therefore, y′′(t) eventually has a fixed sign on [t2, ∞), and so we shall
distinguish the following four cases:

(I) y(t) > 0 and y′′(t) < 0, (II) y(t) > 0 and y′′(t) > 0,

(III) y(t) < 0 and y′′(t) > 0, (IV) y(t) < 0 and y′′(t) < 0.

First, we consider the cases where y(t) > 0 for t ≥ t2, i.e., Cases (I) and (II). Clearly
we see that y′(t) > 0 for t ≥ t2. Next, from the definition of y(t), we get

x(t) = y(t) −
[
p(t)x(σ(t)) − p2(t)xδ(σ(t))

]
−
[
p1(t)xβ(σ(t)) − p(t)x(σ(t))

]
. (2.11)

Applying (2.2) to
[
p(t)x(σ(t)) − p2(t)xδ(σ(t))

]
with

φ = δ > 1, X = p
1/δ
2 (t)x(σ(t)), and Y =

(1
δ

p(t)p−1/δ
2 (t)

)1/(δ−1)
,

we see that[
p(t)x(σ(t)) − p2(t)xδ(σ(t))

]
≤ (δ − 1)δδ/(1−δ)pδ/(δ−1)(t)p1/(1−δ)

2 (t) := g1(t). (2.12)
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Applying (2.3) to
[
p1(t)xβ(σ(t)) − p(t)x(σ(t))

]
with

φ = β < 1, X = p
1/β
1 (t)x(σ(t)), and Y =

( 1
β

p(t)p−1/β
1 (t)

)1/(β−1)
,

we obtain[
p1(t)xβ(σ(t)) − p(t)x(σ(t))

]
≤ (1 − β)ββ/(1−β)pβ/(β−1)(t)p1/(1−β)

1 (t) := g2(t). (2.13)

Using (2.12) and (2.13) in (2.11) gives

x(t) ≥
[
1 − g1(t) + g2(t)

y(t)

]
y(t) for t ≥ t2. (2.14)

Since y(t) is positive and increasing on [t2, ∞), there exist a t3 ≥ t2 and a constant c1 > 0
such that y(t) ≥ c1 for t ≥ t3, and so, inequality (2.14) can be written as

x(t) ≥
[
1 − g1(t) + g2(t)

c1

]
y(t) for t ≥ t3.

Now, in view of (2.4), for any κ ∈ (0, 1) there exists tκ ≥ t3 such that
x(t) ≥ κy(t) for t ≥ tκ. (2.15)

Choose κ ∈ (0, 1) and select tκ so (2.15) holds. Since limt→∞ τ(t) = limt→∞ ω(t) = ∞, we
can find t5 ≥ tκ such that τ(t) ≥ tκ and ω(t) ≥ tκ for t ≥ t5. Now (2.15) implies

x(τ(t)) ≥ κy(τ(t)) and x(ω(t)) ≥ κy(ω(t)) for t ≥ t5. (2.16)
Using (2.16) in (2.10) yields(

a(t)
(
y′′(t)

)α)′ ≥ κγq(t)yγ(τ(t)) + κλc(t)yλ(ω(t)) for t ≥ t5. (2.17)
We now consider Case (I). From (2.17) we obtain(

a(t)
(
y′′(t)

)α)′ ≥ κγq(t)yγ(τ(t)) for t ≥ t5. (2.18)
Since y′(t) > 0 and y′′(t) < 0 for t ≥ t5, for v ≥ u ≥ t5, we may write

y′(u) − y′(v) = −
∫ v

u
a−1/α(s)

(
a(s)

(
y′′(s)

)α)1/α
ds ≥ A(v, u)

(
a(v)

(
−y′′(v)

)α)1/α
.

Letting u = τ(t) and v = ξ(t) in the last inequality, we see that

y′(τ(t)) ≥ A(ξ(t), τ(t))
(
a(ξ(t))

(
−y′′(ξ(t))

)α)1/α
. (2.19)

In view of the fact that y(t) > 0, y′(t) > 0 and y′′(t) < 0 on [t5, ∞), there exist a constant
θ ∈ (0, 1) such that

y(t) = y(t5) +
∫ t

t5
y′(s)ds ≥ (t − t5)y′(t) ≥ θty′(t),

and so, we obtain
y(τ(t)) ≥ θτ(t)y′(τ(t)) for t ≥ t6 (2.20)

for some t6 ≥ t5. Using (2.19) in (2.20) yields

y(τ(t)) ≥ θτ(t)A(ξ(t), τ(t))
(
a(ξ(t))

(
−y′′(ξ(t))

)α)1/α for t ≥ t6. (2.21)
Letting Y (t) = a(t) (−y′′(t))α > 0, we see from (2.18) and (2.21) that Y (t) is a positive
solution of the first-order delay differential inequality

Y ′(t) + (κθ)γq(t) [τ(t)A(ξ(t), τ(t))]γ Y γ/α(ξ(t)) ≤ 0, (2.22)
which contradicts assumption (2.6).

If Case (II) holds, then from (2.17) we have(
a(t)

(
y′′(t)

)α)′ ≥ κλc(t)yλ(ω(t)) for t ≥ t5. (2.23)
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Integrating (2.23) from µ(t) to t, we see that

a(t)
(
y′′(t)

)α ≥ κλ
∫ t

µ(t)
c(s)yλ(ω(s))ds ≥ κλyλ(ω(µ(t)))

∫ t

µ(t)
c(s)ds,

from which we get

y′′(t) ≥ κλ/αyλ/α(ω(µ(t)))a−1/α(t)
(∫ t

µ(t)
c(s)ds

)1/α

. (2.24)

Integrating (2.24) from µ(t) to t yields

y′(t) ≥ κλ/αyλ/α(ρ(t))
∫ t

µ(t)
a−1/α(u)

(∫ u

µ(u)
c(s)ds

)1/α

du.

Thus, y(t) is a positive solution of the advanced differential inequality of the first order

y′(t) − κλ/α

∫ t

µ(t)
a−1/α(u)

(∫ u

µ(u)
c(s)ds

)1/α

du

 yλ/α(ρ(t)) ≥ 0, (2.25)

which contradicts assumption (2.7).
Next, we consider the cases where y(t) < 0 for t ≥ t2, i.e., Cases (III) and (IV). Letting

z(t) = −y(t) > 0, from the definition of y(t) we see that

z(t) = −y(t) = −x(t) − p1(t)xβ(σ(t)) + p2(t)xδ(σ(t)) ≤ p2(t)xδ(σ(t)),
from which we obtain

x(σ(t)) ≥
(

z(t)
p2(t)

)1/δ

,

or

x(t) ≥
(

z(σ−1(t))
p2(σ−1(t))

)1/δ

for t ≥ t2. (2.26)

Using (2.26) in (2.10), we see that(
a(t)

(
−z′′(t)

)α)′ ≥ Q(t)zγ/δ(h(t)) for t ≥ t3 (2.27)
for some t3 ≥ t2. Now, we consider Case (III). Letting z(t) = −y(t) > 0 for t ≥ t3, we see
that z′′(t) = −y′′(t) < 0 for t ≥ t3. This is impossible since if y′′(t) ≥ 0, then (2.10) and
condition (1.2) would imply that y is eventually positive.

Finally, we consider case (IV). Now z′′(t) = −y′′(t) > 0 for t ≥ t3 ≥ t2, so we distinguish
the two cases:

(i) z(t) > 0, z′(t) > 0, and z′′(t) > 0,
(ii) z(t) > 0, z′(t) < 0, and z′′(t) > 0.

For case (i), from (2.27), we obtain

z′(t) = z′(t3) +
∫ t

t3
a−1/α(s)

(
a(s)

(
z′′(s)

)α)1/α
ds ≥ A(t, t3)

(
a(t)

(
z′′(t)

)α)1/α
. (2.28)

Integrating (2.28) from t3 to t, we get

z(t) ≥
(∫ t

t3
A(s, t3)ds

) (
a(t)

(
z′′(t)

)α)1/α
. (2.29)

Using (2.29) in (2.27) and taking W (t) = a(t) (z′′(t))α, we see that W (t) is a positive
solution of the first-order delay differential inequality

W ′(t) + Q(t)
(∫ h(t)

t3
A(s, t3)ds

)γ/δ

W γ/αδ(h(t)) ≤ 0, (2.30)

which contradicts assumption (2.8).
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We are now left with case (ii). For v ≥ u ≥ t3, we see that
z(u) − z(v) ≥ (v − u)(−z′(v)).

Letting u = h(t) and v = ξ(t) in the last inequality, we obtain
z(h(t)) ≥ (ξ(t) − h(t))(−z′(ξ(t))). (2.31)

In view of (ii) and (2.27), we see that

−z′(u) ≥ z′(v) − z′(u) =
∫ v

u
a−1/α(s)

(
a(s)

(
z′′(s)

)α)1/α
ds

≥ A(v, u)
(
a(v)

(
z′′(v)

)α)1/α
. (2.32)

Setting u = ξ(t) and v = η(t) in (2.32) gives

− z′(ξ(t)) ≥ A(η(t), ξ(t))
(
a(η(t))

(
z′′(η(t))

)α)1/α
. (2.33)

Using (2.33) in (2.31) yields

z(h(t)) ≥ (ξ(t) − h(t))A(η(t), ξ(t))
(
a(η(t))

(
z′′(η(t))

)α)1/α
. (2.34)

Using (2.34) in (2.27) and taking X(t) = a(t) (z′′(t))α, we see that X(t) is a positive
solution of the delay differential inequality

X ′(t) + Q(t) [(ξ(t) − h(t))A(η(t), ξ(t))]γ/δ Xγ/αδ(η(t)) ≤ 0, (2.35)
which contradicts assumption (2.9) and completes the proof of the theorem. �

Next, we let

Q∗(t) = min

Q(t)
(∫ h(t)

t0
A(s, t0)ds

)γ/δ

, Q(t) [(ξ(t) − h(t))A(η(t), ξ(t))]γ/δ

 .

Then it is easy to see that Theorem 2.2 takes the following form.

Theorem 2.3. Let conditions (C1)–(C4), (1.2), and (2.1) hold and assume that there exist
a function p ∈ C ([t0, ∞), (0, ∞)) and nondecreasing functions µ, ξ, η ∈ C ([t0, ∞),R) such
that (2.4) and (2.5) hold. If for all constants κ0, κ1 ∈ (0, 1) the first-order differential
inequalities (2.6)–(2.7) and the first-order delay differential inequality

Z ′(t) + Q∗(t)Zγ/αδ(η(t)) ≤ 0
have no positive solutions, then equation (1.1) is oscillatory.

Proof. The proof is straightforward and so is omitted. �
The following oscillation result is a consequence of Theorem 2.2.

Corollary 2.4. Let conditions (C1)–(C4), (1.2), and (2.1) hold. Assume that there exist a
function p ∈ C ([t0, ∞), (0, ∞)) and nondecreasing functions µ, ξ, η ∈ C ([t0, ∞),R) such
that (2.4) and (2.5) hold. If∫ ∞

t0
q(s) [τ(s)A(ξ(s), τ(s))]γ ds = ∞, for γ < α, (2.36)

∫ ∞

t0

∫ v

µ(v)
a−1/α(u)

(∫ u

µ(u)
c(s)ds

)1/α

du

 dv = ∞, for λ > α, (2.37)

∫ ∞

t0
Q(u)

(∫ h(u)

t0
A(s, t0)ds

)γ/δ

du = ∞, for γ < αδ, (2.38)

and ∫ ∞

t0
Q(s) [(ξ(s) − h(s))A(η(s), ξ(s))]γ/δ ds = ∞, for γ < αδ, (2.39)
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then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(σ(t)) > 0,
x(τ(t)) > 0, and x(ω(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Proceeding as in the proof of
Theorem 2.2, we again arrive at (2.22) for t ≥ t6, (2.25) for t ≥ t5, (2.30) for t ≥ t3, and
(2.35) for t ≥ t3, respectively. Using the fact that Y (t) = a(t) (−y′′(t))α is positive and
decreasing, and noting that ξ(t) ≤ t, we have

Y (ξ(t)) ≥ Y (t),

and so, inequality (2.22) can be written as

Y ′(t) + (κθ)γq(t) [τ(t)A(ξ(t), τ(t))]γ Y γ/α(t) ≤ 0,

or
Y ′(t)

Y γ/α(t)
+ (κθ)γq(t) [τ(t)A(ξ(t), τ(t))]γ ≤ 0 for t ≥ t6. (2.40)

An integration of (2.40) from t6 to ∞ gives∫ ∞

t6
q(s) [τ(s)A(ξ(s), τ(s))]γ ds ≤ 1

(κθ)γ

Y 1− γ
α (t6)

1 − γ
α

< ∞,

which contradicts (2.36). Using the similar arguments as in the above, the remainder of
proof follows from the fact that h(t) ≤ t, η(t) ≤ t, ρ(t) > t, and inequalities (2.25), (2.30),
and (2.35); we omit the details. �

3. Oscillation of (1.1) for β < δ ≤ 1
This section is devoted to the oscillatory behavior of solutions of equation (1.1) in the

case where the exponents in the neutral term satisfy

β < δ ≤ 1. (3.1)

In order to obtain our results in this section, we do not need the existence of the functions
p, g1, or g2 utilized in the previous section. We should also note that the results obtained
in this section can be applied to the cases where δ = 1 and δ < 1. We begin with the
following lemma.

Lemma 3.1 (Young’s inequality). Let X and Y be nonnegative, n > 1, and 1
n + 1

m = 1.
Then

XY ≤ 1
n

Xn + 1
m

Y m, (3.2)

where equality holds if and only if Y = Xn−1.

For notational purposes; we let

P (t) =
(

δ − β

β

)[
β

δ
p1(t)

]δ/(δ−β)
p

β/(β−δ)
2 .

Theorem 3.2. Let conditions (C1)–(C4), (1.2), and (3.1) hold. Assume that there exist
nondecreasing functions µ, ξ, η ∈ C ([t0, ∞),R) such that (2.5) holds and

lim
t→∞

P (t) = 0. (3.3)

If for all constants κ0, κ1 ∈ (0, 1) the first-order differential inequalities (2.6)–(2.9) have
no positive solutions, then equation (1.1) is oscillatory.
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Proof. Again let x(t) be a nonoscillatory solution of equation (1.1) with x(t) > 0,
x(σ(t)) > 0, x(τ(t)) > 0, and x(ω(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, as in
the proof of Theorem 2.2, (2.10) holds, and so again we have the following four cases to
consider for t ≥ t2 for some t2 ≥ t1:

(I) y(t) > 0 and y′′(t) < 0, (II) y(t) > 0 and y′′(t) > 0,

(III) y(t) < 0 and y′′(t) > 0, (IV) y(t) < 0 and y′′(t) < 0.

First, consider the cases where y(t) > 0 for t ≥ t2, i.e., Cases (I) and (II). Clearly we see
that y′(t) > 0 for t ≥ t2. From the definition of y(t), we have

x(t) = y(t) −
[
p1(t)xβ(σ(t)) − p2(t)xδ(σ(t))

]
. (3.4)

Applying (3.2) to
[
p1(t)xβ(σ(t)) − p2(t)xδ(σ(t))

]
with

n = δ

β
> 1, X = xβ(σ(t)), Y = β

δ

p1(t)
p2(t)

, and m = δ

δ − β
,

we see that[
p1(t)xβ(σ(t)) − p2(t)xδ(σ(t))

]
= δ

β
p2(t)

[
xβ(σ(t))β

δ

p1(t)
p2(t)

− β

δ

(
xβ(σ(t))

)δ/β
]

= δ

β
p2(t)

[
XY − 1

n
Xn
]

≤ δ

β
p2(t)

( 1
m

Y m
)

=
(

δ − β

β

)[
β

δ
p1(t)

]δ/(δ−β)
p

β/(β−δ)
2 = P (t). (3.5)

Using (3.5) in (3.4), we obtain

x(t) ≥
(

1 − P (t)
y(t)

)
y(t). (3.6)

Since y(t) is positive and increasing on [t2, ∞), there exist a t3 ≥ t2 and a constant c2 > 0
such that y(t) ≥ c2 for t ≥ t3, and so, inequality (3.6) can be written as

x(t) ≥
[
1 − P (t)

c2

]
y(t) for t ≥ t3. (3.7)

Now, in view of (3.3), for any κ ∈ (0, 1) there exists tκ ≥ t3 such that
x(t) ≥ κy(t) for t ≥ tκ. (3.8)

Fix κ ∈ (0, 1) and choose tκ by (3.8). Since limt→∞ τ(t) = limt→∞ ω(t) = ∞, we can
choose t5 ≥ tκ such that τ(t) ≥ tκ and ω(t) ≥ tκ for all t ≥ t5. Thus, from (3.8) we have

x(τ(t)) ≥ κy(τ(t)) and x(ω(t)) ≥ κy(ω(t)) for t ≥ t5. (3.9)
Using (3.9) in (2.10), we again arrive at (2.17). The rest of the proof is the same as that
of Theorem 2.2 and hence is omitted. �
Remark 3.3. Results analogous to those in Theorem 2.3 and Corollary 2.4 can also be
obtained in the case where β < δ ≤ 1; the details are left to the reader.

It is well known from [24] (see also [2, Lemma 2.2.9] that if

lim inf
t→∞

∫ t

ζ(t)
R(s)ds >

1
e

, (3.10)

then the first-order delay differential inequality
x′(t) + R(t)x(ζ(t)) ≤ 0 (3.11)

has no eventually positive solution, where R, ζ ∈ C([t0, ∞),R) with R(t) ≥ 0, ζ(t) ≤ t,
and limt→∞ ζ(t) = ∞.
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For ζ(t) ≥ t, and ζ ′(t) ≥ 0, we have the the following result (see [2, Lemma 2.2.10]). If

lim inf
t→∞

∫ ζ(t)

t
R(s)ds >

1
e

, (3.12)

then the first-order advanced differential inequality
x′(t) − R(t)x(ζ(t)) ≥ 0 (3.13)

has no eventually positive solution.
Thus, from Theorem 3.2, we have the following result for equation (1.1) in the case

where δ = 1.

Corollary 3.4. Let conditions (C1)–(C4), (1.2), and (3.1) hold. Assume that there exist
nondecreasing functions µ, ξ, η ∈ C ([t0, ∞),R) such that (2.5) and (3.3) hold. If

lim inf
t→∞

∫ t

ξ(t)
q(s) [τ(s)A(ξ(s), τ(s))]γ ds >

1
e

, if γ = α, (3.14)

lim inf
t→∞

∫ ρ(t)

t

∫ v

µ(v)
a−1/α(u)

(∫ u

µ(u)
c(s)ds

)1/α

du

 dv >
1
e

, if λ = α, (3.15)

lim inf
t→∞

∫ t

h(t)
Q(u)

(∫ h(u)

t0
A(s, t0)ds

)γ/δ

du >
1
e

, if γ = αδ, (3.16)

and
lim inf

t→∞

∫ t

η(t)
Q(s) [(ξ(s) − h(s))A(η(s), ξ(s))]γ/δ ds >

1
e

, if γ = αδ, (3.17)

then equation (1.1) is oscillatory.

Proof. From (3.14), we can choose a positive constant κ0 with 0 < κ0 < 1 such that

lim inf
t→∞

κ0

∫ t

ξ(t)
q(s) [τ(s)A(ξ(s), τ(s))]γ ds >

1
e

. (3.18)

Now, in view of (3.10)–(3.11), inequality (3.18) ensures that inequality (2.6) has no positive
solutions in the case where γ = α. Again, in view of (3.10)–(3.11), inequalities (3.16) and
(3.17) ensure that inequalities (2.8) and (2.9) have no positive solutions in case γ = αδ,
respectively. In view of (3.12)–(3.13), inequality (3.15) ensures that inequality (2.7) has no
positive solutions if λ = α. So, by Theorem 3.2, the conclusion of Corollary 3.4 holds. �

To illustrate our results, we have the following example.

Example 3.5. Consider the equation(
ty′′(t)

)′ = (1 + t3)x1/3(t/8) + (2t)xλ(12t), t ≥ 1, (3.19)
with

y(t) = x(t) + 1
t
x1/3(t/2) − tx3(t/2).

Here we have α = 1, γ = 1/3, β = 1/3, δ = 3, λ > 1 is the ratio of positive odd integers,
τ(t) = t/8, σ(t) = t/2, ω(t) = 12t, a(t) = t, q(t) = 1 + t3, c(t) = 2t, p1(t) = 1/t and
p2(t) = t. Then, it is easy to see that conditions (C1)–(C3) and (1.2) hold. Letting
p(t) = 1, we see that condition (2.4) holds. Letting ξ(t) = t/3, η(t) = t/2 and µ(t) = t/2,
we see that ρ(t) = 3t, and (2.5) holds with h(t) = σ−1(τ(t)) = t/4. Since

A(t, t0) = A(t, 1) =
∫ t

1

ds

s
= ln t,

A(ξ(t), τ(t)) = ln 8
3

, and A(η(t), ξ(t)) = ln 3
2

,
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we see that∫ ∞

t0
q(s) [τ(s)A(ξ(s), τ(s))]γ ds = (ln 8/3)1/3

2

∫ ∞

1
(1 + s3)s1/3ds = ∞,

∫ ∞

t0
Q(u)

(∫ h(u)

t0
A(s, t0)ds

)γ/δ

du =
∫ ∞

1

41/9(1 + u3)
u1/9

(
u

4
ln u

4
− u

4
+ 1

)1/9
du = ∞,

and ∫ ∞

t0
Q(s) [(ξ(s) − h(s))A(η(s), ξ(s))]γ/δ ds = (ln 3/2)1/9

31/9

∫ ∞

1
(1 + s3)ds = ∞,

i.e., conditions (2.36), (2.38) and (2.39) hold. Since∫ ∞

t0

∫ v

µ(v)
a−1/α(u)

(∫ u

µ(u)
c(s)ds

)1/α

du

 dv = 9
32

∫ ∞

1
v2dv = ∞,

condition (2.37) holds. Thus, by Corollary 2.4, equation (3.19) is oscillatory.

Remark 3.6. It would be of interest to extend the results here to the higher-order non-
linear differential equations with mixed neutral terms of the form(

a(t)
(
y(n−1)(t)

)α)′
= q(t)xγ(τ(t)) + c(t)xµ(ω(t)),

or (
a(t)

(
y

′′(t)
)α)(n−2)

= q(t)xγ(τ(t)) + c(t)xµ(ω(t)),
where n ≥ 3 is an odd positive integer, and the functions a, c, q, and y are as in this
paper.

4. Conclusions
In this paper the authors have obtained some new results on the oscillation of all

solutions of a third order neutral differential equation in which the neutral term involves
both positive and negative parts with a delay. The right hand side of the equation contains
both advanced and delayed arguments, so the equation studied is quite general.

The results are obtained by comparing the equation under discussion to some first order
differential inequalities whose asymptotic behavior is known. It would be of interest in
future work to try to extend the results here to equations of fourth and higher orders such
as those studied in [6–9].
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