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ABSTRACT

A planar kinematic chain consists of n links connected by joints. In this work we investigate the
space of configurations, described in terms of joint angles, that guarantee that the kinematic chain
is closed. We give explicit formulas expressing the joint angles that guarantee closedness by a
new set of parameters. Moreover, it turns out that these parameters are contained in a domain
that possesses a simple structure. We expect that the new insight can be applied for several issues
such as motion planning for closed kinematic chains or singularity analysis of their configuration
spaces. In order to demonstrate practicality of the new method we present numerical examples.
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1. Introduction

In this work we investigate the configuration space of closed planar kinematic chain (CKC) with n links
connected by revolute joints in terms of its joint angles. In many fields like robotics computational biology
or protein kinematics it is of immense interest to understand the configuration space of a CKC. For instance,
in robotics the problem to connect a start, αs, and goal configuration, αg naturally appears and thus requires
knowledge of the configuration space, which is typically a manifold or variety in the ambient space formed
by the robots joint variables. The configuration space is even more complicated if additional constraints like
obstacle, link-link avoidance, or limited joint angles are included. Two main strategies, probabilistic and
geometric approaches, to investigate configuration spaces have been developed so far.

Probabilistic methods have been successfully applied for constrained motion planning. They are especially
important in practical situations with high dimensions that include complex constraints such as obstacle
avoiding. Typically these methods are based on the generation of random configurations in ambient joint
space followed by a check up if they approximately satisfy the desired constrains. Repeating this procedure
results in a discrete version of the configuration space that is very useful in applications. Probabilistic methods
have been applied in different situations, which can be found in [1, 4, 13, 6, 7, 18, 17],

Besides the approaches using randomness other works focused on questions about the geometry and topology
of the configuration spaces of kinematic chains. Insight about the global geometry of configuration spaces
is very important in applications. Early discoveries have been made by [14, 3]. In their fundamental work
Kapovitch and Milgram established important results about the geometry, which led to novel path planning
algorithms. For instance in [11, 12] it is used that the configuration space of a CKC consists of two connected
components when it possess three long links. An application of this result is that path planning can be done
easily for this special kind of CKC’s. Also for the more difficult case, when CKC’s do not have three long links
algorithms were derived in [11, 12]. They also developed path planners in the case of p point obstacles in the
plane [15]. Another geometric approach was recently recognized by Han, Rudolph and Blumenthal. They
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discovered that it is very beneficial to describe the configuration space of CKC by different parameters than
the joint angles, see [8, 10, 9]. Their idea is to use the length of diagonals from the positions of revolute joints to
the origin O as depicted on the right side of Figure 2. It turns out that for a CKC the length of these diagonals
can be computed as solution of a system of linear inequalities, which means that all feasible diagonal lengths
can be described by a convex polyhedron that can be handled by methods of linear programming [16]. Given
feasible diagonal lengths, several configurations of the CKC can be constructed, since each link of the chain
can be flipped over a diagonal. Thus in [8, 10] any configuration can be obtained from a set of diagonals and a
vector that represents the choices of flipping, which shows that the configuration space is formed by several
copies of the polyhedron given by the system of inequalities. This practically convex structure is very useful
for motion planning. In [9, 10] paths between CKC with 1000 links are computed very efficiently.

Contribution of this work: We develop a new method that explicitly computes configurations of a CKC
with n links, which are described by its joint angles. Compared to other methods it does not require linear
programming to solve a system of linear inequalities like in [8, 10] nor does it rely on probabilistic principles.
More precisely, it turns out that a configuration can be computed from new parameters contained in a very
simple domain, namely a n− 3 dimensional cube. The developed method can be used to easily sample
configuration space of a CKC and thus is expected to be useful in practical applications.

Outline of this text: In section 2 we give a mathematical description of a CKC and its configuration space.
Then the basic algorithm that explicitly describes how configurations of a CKC can be computed is developed
in section 2. In section 3.1 we describe the set of new parameters and show how they can be used to compute
a vector of joint angles of a CKC. Finally, we give numerical examples that show the validity of the developed
method.

2. Configuration space

To describe the configuration space of a CKC with link lengths a1, . . . , an we introduce Cartesian coordinates in
two dimensional Euclidean space. Moreover we place one of the links of the CKC so that it is supported by the
positive x-axis and so that one of its ends coincides with the origin. Without loss of generality we can assume
that the link an of the chain is fixed in the described manner, see Figure 1. In the following, we identify an angle
α with its corresponding point on S1. Further, for 1 ≤ k ≤ n and a vector of angles αk := (α1, . . . , αk) ∈

(
S1
)k

we denote by

fa,k :
(
S1
)k → R2, fa,k(αk) =

k∑
j=1

aj

(
cos(αj)
sin(αj)

)
. (2.1)

the k-th endpoint map of a kinematic chain, where a = (a1, . . . , an) is the vector of link lengths. We will call
αn−1 a configuration of the CKC with link lengths a1, . . . , an if it satisfies the closure condition, which means
that it is contained in the set

Conv
a =

{
αn−1 ∈

(
S1
)n−1

: fa,n−1
(
αn−1

)
=

(
an
0

)}
= f−1a,n−1 (an, 0) . (2.2)

If no restrictions on the endpoint map are imposed αn−1 will just be called a configuration of the kinematic
chain (KC) with n− 1 links.
Furthermore, the analysis in this work uses the simple observation that it is sufficient to understand the space

CConva =
{
βn−1 ∈

(
S1
)n−1

: ‖fa,n−1
(
βn−1

)
‖22 = a2n

}
, (2.3)

in order to describe Ca, where ‖ · ‖2 denotes the Euclidean norm. From the definition of CConva it is clear that
any configuration βn−1 ∈ CConva satisfies that its endpoint

fa,n−1
(
βn−1

)
∈ Kan

lies on the circle Kan that is centred on the origin and has radius an. We will say that βn−1 is closed up to a
rotation and call it a circular configuration of a CKC. Clearly, any circular configuration βn−1 can be rotated by
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Figure 1. A CKC with n = 5 five links. The link a5 is supported on the positive x-axis and one of its ends coincides with the origin

an angle λ,

βn−1 + λ := (β1 + λ, . . . , βn−1 + λ) ,

so that βn−1 + λ ∈ Ca. Thus, if we are able to give an efficient method to compute the set of solutions to the
implicit equation

‖fa,n−1
(
βn−1

)
‖22 = a2n, (2.4)

we also obtain configurations in Ca by the following two step algorithm:

(i) Compute a circular configuration βn−1 ∈ CConva

(ii) Determine λ such that αn−1 = βn−1 + λ ∈ Conv
a

Once a circular configuration is obtained step (ii) is a rather simple task. Therefore, in the following we will
focus on the solution of step (i). This step is based on the fact that the trigonometric equation (2.4), which in its
expanded form is given as

n−1∑
i=1

a2i + 2

n−1∑
i<j

aiaj cos(βi − βj) = a2n, (2.5)

allows for some kind of backwards substitution, see section 2.2. By the preimage theorem we know that the set
of all circular configurations of a CKC with n links satisfying (2.5) is a manifold of dimension n− 2, whenever
a2n is a regular value of the map g

(
βn−1

)
:= ‖fa,n−1

(
βn−1

)
‖22. In all other cases the space CConva may have

singular points.

2.1. Mathematical tools and notations

Surprisingly, the trigonometric equation (2.5) can be rearranged into an equation of the same type but with one
joint angle less appearing on its left hand side. For the computations we use that a linear combination of sine
and cosine functions can be written as

a sin (x) + b cos (x) = c sin (x+ ϕ(a, b)) , (2.6)

where c =
√
a2 + b2 and ϕ (a, b) = atan2 (b, a) is the function described in Figure 2.

In order to achieve a compact presentation of the results that will follow it is important to introduce
abbreviations. For this purpose consider

an−1

n−2∑
j=1

aj cos (βn−1 − βj) +

n−2∑
i<j

aiaj cos(βi − βj) =
a2n −

∑n−1
i=1 a

2
i

2
,

www.iejgeo.com 76

http://www.iej.geo.com


G. Zangerl

P (a|b)

ϕ(a, b)

x

y

an

an−2

a
n−

1

a 1

L
(
β
n−

2
)

Figure 2. Left: The function atan2 gives the angle between the x-axis and the vector from the origin to P (a|b). Right: A circular configuration with endpoint
(an, 0). The picture shows anchored diagonals of the CKC

which is an equivalent form of (2.5) that is obtained by fixing an index to be n− 1 and rearranging the
remaining terms. Finally, using trigonometric summation formulas we arrive at

an−1 sin (βn−1)

n−2∑
j=1

aj sin (βj) + an−1 cos (βn−1)

n−2∑
j=1

aj cos (βj) +

n−2∑
i<j

aiaj cos (βi − βj) =
a2n −

∑n−1
i=1 a

2
i

2
. (2.7)

In the last expression addition formula (2.6) can be applied, which motivates the following abbreviations:

For a CKC with link lengths a1, a2, . . . , an, a circular configuration βn−1 = (β1, . . . , βn−1) and for 1 ≤ k ≤ n− 1

we denote by βn−k := (β1, . . . , βn−k) and we write Sn−k =
∑n−k

i=1 a
2
i for the sum of the squared link lengths.

Furthermore, for βn−k we abbreviate terms

X
(
βn−k

)
:=

n−k∑
i<j

aiaj cos (βi − βj) ,

Φ
(
βn−k

)
:= ϕ

(
n−k∑
j=1

aj cos (βj) ,

n−k∑
j=1

aj sin (βj)

)
,

which naturally appear, when applying formula (2.6) for equation (2.7). With this shortened notation an
important quantity for a CKC, its diagonal length, which is the distance of fa,n−k

(
βn−k

)
and the origin, can be

expressed as

L
(
βn−k

)
:=
√
Sn−k + 2X(βn−k).

Note that we assume β1 = β1 and X
(
β1
)

= 0. Finally, for computations carried out in 2.2 it is convenient to
denote by Ck := (C3, . . . , Ck) a vector with k − 2 entries for 3 ≤ k ≤ n− 1 and let Cn be the constant given by
Cn :=

(
a2n − Sn−1

)
/2, which is the right hand side of equation (2.7).

2.2. Method for the Computation of Circular Configurations

We give a new method to obtain solutions to equation (2.5). In the proof of Theorem 2.1 a procedure is
described how solutions are obtained by reducing the length of the CKC step by step. For k ≥ 1 the solution
method involves the choice of a real value Cn−k between the roots of a quadratic equation Ek(Cn−k+1)
corresponding to the value Cn−k+1, see Definition (A.1). This value Cn−k then defines again a quadratic
equation Ek(Cn−k) and a new value Cn−k+1 is chosen between its roots and so on. In order to guarantee
that this procedure is well defined, we need that all quadratic equations connected in this manner have real
solutions, which is guaranteed by Lemma A.1 in the appendix.
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In the following Theorem we will work with equation

n−1∑
i<j

aiaj cos(βi − βj) = Cn, (2.8)

which is just a rearranged form of (2.5). Also abbreviations introduced in section 2.1 appear quite naturally in
the proof of the Theorem.

Theorem 2.1 (Computation of circular configurations). Circular configurations βn−1 ∈ CConva , that is a
configuration satisfying the equation (2.8) can be obtained by the following procedure:

1. Compute a vector Cn−1 = (C3, . . . , Cn−1) with entries satisfying

C−n−k+1 ≤ Cn−k ≤ C
+
n−k+1, and Cmin

n−k ≤ Cn−k ≤ Cmax
n−k (2.9)

for 1 ≤ k ≤ n− 3, where

C±n−k+1 = Cn−k+1 + a2n−k ± an−k
√

2Cn−k+1 + Sn−k. (2.10)

and Cmin
n−k, C

max
n−k denote the maximal and minimal values that X(δn−k−1) can take on for δn−1 ∈

(
S1
)n−1.

2. For 1 ≤ k ≤ n− 2 compute βn−k according to the equation (where C2 := 0 and β1 := β1)

an−k sin
(
βn−k + Φ

(
βn−k−1

))
=

Cn−k+1 − Cn−k√
Sn−k−1 + 2Cn−k

, (2.11)

whenever the denominator of the term on the right hand side is not zero. Otherwise the angle βn−k can be chosen
arbitrarily.

Then βn−1 = (β1, . . . , βn−1) ∈ CConva .

Proof. Assume βn−1 solves equation (2.8), which due to (2.7) and the abbreviations in section 2.1 can be written
as

an−1 sin (βn−1)

n−2∑
j=1

aj sin (βj) + an−1 cos (βn−1)

n−2∑
j=1

aj cos (βj) +

X
(
βn−2

)
= Cn.

The latter equation is a linear combination of sin (βn−1) and cos (βn−1) and thus can further be simplified to

√√√√(n−2∑
j=1

aj sin (βj)

)2

+

(
n−2∑
j=1

aj cos (βj)

)2

an−1 sin
(
βn−1 + Φ

(
βn−2

))
+

X
(
βn−2

)
= Cn.

Expanding the squares shows that this is equivalent to

an−1 sin
(
βn−1 + Φ

(
βn−2

))√
Sn−2 + 2X (βn−2) +X

(
βn−2

)
= Cn,

where the square root is just given by the abbreviation L(βn−2). If L(βn−2) = 0 we have that X(βn−2) = Cn has
to be satisfied and βn−1 is an arbitrary value. Otherwise, rewriting the latter equation gives

an−1 sin
(
βn−1 + Φ

(
βn−2

))
=

Cn −X
(
βn−2

)√
Sn−2 + 2X (βn−2)

. (2.12)

Since the latter equation can be solved for βn−1 the right hand side satisfies

−an−1 ≤
Cn −X

(
βn−2

)√
Sn−2 + 2X (βn−2)

≤ an−1,
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which is the case when X
(
βn−2

)
is equal to a number Cn−1 that is contained within the roots C±n of the

quadratic equation

(Cn − C)
2 − a2n−1 (Sn−2 + 2C) = 0, (2.13)

and when Cmin ≤ Cn−1 ≤ Cmax holds. Note that the roots of the latter equation are real by lemma A.1. Thus
we have that βn−2 satisfies the equation

X
(
βn−2

)
=

n−2∑
i<j

aiaj cos (βi − βj) = Cn−1, (2.14)

which is of the same Type as (2.8). Consequently, the computations from above can be repeated and after k
times we end up with

an−k sin
(
βn−k + Φ

(
βn−k−1

))
=

Cn−k+1 −X
(
βn−k−1

)√
Sn−k−1 + 2X (βn−k−1)

.

Again, if L(βn−k) 6= 0, the latter equation can be solved for the βn−k and thus X
(
βn−k−1

)
equals a value Cn−k

that satisfies Cmin
n−k ≤ Cn−k ≤ Cmax

n−k and which is contained within the roots C±n−k+1 of the equation

(Cn−k+1 − C)
2 − a2n−k (Sn−k−1 + 2C) = 0,

given by (2.10). Thus a circular configuration βn−1 ∈ CConva defines values Cn−k satisfying the system of
inequalities (2.9). Conversely, if we have a solution to the systems of inequalities (2.9) a circular configuration
βn−1 ∈ CConva can be defined according to (2.11).

TheCn−3, which entriesCn−k are recursively obtained by the system of inequalities (2.9) form a domain in n− 3
dimensional real space. By the proof of the last Theorem it is clear that the parameters Cn−k are closely related
to the abbreviations L

(
βn−k−1

)
introduced in section 2.1. More precisely, for β ∈ CConva the term L(βn−k) is the

length of the line segment connecting the origin with the endpoint fa,n−k(βn−k), which we will call a diagonal of
a CKC according to [8], see Figure 2. In the appendix A the relation between Cn−k and the diagonals of a CKC
is explained in more detail. However, the connection between the Cn−k and the diagonals of a CKC motivates
the following definition.

Definition 2.1 (Domain of Semi-Diagonals). We will denote the set given by

SDa :=
{
Cn−1 ∈ Rn−3 : Cn−k ∈

[
C−n−k+1, C

+
n−k+1

]
, 1 ≤ k ≤ n− 3

}
(2.15)

as semi-diagonal parameters of a CKC with links a.

According to Theorem 2.1 from any Cn−3 ∈ SDa ∩Qa, where

Qa =
{
Cn−3 ∈ Rn−3 : Cmin

n−k ≤ Cn−k ≤ Cmax
n−k
}
,

circular configurations can be computed by solving (2.11). Note, that Cmax
n−k =

∑n−k
i<j aiaj and Cmin

n−k =

minβ X(βn−k−1) can be easily computed. Since the solution of (2.11) for a βn−k is not unique, an element
Cn−1 ∈ SDa ∩Qa will yield several circular configurations and we will consider all possible configurations
that can be obtained from it in section 3.2. In the following section we will further investigate the set SDa. It
will turn out, that it can be described in a very easy way, after a substitution of variables and thus also leads to
an easy description for SDa ∩Qa.

3. Further Analysis of Circular Configurations

In this section we will study the domain SDa, which naturally appears when we compute circular
configurations, in more detail. Moreover, we will have a closer look on the second step of Theorem 2.1, which
requires solving equation (2.11) for an angle βn−k.
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3.1. The domain of Semi-Diagonals

We investigate the space SDa of Semi-Diagonals further. We recall that for a CKC with n links a1, a2, . . . , an the
space SDa is defined by the tuples Cn−3, which entries satisfy the system

C−n−k+1 ≤ Cn−k ≤ C
+
n−k+1 (3.1)

of inequalities, where

C±n−k+1 = Cn−k+1 + a2n−k ± an−k
√

2Cn−k+1 + Sn−k

for 1 ≤ k ≤ n− 3. We will see that this system can be transformed into another system after a substitution of
variables, which can then be easily parametrized by a map that is defined on the n− 3 dimensional unit cube
In−3 = [−1, 1]

n−3.

Theorem 3.1. Let Cn−1 ∈ SDa and define new parameters Un−k by

Cn−k = Un−k + Cn−k+1 + a2n−k, (3.2)

for 1 ≤ k ≤ n− 3. Moreover we set Un := Cn and Un−1 = (U3, . . . , Un−1). Then the entries Un−k satisfy the new system
of inequalities

−an−k
√
Tk (Un, . . . , Un−k+1) ≤ Un−k ≤ an−k

√
Tk (Un, . . . , Un−k+1), (3.3)

where

Tk (Un, . . . , Un−k+1) = 2

k−1∑
j=1

Un−j +

k−1∑
j=0

a2n−j , for 1 ≤ k ≤ n− 3. (3.4)

Note that the first sum on the right hand side is zero in the case k = 1 and thus t1 = t1 (Un) = a2n.

Proof. We will apply (3.2) to the right hand side of system (3.1) only, since the computations for the left hand
side are analogous. If we apply (3.2) we obtain

Un−k + Cn−k+1 + a2n−k ≤ Cn−k+1 + a2n−k ± an−k
√

2Cn−k+1 + Sn−k, (3.5)

which is equivalent to

Un−k ≤ an−k
√

2Cn−k+1 + Sn−k.

If we apply the substitution (3.2) repeatedly on the right hand side we end up with

Un−k ≤ an−k

√√√√2

(
Un +

k−1∑
j=1

Un−j +

k−1∑
j=1

a2n−j

)
+ Sn−k

≤ an−k

√√√√2Un + 2

k−1∑
j=1

Un−j +

k−1∑
j=1

a2n−j + Sn−1

≤ an−k

√√√√2

k−1∑
j=1

Un−j +

k−1∑
j=0

a2n−j ,

where the expression under the square root is the abbreviation Tk (Un, . . . , Un−k+1) in (3.4).

We will denote the space of parameters Un−1 introduced in Theorem 3.1 by SDUa. It is clear that any Un−1 ∈
SDUa yields a unique Cn−1 ∈ SDa and vice versa, since (3.2) defines an affine map from Aa : SDUa → SDa. We
will further investigate the domain SDUa defined by the system of inequalities (3.3). It turns out that SDUa is
the image of a map that is defined on the unit cube, which clearly is a nice representation for the parameters
Un−k.
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Theorem 3.2. Let In−3 be the n− 3 dimensional unit cube and define the k-tuple sk := (s1, . . . , sk) for 1 ≤ k ≤ n− 3.
Then

Pa : In−3 −→ SDUa, sn−3 7→ Φa
(
sn−3

)
,

where the components of Pa are given by

Pa3
(
sn−3

)
= sn−3a3

√
Tn−3

(
Un,Pan−1 (s1) , . . . ,Pa4 (sn−4)

)
...

Pan−2
(
s2
)

= s2an−2

√
T2
(
Un,Pan−1 (s1)

)
Pan−1

(
s1
)

= s1an−1
√
T1 (Un)︸ ︷︷ ︸
an

maps the unit cube onto the space SDUa.

Proof. We have to show that Un−k := Pak
(
sn−k

)
satisfy the system of inequalities (3.3), which are equivalent to

|Un−k| ≤ an−k
√
Tk (Un, . . . , Un−k+1).

Note that the right side of this inequality does not depend on Un−k, but only on Un . . . Un−k+1. Thus plugging
in

Pan−k
(
sk
)

= skan−k

√
Tk
(
Un, . . . ,Pan−k+1 (sn−k+1)

)
we obtain ∣∣∣∣skan−k√Tk

(
Un, . . . ,Pan−k+1 (sn−k+1)

)∣∣∣∣ ≤ an−k√Tk
(
Un, . . . ,Pan−k+1 (sn−k+1)

)
,

which clearly is satisfied for sk ∈ [−1, 1]. Thus system (3.3) is satisfied. Conversely, if Un−1 ∈ SDUa values sk
for 1 ≤ k ≤ n− 3 can easily be obtained according to Theorem (3.2). Thus we have that Pa

(
In−3

)
= SDUa

We will illustrate the assertions of Theorems (3.1) and (3.2) by an example.

Example 3.1 (CKC with five links). We consider the CKC with equal links ai = 1 for 1 ≤ i ≤ 5. In this case the
inequalities defining SDUa are given by

−1 ≤U4 ≤ 1 and −
√

2U4 + 2 ≤ U3 ≤
√

2U4 + 2.

Then the map Pa : [−1, 1]
2 → SDUa is given by

s2 :=

(
s1
s2

)
7→
(

s1
s2
√

2s1 + 2

)
=

(
U4 (s1, s2)
U3 (s1, s2)

)
.

Note that Pa is injective for s1 6= −1. Parameters U3, U4 are related to C3, C4 by the map Aa given by the
equations

C4 = U4 −
1

2
and C3 = U3 + U4 +

1

2
,

which are derived from (3.5) for n = 5. In terms of the parameters s2 = (s1, s2) we have C4 = s1 − 1
2 and

C3 = s2
√

2s1 + 2 + s1 + 1
2

The map Pa gives a nice description for parameters Un−k satisfying the system of inequalities (3.3), namely
by a cube. Using the affine transform Aa we obtain a map Aa ◦ Pa : In−3 → SDa, which gives SDUa. Points
in SDUa ∩Qa can easily obtained, when restrictions Cmin

n−k ≤ Cn−k ≤ Cmax
n−k are taken into account. Further

investigations of Pa like its injectivity or its singularities are an interesting topic for future research.
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3.2. Flipping over lines through diagonals of a CKC

Given a Cn−1 ∈ SDa ∩Qa the angle βn−k is computed from

an−k sin
(
βn−k + Φ

(
βn−k−1

))
=

Cn−k+1 −X
(
βn−k−1

)√
Sn−k−1 + 2X (βn−k−1)

.

according to Theorem 2.1. Clearly, solving for βn−k is not unique. Each time we solve for βn−k we have to
choose which pre image we will take. In the following let εk = (ε2, . . . , εk) ∈ {0, 1}k−1 be a vector that contains
the information, which pre images haven been chosen. We will refer to εk as orientation vector. More precisely
we set,

β
εn−k

n−k = πεn−k + (−1)
εn−k Sn,k

(
Cn−1

)
− Φ

(
βn−k−1,ε

n−k−1
)
. (3.6)

for 1 ≤ k ≤ n− 2. Here the superscript εn−k in βεn−k

n−k indicates, which preimage is chosen according to equation
(3.6). Note, that we used the abbreviation

Sn,k
(
Cn−1

)
= arcsin

(
Cn−k+1 − Cn−k

an−k
√
Sn−k−1 + 2Cn−k

)
for Cn−1 ∈ SDa ∩Qa and the notation

βn−k,ε
n−k

=
(
β1, β

ε2
2 , . . . , β

εn−k

n−k
)
,

to indicate the choice of preimages.

Therefore, for each Cn−1 ∈ SDa ∩Qa and a ε ∈ {0, 1}n−2 we obtain a circular configuration

βn−1,ε
n−1

=
(
β1, β

ε2
2 , . . . , β

εn−1

n−1
)

by formula (3.6). Note that the angle β1 does note have a superscript since β1 is chosen arbitrarily in the last
step of (2.11) for k = n− 3. Each Cn−1 ∈ SDa ∩Qa yields 2n−2 circular configurations which corresponds to the
possible choices for the components of εn−1. There is a geometric interpretation for the value εn−k in equation
(3.6). It describes how the link an−k is flipped over the line running through the origin and f

(
βn−k−1,ε

n−k−1
)

,

when it is attached to f
(
βn−k−1,ε

n−k−1
)

, see Figure 3.2. Choosing the value εn−k corresponds to the choice of

a1

a2

a
n−k−1 a n
−
k

l

Figure 3. Choosing the value εn−k in equation (3.6) corresponds to a flipping over the diagonal l.

a triangle orientation in [10] when building up a CKC from its diagonal lengths.

4. Numerical simulations

In this section we provide numerical examples that demonstrate the validity of the methods developed in this
work. For illustrative purposes we will consider CKCs with five and six links. For CKSs with five links we will
illustrate the spaces SDa. We will compute random circular configurations for the CKCs by Theorem 2.1 and
depict them in Figures 5 and 6.
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4.1. CKCs with five and six links

First we will consider a CKC with n = 5 and n = 6 links. The domain SDa ∩Qa is depicted for two CKCs with
different link lengths in Figure 4. The black lines indicate the condition −a1a2 = Cmin

3 ≤ C3 ≤ Cmax
3 = a1a2.

The value C4 lies within
[
max

{
Cmin

4 , C−5
}
,min

{
Cmax

4 , C+
5

}]
. In the depicted cases max

{
Cmin

4 , C−5
}

= C−5 and
min

{
Cmax

4 , C+
5

}
= C+

5 holds. Figure 5 shows 10 random circular configurations for CKCs with five links.
Thereby the lengths of the last link is equal to the radius of the depicted circle. The configurations have been
obtained for the orientation vector ε4 = (ε2, ε3, ε4) = (0, 0, 0).

Figure 4. Domain SDa ∩Qa is the part of the blue area enclosed within the black lines. Left: CKC with all links equal to one. Right: CKC with link lengths
2, 2, 2, 1, 1.

Figure 5. Circular configurations of two CKCs with five links. Left: Ten random circular configurations are depicted for the CKC with link lengths equal to one.
Right: Ten random circular configurations are depicted for the CKC with link lengths 2, 2, 2, 1, 1.

Finally, we give examples for CKSs with six links. Figure 6 shows random configurations for CKCs with six
links. We consider the orientation vector ε5 = (ε2, ε3, ε4, ε5) = (0, 0, 0, 0).

5. Conclusion and future work

We have developed a new method to compute configurations in terms of joint angles of a CKC by a systematic
procedure. Our approach does not require the solution of a system of linear inequalities by linear programming
nor does it rely on probabilist methods. Numerical examples show validity of the proposed work. We expect
that the described method can be useful in tasks like motion planning for CKCs. We expect that is an interesting
line for future work to investigate the introduced map Pa : In−3 → SDUa. We expect that it enables us to use
tools from differential geometry, which may lead to further insights and applications. Moreover, it would be
interesting to investigate how special designs for CKCs are reflected in the presented computations.
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Figure 6. Circular configurations of two CKCs with six links. Left: Ten random circular configurations are depicted for the CKC with link lengths equal to one.
Right: Ten random circular configurations are depicted for the CKC with link lengths 2, 1, 2, 1, 2, 1.

A. Appendix

The following Lemma guarantees that values obtained by the procedure described in section 2.2 are indeed
real. We state the Lemma after the following definition:

Definition A.1. Furthermore, for A ∈ R let Ek(A) be the quadratic equation in the variable C corresponding to
the value A given by

(A− C)
2 − a2n−k (Sn−k−1 + 2C) = 0

and let A± be its solutions.

Lemma A.1. Let Cn−k+1 be a real number with 2Cn−k+1 + Sn−k ≥ 0, which means that the roots C±n−k+1 of the
quadratic equation Ek(Cn−k+1), given by

(Cn−k+1 − C)
2 − a2n−k (Sn−k−1 + 2C) = 0, (A.1)

are real. Choosing a value Cn−k between the roots of Ek(Cn−k+1) guarantees that equation Ek+1(Cn−k) also has real
solutions. Moreover, the roots of E1(Cn) are real.

Proof. For k = 1 we have that the roots C±n of the equation E1(Cn), given by

(Cn − C)
2 − a2n−1 (Sn−2 + 2C) = 0,

are real, since they are computed to be

C±n = Cn + a2n−1 ± an−1
√

2Cn + Sn−1

=
a2n + a2n−1

2
− Sn−2

2
± an−1

√
a2n − Sn−1 + Sn−1

=
a2n + a2n−1

2
− Sn−2

2
± an−1an.

By our assumption the roots of Ek (Cn−k+1) are real. We have to prove that the roots of equation Ek+1 (Cn−k)
corresponding to Cn−k are still real, whenever C−n−k+1 ≤ Cn−k ≤ C

+
n−k+1. This means that the roots of

(Cn−k − C)
2 − a2n−k−1 (Sn−k−2 + 2C) = 0

are real, which is the case if 2Cn−k + Sn−k−1 ≥ 0. By our assumption Cn−k is real and clearly Cn−k ≥ C−n−k+1.
Thus

2Cn−k + Sn−k−1 ≥ 2C−n−k+1 + Sn−k−1.
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The Lemma follows, if we can show that the right side of the last inequality is greater than zero. We plug in the
explicit expression

C−n−k+1 = Cn−k+1 + a2n−k − an−k
√

2Cn−k+1 + Sn−k

into the latter inequality and obtain

2
(
Cn−k+1 + a2n−k − an−k

√
2Cn−k+1 + Sn−k

)
+ Sn−k−1 ≥ 0⇔

2Cn−k+1 +
(
Sn−k−1 + a2n−k

)︸ ︷︷ ︸
=Sn−k

+a2n−k − 2an−k
√

2Cn−k+1 + Sn−k ≥ 0.

By assumption D := 2Cn−k+1 + Sn−k ≥ 0 and thus the latter inequality is satisfied since

D + a2n−k − 2an−k
√
D =

(√
D − an−k

)2
≥ 0.

As mentioned in section 2 the diagonal lengths of a CKC are closely related to the parameters Cn−k, which
justifies the naming for SDa. More precisely, in [10] it is shown that βn−1 ∈ CConva is a circular configuration if
and only its diagonal lengths satisfy the system inequalities(

L
(
βn−k

)
− an−k

)2 ≤ L (βn−k−1)2 ≤ (L (βn−k)+ an−k
)2
, (A.2)

for 1 ≤ k ≤ n− 2. Note that here L
(
β1
)

= a1 and L
(
βn−1

)
= an. Furthermore, it is reasonable here to consider

circular configurations, since the diagonal lengths of a CKC are invariant with respect to rotation around the
origin. The relation between the diagonal lengths an SDa is established by the lemma.

Lemma A.2. Let βn−1 ∈
(
S1
)n−1 be a vector of joint angles and let Cn−1 = (C3, . . . , Cn−1) be a vector, which entries

are given by

Cn−k := X
(
βn−k−1

)
(A.3)

for 1 ≤ k ≤ n− 3. Then βn−1 ∈ CConva if and only if Cn−1 ∈ SDa ∩Qa.

Proof. Assume Cn−1 ∈ SDa ∩Qa and X
(
βn−k−1

)
= Cn−k for a βn−1 ∈

(
S1
)n−1. Then, by (2.9) we have that the

inequality C−n−k+1 ≤ Cn−k is satisfied. Using the explicit expression (2.10) for C−n−k+1 and our assumption we
obtain that this is equivalent to

Cn−k+1 + a2n−k − an−kL
(
βn−k

)
≤ Cn−k. (A.4)

Multiplying this inequality by two and then adding Sn−k−1 on both sides gives

2Cn−k+1 + 2a2n−k − 2an−kL
(
βn−k

)
+ Sn−k−1 ≤ 2Cn−k + Sn−k−1 (A.5)

and therefore, since Sn−k−1 + a2n−k = Sn−k, we have that

2Cn−k+1 + Sn−k︸ ︷︷ ︸
=L(βn−k)2

+a2n−k − 2an−kL
(
βn−k

)
≤ L

(
βn−k−1

)2
.

Completing the square (
L
(
βn−k

)
− an−k

)2 ≤ L (βn−k−1)2 ,
shows that (A.4) is equivalent to the first inequality in (A.2). The second one follows from Cn−k ≤ C+

n−k+1

by analogous computations. Thus the system of inequalities (A.2) is satisfied and βn−1 ∈ CConva . Conversely,
if βn−1 ∈ CConva is a circular configuration of a CKC its diagonals satisfy inequalities (A.2). Setting Cn−k :=
X
(
βn−k−1

)
and repeating the latter estimates shows that (2.9) are satisfied and thus Cn−1 ∈ SDa ∩Qa.
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