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Abstract 

Since Dalenius (1950) provided a set of equations for the determination of the stratum 
boundaries, there has been a proliferation of attempts to obtain the optimum stratum 
boundaries, those that minimise the variance of the Horvitz-Thompson estimator of mean 
or total. In this paper, we track the progress of such methods, and ask where we are 
now and where to go from here. 
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Zümre sınırlarının seçilmesi: Bulunması zor optimumlar 

Özet 

Dalenius’un (1950) zümre sınırlarının belirlenmesi için bir denklem kümesi sağlamasının 
ardından, ortalamanın ya da toplamın Horvitz-Thompson tahminleyeninin varyansını 
minimize eden optimum zümre sınırlarını elde etmek için yapılan çalışmalar giderek 
yaygınlaşmıştır. Bu makalede, gerçekleştirilen yöntemlerin gelişimi takip edilerek şu anda 
hangi aşamada olduğumuz ve bulunduğumuz noktadan nereye gidebileceğimiz sorularına 
cevap aranmaktadır. 

Anahtar Sözcükler: Yaklaşım yöntemleri, nümerik optimizasyon, çarpıklık. 

1. Introduction 

Survey populations are often highly positively skewed where a small number of high-
valued units account for a large share of the total value, and a large number of low-
valued units account for a small share of the total. Such populations arise in business 
enterprises and agriculture, as well as in surveys of personal income and other financial 
applications. They are also natural in establishment survey populations that often have 
distributions that are skewed to the right. In populations such as these, stratification can 
lead to a substantial improvement in the precision of the sample estimators.  

  

A stratified sample design partitions a population U into L mutually exclusive groups 
called strata: 
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The population mean is  

                                                  (1)

  
                                                                                                                             

where  Xhi  is  the i
th unit in the hth stratum which contains Nh,   h = 1, 2, … L units, 
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 From each stratum a simple random sample of size nh ≤ Nh is drawn without 
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The mean of the sample selected from stratum h is  

 

            ∑
=

=
hn

i
hi

h

h x
n

x
1

1
                                   (2) 

                                                                      

where xhi is the i
th unit selected from the hth stratum. The overall stratified sample mean 

is  
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where W =Nh/N is the weight of stratum h. It is easy to show [1] that (3) is an unbiased 

estimator of the population mean , with variance 
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The objective of stratification is to choose the boundaries to minimise (4). 

Sixty years ago, Dalenius [2] showed that when the stratum boundaries kh satisfy 

 
 

             (5) 
 

 

(4) is minimized. 

However, these equations are ill adapted to practical computations because hX  and Sh 
depend on kh. To this day, they remain intractable, and researchers have had to 
concentrate on obtaining approximations to (5) or by applying iterative, computational 
algorithms to arrive at a solution that minimise the variance given in (4). 
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In the next Section 2, we look at the cumulative root frequency approximation suggested 
by Dalenius and Hodges [2], arguably the most commonly used method of stratum 
construction. After that in Section 3, we examine some of the more recent iterative 
algorithms that have been developed for stratifying skewed populations, and go on in 
Section 4 to outline our own contributions, geometric stratification and its applications. 
Finally in Section 5, we attempt to determine where we are now and where to go from 
here in our continued efforts to find that elusive set of optimum stratification bounds. 

2. Cumulative Root Frequency 

Dalenius and Hodges [2] were the first to develop an approximation to (5), the 
cumulative root frequency method of stratum construction, which for decades has been 
the main method of obtaining stratification boundaries in finite populations. The 
approximation is obtained by first dividing the frequencies of the variable into a fairly 
large number of classes M, counting the number fj of units within the interval j, 

j=1,2,…,M. Then one calculates √fj, and forms strata by joining the adjacent intervals 

into L groups (strata) in which the ∑√fj are to be equal or near equal.     

The main problem with this method is the arbitrariness in deciding the value of M. 
Cochran [3] cautions that it is advisable to have a substantial number of classes in the 
original frequency, otherwise the true optimum stratification may be missed and the 
calculation of the within-stratum boundaries becomes affected by grouping errors. Hedlin 
[4] notes that the final stratum boundaries depend on the initial choice of the number of 
classes M, and there is no theory which gives the best number of classes.  

3. Iterative Procedures 

Since survey populations are finite, optimal strata bounds could be obtained by 
considering all the possible divisions of the population associated with the number of 
strata, by calculating the variance in (4) of all the solutions, and selecting the one with 
the lowest variance.  However, the number of possible solutions increases rapidly with L 
and N, and even with the availability of today's powerful computing facilities, an 
exhaustive enumerating process would take too long; instead a good feasible solution is 
obtained by applying optimisation iterative algorithms. 

3.1. Lavallée and Hidiroglou 

The best known iterative procedure is that of Lavallée and Hidiroglou [5] who suggested 
that, when a population is skewed,  the stratification should consist of a top stratum, 
where all the  units are selected into the sample (nL = NL), and a number of take-some 

strata which are sampled (nh < Nh for h < L). The variance in (4) then becomes 
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which can be written in terms of the sample size n as  
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where c is the coefficient of variation, i.e. stst XxVc
22 /)(= . The ah=nh/n are the normalised 

sample sizes with power allocation, 
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where p is in (0,1). In order to find the optimal boundaries to minimise n, the partial 
derivatives of (7) are taken with respect to each of the kh, and equated to zero, and the 

resultant equations are solved iteratively.  Lavallée and Hidiroglou originally suggested 
that the initial values are set by taking the breaks with an equal number of elements in 
each group, and these boundaries are replaced iteratively, using a procedure suggested 
by Sethi [6], until the minimum n is obtained. 

While widely used in the US and Canada, the Lavallée and Hidiroglou algorithm is not 
without serious implementation problems and shortcomings which may lead to non-
optimal results. Detlefsen and Veum [7], who used the algorithm to analyse the US 
Census Bureau Monthly Retail Trade Survey, discovered that the minimum sample size 
attained may a local but not necessarily a global minimum, and that sometimes the 
algorithm does not converge at all. They also found that convergence is slow when the 
number of strata is large. Slanta and Krenzke [8] encountered numerical difficulties when 
using the Lavallée and Hidiroglou algorithm, as well as failure to reach the global minimal 
size, and non-convergence of the algorithm when the number of strata was large. 

3.2. Recent Developments 

The last decade has witnessed a proliferation of numerical optimisation-based iterative 
methods of stratification: 

• Kozak [9] presented a random search algorithm as a method of obtaining optimal 
boundaries so that n given in (7) is minimised under the constraints 

Nh ≥ 2     h = 1, …, L 
and 

2 ≤ nh ≤ Nh,      h = 1, …, L-1. 

Here, the nh are determined with Neyman allocation [10]: 
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At each iteration, a set of stratum boundaries is chosen at random from all the 
possible alternatives. The algorithm continues to change the boundaries as long as 
they continue to reduce n; otherwise the boundaries are not changed, and a new 
iteration is started. If the sample size does not decrease for some specified m 
consecutive iterations, the algorithm stops. 
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Kozak's algorithm returns random results.   A nonrandom version of the original  
as implemented by Baillargeon and Rivest [11], in which at each iteration of the 
algorithm, all the possible boundary modifications are tried and the modification 
giving the largest decrease in n is kept.  Obviously this approach is slower then 
the original.    

Kozak [9] tested the algorithm using data from the Polish Agricultural Census, and 
concluded that the efficiency of the random search methods was similar to that of 
the Lavallée and Hidiroglou algorithm. Baillargeon and Rivest [12] found that 
Kozak's algorithm produced better results than Lavallée and Hidiroglou. 

A weakness of Kozak's algorithm is that it may return a sample size for the top 
stratum that exceeds its size (nL > NL).  It such cases one adds a take-all stratum, 
and reruns the algorithm. Baillargeon and Rivest [11] found that for small 
populations, Kozak's algorithm often yields a local rather than global minimum. 
They argue, however that when the population is small, a complete enumeration 
of all sets of boundaries is feasible. 

• Kestinturk and Er [13] suggested that the genetic algorithm could be used to find 
the optimum stratification bounds. They implemented the algorithm on a range of 
real and simulated populations, including some Turkish manufacturing firms. 
Comparisons with the cumulative root approximation lead them to the conclusion 
that the best results are obtained when both strata boundaries and sample sizes 
are determined using the genetic algorithm. 

• Khan et al. [14] formulated the problem of finding the optimum stratification 
bounds as a mathematical programming problem and developed a solution 
procedure using dynamic programming. A numerical example using a hospital 
population data is presented to illustrate the computational details.  Comparisons 
with the cumulative root frequency approximation revealed that the proposed 
method is more efficient. 

• Brito et al. [15] suggested that an iterative local search (ILS) metaheuristic 
algorithm would obtain a good feasible solution. It is a search-based method that 
is intended to work for variables with any distribution. They implemented their 
algorithm on sixteen skewed populations; some real and some simulated, and   
showed that it produced better solutions than the random search algorithm of 
Kozak [9] in most cases. 

• Brito et al. [16] suggested an algorithm based on using minimal path in a graph, 
and claimed that it guarantees optimum stratification boundaries. They tested the 
algorithm using real data from the Brazilian Central Statistics Office, and provided 
the CPU time for the algorithm's implementation; in some cases this was nearly 
three minutes. 

All of these authors claim that their algorithms achieve optimal stratification, either by 
minimising the variance for a given sample size n or by minimising n for a given 
variance. All use finite populations, real or simulated to show that their algorithm 
outperforms one or more of the algorithms already available. All the algorithms are 
computer-intensive. It is clear however that while some algorithms improve certain 
aspects of stratification, none perform uniformly better than the others.   

4. Coefficients of Variation 

In this section we outline our own contribution to the problem of stratification of skewed 
populations. Geometric stratification [17] is based on an observation of Lavallée and 
Hidiroglou [5]: 
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“for skewed populations stratum coefficients of variation tend to be equalised with 
optimal design.” 

Some years previously Dalenius and Hodges [2] hinted at the same conjecture:  

“for many populations, and for reasonable locations of the stratum boundaries, the 
relative variance does not vary much from stratum to stratum'' 

When we investigated the consequence of this assumption, we made a curious discovery: 
setting the coefficients of variation in each stratum, i.e. 

                                           (11) 

  

produces boundaries that are in geometric progression [18]. 

4.1. Geometric Stratification 

We briefly outline the argument which leads to geometric stratification: 

Following Dalenius and Hodges [2], we assume that X is approximately uniformly 
distributed in each stratum. Uniform density of X in stratum h implies 
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With approximately equal cvh it follows that  
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which reduces to  
 
                              kh

2 = kh+1kh-1                                                                                    (16) 
 
  

and means that the stratum boundaries are the terms of a geometric progression. 
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An example given in [17] illustrates its simplicity: 

A population ranging from 5-50,000 is to be divided into 4 strata. 

 
L = 4,  k0 = 5, k4 = 50,000 

Thus  

r = (50,000/5)1/4 = 10 

and so kh = 5 . 10h which means the breaks are  

5,    50,   500,   5,000,   50,000 

Geometric stratification does not involve iteration. It overcomes the pain of optimisers, 
and is obtained in one run through of the data file.   

Initial tests by Gunning and Horgan [17] on three of the skewed populations in Cochran 
[13] and an Irish population of debtors [19] showed that it compared favourably with the 
cumulative root frequency approximation and the Lavallée and Hidiroglou algorithm for 
obtaining optimum boundaries. 

However, Gunning and Horgan [17] cautions: 

“the algorithm will of course not work for normal distributions. Also since the boundaries 
increase geometrically, it will not work with variables that have very low starting points: 
this will lead to too many small strata”. 

4.2. The Pareto Distribution 

The Pareto distribution (see [20]) with density function 

f(x) = λβλ x - λ-1      x ≥ β,  

is a skewed distribution with long tails to the right, and is commonly used to model 
skewed data. 

We showed [21] that, for Pareto distributions, geometric breaks give exactly equal 
coefficients of variation in the different strata. Specifically we proved that, in any finite 
interval (β, γ) in the range of a Pareto distribution, if the break points β= k0 < k1 < k2 … 
< kL = γ are taken in geometric progression, the successive coefficients of variation are 
equal. 

Although, these breaks failed to satisfy Dalenius's optimum conditions for minimum 
variance in (5), tests illustrated that geometric breaks for Pareto-type data yielded 
efficient results.  

4.3. Geometric Starting Points 

Most iterative procedures depend critically on their starting points for convergence; the 
final result is affected by how the initial values are chosen. Lavallée and Hidiroglou 
originally used starting points with equal numbers of units in each strata, but 
encountered convergence problems. In [22, 23] it is illustrated that the use of geometric 
breaks as starting points in the Lavallée and Hidiroglou algorithm improved its efficiency, 
and decreased the number of iterations necessary to converge. Kozak [9] recognised that 
better results would be obtained by using some classical approximation method such as 
the cumulative root frequency method of Dalenius and Hodges [2] as initial starting 
points. Subsequently Kozak and Verma [24] suggested that the geometric algorithm may 
be seen as efficient starting points for the optimization approach. 
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Geometric breaks have now become a standard method for setting initial values in an 
iterative process for stratifying skewed populations [11]. 

5. Where do we go from here? 

Geometric stratification is an antidote to the computationally-intensive numerical 
algorithms that have become available over the last decade. It is deterministic and does 
not involve iteration. It is unbelievably simple, using just two values of the population, 
the minimum and the maximum, to get the boundaries. Not surprisingly then the 
efficiency depends critically on these, and if these are too small or too large, things go 
wrong [24]. If there is a large outlier, the strata will not be optimum, because large 
values will drag the boundaries up. If the starting point is too small, there will be too 
many small strata. 

Modifications of the geometric algorithm are necessary to address: 

• Outliers; it is obvious that the geometric method will be far from optimum when 
the X variable has large outliers; in this case a take-all stratum will need to be 
considered. Kestinturk and Er [13] noticed that when the population contained a 
large outlier, the sample size allocated with Neyman allocation to the top stratum 
may exceed the total number of units in the stratum (n_L > N_L). In such cases, 
they added a take-all stratum, and applied the geometric breaks to the remaining 
set of data. This idea needs to be developed further. 

• Small starting points; Baillargeon and Rivest [11] found that the geometric 
method yielded a poor design when very small values of X were present in the 
data set. Clearly low-valued starting points will result in too many small strata; in 
this case a take-none strata should be considered. 

• Kurtosis; the geometric method uses the minimum and maximum to obtain the 
bounds. It also assumes the population is skewed. In between the minimum and 
the maximum, there are many possibilities. The kurtosis coefficient might be 
examined to establish which types of skewed populations are appropriate for 
geometric stratification, and which are not.   

 

No matter what improvements we make, however, there will still be a need for a 
stratification algorithm that is optimum irrespective of the situation (e.g. of population 
size, range or kurtosis), and that provides non-random results. 

As we have illustrated above, there has been an inundation of iterative methods 
attempting to achieve the elusive optimum set of stratification boundaries, all claiming to 
have reached the optimum, and most claiming to have improved on methods previously 
available. The authors use data usually from a local source.  For example Kozak [9] uses 
data from the Polish Agricultural Census. Kestinturk and Er [13] use Turkish data. Brito 
et.al. [15, 16] implement their algorithm on Brazilian data.   

While it is understandable that the algorithm should be applied to real data from the 
source country, simulation will not prove anything conclusively. However, if all algorithms 
were implemented on the same data set, valid comparisons of efficiency could be 
obtained. To this end, I suggest that the data bank of populations provided in the 
stratification package of Baillargeon and Rivest [11] be used as a base set. These 
include: 

• Three of the skewed populations of Cochran [3], i.e. inhabitants  of US cities in 
1940; students in four-year US colleges  in 1952-1953; resources of a large US 
commercial; 
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• A population of debtors in an Irish firm details in Horgan [19]; 

• The monthly retail trade survey and the  household budget survey of Statistics 
Canada; 

• The population of municipalities in Sweden from Sarndal et.al. [25]. 

The diversity of these populations provide a useful set on which new algorithms (and 
indeed those already in existence) may be tested and compared. 
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