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Abstract 

The best and the most direct route to world class competitiveness for the products and 
services is through variability reduction on the processes. This variability reduction 
decreases defect rates, improves yields, lowers scrap rates, expands market potential, 
reduces rework, warranty costs and the difference between customer needs and process 
performance. A critical tool in accomplishing variability reduction is the statistical design 
of experiments. The purpose of this paper is to explain the theory of design of 
experiment method and to make an improvement on a process. In the theoretical part of 
the paper, the basic principles related to quality improvement, design of experiment, and 
annealing process is explained. In the applicaton part, a quality problem in solid chain 
industry is discussed and a model proposed by experimental design method is obtained, 
and the response surface method is used to find optimum solution to the problem. In this 
article the process improvement on the solid chain production is aimed and design of 
experiment techniques is implemented to find out the affecting factors and their influence 
on the process. 

Keywords: Process improvement, design of experiment, annealing, solid chain industry. 

Tavlama prosesinin kalite iyileştirilmesi için modellenmesi 

Özet 

Ürün ve servislerin dünya çapında rekabetinde başarıya giden, en iyi ve en direk yol 
proseslerdeki değişkenliğin azaltılmasından geçer. Bu değişkenlik azaltılması; hata 
oranlarını azaltır, verimi arttırır, pazar potansiyelini genişletir, yeniden işlemeyi, garanti 
masraflarını ve müşteri ihtiyaçları ile proses performansı arasındaki farkı azaltır. 
Değişkenliğin azaltılmasının sağlanmasında kullanılan kritik bir araç, istatistiksel deney 
tasarımıdır. Bu çalışmanın amacı, deney tasarımı teorisinin açıklanarak, bir proseste 
iyileştirme yapılmasının sağlanmasıdır. Bu makalenin teorik kısmında, kalite 
iyileştirmenin, deney tasarımının ve tavlama prosesinin temel prensipleri açıklanmıştır.  

Uygulama kısmında, katı zincir endüstrisindeki bir problem tartışılmış, deney tasarımı 
yoluyla bir model elde edilmiş ve yanıt yüzeyi metodu ile de probleme optimum sonuç 
bulunması için çalışılmıştır. Bu makalede, katı zincir üretiminde proses iyileştirilmesi 
amaçlanmış olup deney tasarımı teknikleri de prosese etki eden faktörlerin bulunmasında 
kullanılmıştır. 

Anahtar Kelimeler: Proses iyileştirilmesi, deney tasarımı, tavlama işlemi, katı zincir endüstrisi. 
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1. Introduction and Literature Search 

Quality and process improvement has becoame an essential of overall strategic plan for 
most organizations.  Statistical process design is a powerfull approach to product and 
proces development and for improving the yield and stability of an ongoing 
manufacturing process.[1] 

Experimental Design (or DOE) economically maximizes information. DOE begins with 
determining the objectives of an experiment and selecting the process factors for the 
study. An Experimental Design is the laying out of a detailed experimental plan in 
advance of doing the experiment. Well chosen experimental designs maximize the 
amount of "information" that can be obtained for a given amount of experimental effort. 
[2]  

To survive and thrive in today`s globally competitive environment, your products, 
services and processes must be on target the first time, everytime. The only way to 
accomplish this is through a comprehensive quality and reliability management strategy 
that optimizes your products and services during the design and development stages and 
continuously improves them throughout their life cycle. This variability reduction 
decreases defect rates, improves yields, lowers scrap rates, reduces rework, expands 
market potential, and reduces warranty costs. A critical tool in accomplishing variability 
reduction is the statistical design of experiments. [3] 

Experimental design is a growing era of interest in an increasing number of applications. 
Initially, experimental design found application in agriculture, biology, and other areas of 
hard science. It has since spread through the engineering arenas to the social sciences of 
economics and behavioural analysis. This trend was further encouraged by the Total 
Quality Management (TQM) movement originating in the mid-1980s and continuing today 
[4]. In the history of design of experiment, works on physicology and medicine can be 
seen in the initial studies [5]. 

There have been four eras in the modern development of statistical experiment design. 
The agricultural era was led by the pioneering work of Sir Ronald A. Fisher in the 1920`s 
and early 1930s. Fisher systematically introduced statistical thinking and principles into 
designing experimental investigations, including the factorial design concept and the 
analysis of variance. Although applications of statistical design in industrial settings 
certainly began in the 1930`s, the second, or industrial era was catalyzed by the 
development of response surface methodology (RSM) by Box and Wilson in 1951. The 
increasing interest of Western industry in quality improvement that began in the late 
1970s ushered in the third era of statistical design. Taguchi advocated using design of 
experiments for what he termed robust parameter design. The work of Genichi Taguchi 
had a significant impact on expanding the interest in and use of design of experiments. 
By the late 1980s the results of peer review indicated that although Taguchi`s 
engineering concepts and objectives were well founded, there were substantial problems 
with his experimental strategy methods of data analysis. The fourth era of statistical 
design included a renewed general interest in statistical design both by researchers and 
practitioners and the development of many new and useful approaches to experimental 
problems in the industrial world including alternatives to Taguchi`s technical methods 
that allow his engineering concepts to be carried into practice efficeiently and effectively. 
[6]  

Hung, Joseph, and Meltoke [7] designed and analyzed computer experiments with 
branching and nested factors. 

Computer experiments are often performed to allow modeling of a response surface of a 
physical experiment that can be too costly or difficult to run except by using a simulator. 
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Gramacy and Lee [8] made an adaptive design and analysis of supercomputer 
experiments.  

Liao and Cha [9] worked on a two-level factorial experiments with partial replication. A 
set of sufficient conditions is presented for the designs to be D-optimal for the specified 
effects, assuming that the other effects are negligible, over the class of competing 
parallel-flats designs. The proposed partially replicated designs are highly efficient in 
estimating the possibly active effects and provide a replication-based estimate of the 
error variance, they provide a practical compromise between the power in identifying 
truly active effects and the number of runs in experiments.  

Borkowski and Piepel [10] worked on uniform designs for highly constrained mixture 
experiments. This article introduces two number-theoretic methods for generating space-
filling (specifically uniform) designs for constrained mixture experiments defined by 
single- and multiple-component constraints. The two methods are illustrated for a simple 
3-component mixture problem and a more complicated 16-component waste-glass 
mixture problem.  

Johnson, et al. [11] worked on comparing computer experiments for fitting high-order 
polynomial metamodel. Often the underlying function for a computer experiment result 
has too much curvature to be adequately modeled by a low-order polynomial. In such 
cases, finding an appropriate experimental design is not easy. They evaluated several 
computer experiments assuming the modeler is interested in fitting a high-order 
polynomial to the response data considering both optimal and space-filling designs. They 
also introduced a new class of hybrid designs that can be used for deterministic or 
stochastic simulation models.  

Meulen, Koning, and Mast [12] worked on nonrepeatable gauge R&R (repeatability and 
reproducibility) studies assuming temporal or patterned object variation. For 
nonrepeatable measurements, it is not feasible to obtain replications because objects are 
destroyed when they are measured or because the object changes over time. They show 
that the experimental design used in this type of nonrepeatable gauge R&R studies is 
best constructed in a way that is similar to a Latin square design.  

Guo, Simpson and Pignatiello debated on the construction of efficient mixed-level 
fractional factorial designs. interest has focused on developing orthogonal or near-
orthogonal mixed-level fractional factorial designs. Currently existing mixed-level designs 
are all balanced. However, relaxing the requirement of balance may result in a reduced 
number of experimental runs in practice. [13].  

Chung, Goldfarb, and Montgomery [14]   worked on optimal designs for mixture-process 
experiments with control and noise variables. Choosing an appropriate experimental 
design for this type of problem is addressed in the paper. They show how designs that 
have small prediction variance for the mean and the slope variance can be obtained. 
They also show how designs that are robust to the level of interaction between control 
and noise variables can be constructed.  

Works have been done on quality improvement and experimental design. Luciano [15] 
worked on the design, experimental tests, and performance after annealing on single 
phase 1-kVA amorphous core transformer. Kolomejtsev and Kolomejtseva [16] used 
design and experimental method of estimating limit stressed state of cast-melted 
refractory castings under crystallization and annealing. Paul, Chinoy, and  Singh [17] 
made evolving design to perfection of high frequency inverter for induction heating 
applications with a design of experiment approach. Dumond [18] used experience from 
U.S. manufacturing firms in learning from the quality improvement process. Adam and 
Everett [19] studied alternative quality improvement practices and organization 
performance. Cessna and Chidester [20] worked on productivity and quality 
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improvement in a vertical team approach. Huang, Lung, and Chih [21] examined the 
economic design of quality improvement strategy for manufacturing process. Walker and 
Hon [22] examined the key to long-term quality relationships, the supplier quality 
improvement. Hong and Hayya [23] looked for the ways of joint investment in quality 
improvement and setup reduction. Gupta [24] brought a systematic approach to process 
quality improvement. Chen and Tsou [25] calculated an optimal design for process 
quality improvement. Pang and Sink [26] developed a quality improvement taxonomy. 
Antony and Kaye [27] developed methodology for Taguchi Design of experiments for 
continuous quality improvement. Belaire and  Deacon [28] made a strategic approach to 
quality improvement using design of experiments concepts and methods. Nembhard and  
Valverde [29] integrated experimental design and statistical control for quality 
improvement. Antony, Kaye, and Frangou [30] developed a strategic methodology to the 
use of advanced statistical quality improvement techniques. Chan, Gan, and Mak [31] 
developed management procedure for design of experiments. Mazu [32] tried to improve 
the products through design of experiments. Ahire and Dreyfus [33] made an empirical 
investigation on the impact of design management and process management on quality. 
Nasser and Jawad [34] used design of experiments as effective design tools. Tong, Tsung 
and Yen [35] worked on a DMAIC (Design, Measure, Analyze, Improve, Control) 
approach to printed circuit board quality improvement. Goh, Tang, and  Xie [36] applied 
statistical design of experiments as a change agent in industry. 

2. Quality Improvement  

Quality is a predictable degree of uniformity and dependebility, at low cost and suited to 
the market. Improvement and innovation are both required if a form is to be healty in 
the future. The purpose of process improvement is to modify current methods to 
continuously reduce the difference between customer needs and process performance. 

Continuous quality improvement and cost reduction are necessarry for an organizaton’s 
health and competitive ecomomy. Quality improvement requires never ending reduction 
of variation in product and or process performance around nominal values. Society`s loss 
due to performance variation is frequently proportional to the square of the deviation of 
the performance characteristic from its nominal value. Product and prosess design can 
have a significant impact on product`s quality and cost. Performance variation can be 
reduced by expoiliting nonlineer effects between a product`s and \or process`s 
parameters and product`s desire performance characteristics. Product and\or process 
parameter settings that reduce performance variation can be identified with statistically 
design experiments. [37]  

2.1. Design of Experiment 

Factorial designs are most frequently employed in engineering and manufacturing 
experiments. In a factorial experiment, several factors are controlled at two or more 
levels, and their effects upon some response are investigated. The experimental plan 
consists of taking an observation at each of all possible combinations of levels that can 
be formed from the different factors. Each different combination of factor levels is called 
a “treatment combination”. Suppose that an experimenter is interested in investigating 
the effect of two factors, amperage (current) level and force, upon the response y, the 
measured resistivity of silicon wafers. [38]  

It is common to begin with a process model of the `black box’ type, with several discrete 
or continuous input factors that can be controlled that is, varied by the experimenter, 
and one or more measured output responses. The output responses are assumed 
continuous. Experimental data are used to derive an empirical approximation model 
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linking the outputs and inputs. These empirical models generally contain first and 
second-order terms. [2] 

In the past, one common experimental approach has been the so-called one-factor-at-a-
time approach. This experimental strategy studies the effect of first varying amperage 
levels at some constant force and then applying different force levels at some constant 
level of amperage. The two factors would thus be varied one at a time with all other 
conceivable factors held as constant as possible. The results of such an experiment are 
fragmentary in the sense that we learn about the effect of different amperage levels only 
at one force level and the effect of different force levels at only one amperage level. The 
effects of one factor are conditional on the chosen level of the second factor. The 
measured resistivity of the wafer at different current levels may, of course, be different 
when a different force level has been chosen. Similarly, any observed relation of 
resistivity to force level might be quite different at other amperage levels. In statistical 
language, there may be an “interaction effect” between the two factors over the range of 
interest, and the one-at-a-time procedure does not enable the experimenter to detect 
the interaction. [38]  

Obtaining good results from a DOE involves these seven steps [2]:  

1. Set objectives 
2. Select process variables 
3. Select an experimental design 
4. Execute the design 
5. Check that the data are consistent with the experimental assumptions 
6. Analyze and interpret the results 
7. Use/present the results (may lead to further runs or DOE's).  

In a factorial experiment, the levels of each factor are chosen, and a measurement is 
made at each of all possible combinations of levels of the factors. Suppose that five 
levels of amperage and four levels of force are chosen. There would thus be 20 possible 
combinations of amperage and force, and the factorial experiment would consist of 20 
trials. In this example, the term “level” is used in connection with quantitative factors, 
but the same term is also used when the factors are qualitative. In the analysis of 
factorial experiments, one speaks of “main effects” and “interaction effects” (or simply 
“interactions”). Estimated main effects of a given factor are always functions of the 
average yield response at the various levels of the factor. When a factor has two levels, 
the estimated main effect is the difference between the average responses at the two 
levels, i.e., the averages computed over all levels of the other factors. In the case in 
which the factor has more than two levels, there are several main effect components 
(linear, quadratic, cubic, etc.), the number of estimable main effect components being 
one less than the number of levels. Other comparisons, called treatment “contrasts,” are 
possible. If the difference in the expected response between two levels of factor A 
remains constant over the levels of factor B (except for experimental error), there is no 
interaction between [38]. 

2.2. Annealing Process 

Annealing, in metallurgy and materials science, is a heat treatment where in a material is 
altered, causing changes in its properties such as strength and hardness. It is a process 
that produces conditions by heating to above the re-crystallization temperature and 
maintaining a suitable temperature, and then cooling. Annealing is used to induce 
ductility, soften material, relieve internal stresses, refine the structure by making it 
homogeneous, and improve cold working properties. 
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In the cases of copper, steel, silver, and brass this process is performed by substantially 
heating the material (generally until glowing) for a while and allowing it to cool slowly. In 
this fashion the metal is softened and prepared for further work such as shaping, 
stamping, or forming [39].  

3. The Process and The Experimental Design 

The experimental design is done on solid golden chain production process. The golden 
chains are manufactured as bracelet and necklace. The raw materials of the chains are 
pure gold, copper, silver and zinc.  

3.1. The Process 

The metals are brought together and melted between the 900oC–1100oC and solidified as 
sticks in 8 mm diameters. In this paper the percentage of the mixture metals and 
melting heat is not discussed, the experiments are done in the next process. 

The semi finished product (work in process material) sized as 8 mm diameter is used in 
golden chain production. The sticks in 8 mm diameters are thinnered to the sizes 
changing between 0,1-1,0 mm. The thinnering process is step by step process. In order 
to have 1 mm stick, the sticks are first thinnered to the diameter 7 mm and then to the 5 
mm by the rolling press and so on. After being reached to the diameter 7 mm, to soften 
the indurated metal, it is being heated in the annealing furnaces in the 600oC–800oC. If 
the metal is not heated the thin metal can be broken. After the wire comes to the 
expected values, the annealing process is repeated in another special furnace. After the 
second annealing the wire goes to the knitting machines. To be able to have a high 
quality wire, the wire has to be in the proper condition. In the knitting process, the scrap 
rate is so high. The design of experiment is done at the latest annealing process which is 
the most important step in the quality of the wire. In the latest annealing process there 
are three factors, affecting the success. These are annealing heat, the speed of the wire 
passing through the furnace, and the ratio of the H2 and N2 gases which is given to the 
annealing atmosphere. The wire in the proper size could be annealed between the 
600oC–800oC. If the wire annealed in a low speed, it can not be shaped. If the wire 
passes through the furnace in a short time, it can not absorb the heat, and in the 
opposite it can have shape disorders. The speed changes from 100 m/min to 300 m/min. 
During the annealing process with the H2 and N2 gases NH3 is formed, which helps the 
wire surface hardness to soften and gives brightness to the surface. The H2\N2 ratio 
changes from 1-5. 

3.2. The Experimental Design 

Box Behken design is used in the experiments. There are 3 factors, which have 3 levels 
each. Five replicates are done for the experiment 

Table 1 Factor Levels of the Experiment 

  HEAT SPEED GAS RATIO 

LEVEL 1: 780 230 4 

LEVEL 2: 740 180 3 

LEVEL 3: 700 130 2 

The Box-Behnken design is an independent quadratic design that does not contain an 
embedded factorial or fractional factorial design. In this design the treatment 
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combinations are at the midpoints of edges of the process space and at the center. These 
designs are rotatable (or near rotatable) and require 3 levels of each factor. The designs 
have limited capability for orthogonal blocking compared to the central composite 
designs [2]. 

Box Behnken Design is one of the response surface methods and this design requires less 
runs. Box Behnken Design is also used for the optimization. 

3.2.1. Outputs 

After the threatments those wires are measured in the metalurgy lab. Every 
measurement consisted of 4 outputs; they are: 

Rp (yield strenght) (N/mm2) 

Rm (tensile strenght) (N/mm2) 

Rm-Rp (yield point) (N/mm2) 

Ag (breaking elongation ratio) 

The main purpose of this experimental design is to find the effect of heat, speed and gas 
rate to the outputs Rm, Rp, Rm-Rp and Ag.  

3.2.2. Box-Behnken Design  

In the Box-Behnken design 3 factors, with 3 levels, 15 runs with 5 replicates are done 
making 75 total runs. The experiments are done in 1 block. 

3.2.2.1. Response Surface Regression: rp; rm; rm-rp versus heat; speed; 
gas rate 

The analysis was done using coded units. 

Estimated Regression Coefficients for rp 

Term                    Coef  SE Coef        T      P 

Constant             317,000   1,0464  302,933  0,000 

heat                 -22,000   0,6408  -34,332  0,000 

Speed                  7,275   0,6408   11,353  0,000 

gas rate              -5,375   0,6408   -8,388  0,000 

heat*heat            -10,275   0,9432  -10,893  0,000 

Speed*Speed           -3,125   0,9432   -3,313  0,002 

gas rate*gas rate     -4,625   0,9432   -4,903  0,000 

heat*Speed            -3,800   0,9062   -4,193  0,000 

heat*gas rate          3,400   0,9062    3,752  0,000 

Speed*gas rate        -2,950   0,9062   -3,255  0,002 

 

S = 4,053   R-Sq = 96,0%   R-Sq(adj) = 95,4% 

 

Analysis of Variance for rp 

Source          DF   Seq SS   Adj SS   Adj MS        F      P 

Regression       9  25628,1  25628,1  2847,57   173,36  0,000 

  Linear         3  22632,6  22632,6  7544,22   459,30  0,000 

  Square         3   2301,4   2301,4   767,15    46,70  0,000 
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  Interaction    3    694,0    694,0   231,35    14,08  0,000 

Residual Error  65   1067,7   1067,7    16,43 

  Lack-of-Fit    3   1047,6   1047,6   349,22  1082,57  0,000 

  Pure Error    62     20,0     20,0     0,32 

Total           74  26695,8 

 

Estimated Regression Coefficients for rp using data in uncoded units 

Term                    Coef 

Constant              -2981,05 

heat                     9,04137 

Speed                    2,17850 

gas rate               -29,9050 

heat*heat               -0,00642187 

Speed*Speed             -0,00125000 

gas rate*gas rate       -4,62500 

heat*Speed              -0,00190000 

heat*gas rate            0,0850000 

Speed*gas rate          -0,0590000 

It can be seen that while heat and speed’s main effects have positive strong impacts 
(9,04137 and 2,17850), the gas rate (-29,9050) has a negative strong effect on rp. Most 
of the factor interactions have slightly negative effect on Rp. Gas rate’s second degree 
effect has stronger negative effect as compared to the other interactions 

3.2.2.2. Response Surface Regression: rm versus heat; speed; gas rate 

The analysis was done using coded units. 

Estimated Regression Coefficients for rm 

Term                    Coef  SE Coef        T      P 

Constant             507,000   0,5875  862,950  0,000 

heat                 -27,950   0,3598  -77,686  0,000 

Speed                  8,875   0,3598   24,668  0,000 

gas rate              -4,725   0,3598  -13,133  0,000 

heat*heat            -10,375   0,5296  -19,591  0,000 

Speed*Speed           -2,525   0,5296   -4,768  0,000 

gas rate*gas rate     -2,725   0,5296   -5,146  0,000 

heat*Speed            -1,700   0,5088   -3,341  0,001 

heat*gas rate          1,800   0,5088    3,538  0,001 

Speed*gas rate        -1,850   0,5088   -3,636  0,001 

 

S = 2,275   R-Sq = 99,1%   R-Sq(adj) = 99,0% 
  



Ö. A. Kasapoğlu / İstanbul Üniversitesi İşletme Fakültesi Dergisi 39, 2, (2010) 241-257 © 2010 

249 

 

Analysis of Variance for rm 

Source          DF   Seq SS   Adj SS   Adj MS        F      P 

Regression       9  37586,1  37586,1   4176,2   806,58  0,000 

  Linear         3  35291,8  35291,8  11763,9  2272,04  0,000 

  Square         3   2103,3   2103,3    701,1   135,41  0,000 

  Interaction    3    191,0    191,0     63,7    12,30  0,000 

Residual Error  65    336,5    336,5      5,2 

  Lack-of-Fit    3    315,3    315,3    105,1   307,42  0,000 

  Pure Error    62     21,2     21,2      0,3 

Total           74  37922,7 

 

Estimated Regression Coefficients for rm using data in uncoded units 

Term                         Coef 

Constant                 -2635,09 

heat                         8,91612 

Speed                        1,28110 

gas rate                   -15,0150 

heat*heat                  -0,00648437 

Speed*Speed                -0,00101000 

gas rate*gas rate          -2,72500 

heat*Speed                 -8,50000E-04 

heat*gas rate               0,0450000 

Speed*gas rate             -0,0370000 

It can be seen that while heat and speed’s main effects have positive impacts (8,91612 
and 1,28110), the gas rate (-15,0150) has a negative strong effect on rm. Most of the 
factor interactions have slightly negative effect on Rm.  

3.2.2.3. Response Surface Regression: rm-rp versus heat; speed; gas rate 

The analysis was done using coded units. 

Estimated Regression Coefficients for rm-rp 

Term                    Coef  SE Coef        T      P 

Constant             190,400   0,4994  381,270  0,000 

heat                  -6,075   0,3058  -19,865  0,000 

Speed                  1,500   0,3058    4,905  0,000 

gas rate               0,625   0,3058    2,044  0,045 

heat*heat             -0,550   0,4501   -1,222  0,226 

Speed*Speed            0,400   0,4501    0,889  0,377 

gas rate*gas rate      1,850   0,4501    4,110  0,000 

heat*Speed             1,950   0,4325    4,509  0,000 

heat*gas rate         -1,700   0,4325   -3,931  0,000 

Speed*gas rate         1,250   0,4325    2,890  0,005 
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S = 1,934   R-Sq = 88,2%   R-Sq(adj) = 86,6% 

 

Analysis of Variance for rm-rp 

Source          DF   Seq SS   Adj SS   Adj MS       F      P 

Regression       9  1820,80  1820,80  202,311   54,08  0,000 

  Linear         3  1581,85  1581,85  527,283  140,96  0,000 

  Square         3    73,85    73,85   24,616    6,58  0,001 

  Interaction    3   165,10   165,10   55,033   14,71  0,000 

Residual Error  65   243,15   243,15    3,741 

  Lack-of-Fit    3   207,95   207,95   69,317  122,09  0,000 

  Pure Error    62    35,20    35,20    0,568 

Total           74  2063,95 

 

Estimated Regression Coefficients for rm-rp using data in uncoded units 

Term                         Coef 

Constant                  178,129 

heat                        0,308875 

Speed                      -0,824100 

gas rate                   16,4750 

heat*heat                  -3,43750E-04 

Speed*Speed                 0,000160000 

gas rate*gas rate           1,85000 

heat*Speed                  0,000975000 

heat*gas rate              -0,0425000 

Speed*gas rate              0,0250000 

 

It can be seen that while heat and gas rate’s main effects have positive impacts, gas rate 
has a strong positive effect (0,308875 and 16,4750), and the speed (-0,824100) has a 
negative effect on rm-rp. Most of the factor interactions has slightly positive effect on 
rm-rp, except heat`s second degree and heat and gas rate interactions. The surface plot 
for rp can be seen in Figure 1. 
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Figure 1 Surface Plots of Rp 
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Analysis of variance for Ag, using adjusted SS for tests can be found below: 

Source         DF     Seq SS     Adj SS     Adj MS      F      P 

heat           2  0,0290117  0,0290117  0,0145059  37,92  0,000 

speed          2  0,0038086  0,0038086  0,0019043   4,98  0,008 

gaz            2  0,0061227  0,0061227  0,0030614   8,00  0,001 

heat*speed     4  0,0051412  0,0051412  0,0012853   3,36  0,012 

heat*gaz       4  0,0077230  0,0077230  0,0019308   5,05  0,001 

speed*gaz      4  0,0010702  0,0010702  0,0002675   0,70  0,594 

Error        116  0,0443802  0,0443802  0,0003826 

Total        134  0,0972576 

 

S = 0,0195599   R-Sq = 54,37%   R-Sq(adj) = 47,29% 
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Figure 2 The Normality Plots for Rm-Rp 

From the variance analysis it can be seen that with R-Sq = 96 % and   R-Sq(adj) = 95,4 
% all the factors and their interactions are significant for Rp. It is the same for Rm (R-Sq 
= 99,1%   R-Sq(adj) = 99 %) and Rm-Rp (R-Sq = 88.2,67%   R-Sq(adj) = 86.6 %). In 
Figure 2, one can find the normality plots for Rm-Rp. The measurements are not 
following a pattern. They are randomly distributed which certifies the normality, but in 
the variance analysis for Ag, R-Sq = 54,37% and R-Sq(adj) = 47,29% values are not 
acceptable, so Ag is not included in the model. 

4. Conclusion 

The optimum values of the factors can be seen in Figure 3. All the experimental designs 
and optimization are done on Minitab. The optimum value for heat is 762.5115, the 
speed is 230, and gas rate is 4.0. If the process can be set to these values, the rp takes 
the value 292,3392, rm takes the value 485,0903 and the rm-rp v takes the value 
192,5726. 

Box Behnken Design is one of the response surface methods and this design requires less 
runs. Box Behnken Design is also used for the optimization purpose. 
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Figure 3 Optimal Results of the Factors 

From the Box Behnken Design, it can be seen that while heat and speed’s main effects 
have positive strong impacts (9,04137 and 2,17850), the gas rate (-29,9050) has a 
negative strong effect on rp. Most of the factor interactions have slightly negative effect 
on Rp. Gas rate’s second degree effect has stronger negative effect as compared to the 
other interactions. 

From the Box Behnken Design, it can be seen that while heat and speed’s main effects 
have positive impacts (8,91612 and 1,28110), the gas rate (-15,0150) has a negative 
strong effect on rm. Most of the factor interactions have slightly negative effect on Rm. 
Again from the Box Behnken Design, it can be seen that while heat and gas rate’s main 
effects have positive impacts, gas rate has a strong positive effect, (0,308875 and 
16,4750), and the speed (-0,824100) has a negative effect on rm-rp. Most of the factor 
interactions has slightly positive effect on rm-rp, except heat`s second degree and heat 
and gas rate interactions. In Figure 4 to 9 one can find the main effects and interaction 
plots. The optimum results in Figure 3 are tested and 10 more experiment is done and it 
is found that the obtained mathematical model works very close to the real values. The 
results of the Rp, Rm and Rm-Rp values can be seen in Table 1. 
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Table 1 Confirmation Experiment  

Heat                            
( C ) Speed(meter/minute) 

Gas 
Ratio                     

(H2/N2) 
Result 
No Rp Rm 

Rm-
Rp 

762 230 4 

1 272 477 205 

2 270 476 206 

3 269 477 208 

4 270 476 206 

5 273 475 202 

6 273 481 208 

7 269 473 204 

8 271 475 204 

9 270 475 205 

10 270 474 204 

In this article the process improvement of the gold chain production is aimed and design 
of experiment technique is implemented to find out the affecting factors and their 
influence on the process and finally the optimum values of the factors are found. Working 
with the optimum values will increse the efficiency of the process and decrease the scrap 
rate.  
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Appendix 1: Figures 
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Figure 4 Main Effects plot for Rm 
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Figure 5 Main Effects plot for Rp 
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Figure 6 Main Effects Plot for Rm-Rp 
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Figure 7  Interaction Plot for Rm 
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Figure 8 Interaction Plot for Rp 
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Figure 9 Interaction Plot for Rm-Rp 


