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Abstract 

The cardinality minimization problem (CMP) is finding a vector with minimum cardinality, 

which satisfies certain linear (or non-linear) constraints. This problem is closely related to 

the so-called compressive sensing problems. In this paper we survey and study different 

approximation, reformulation and convex relaxations for both cardinality constraint 

problems and cardinality minimization problems, and discuss how to add a penalty 

function to the objective in order to get a reformulation/approximation model of the 

original problems, instead of simply dropping the rank constraint. By reformulation 

techniques, under some mild condition we may either transform the problem to a mixed 

integer linear program (MILP) or the so-called bilevel SDP problems. We also point out 

that a continuous approximation of cardinality functions can enable us to apply 

majorization method to extract proper weights for the (re)weighted l1 algorithms. 

Keywords: Cardinality optimization problem, l1-minimization, compressive sensing, convex 

optimization, (re)weighted l 1- minimization, Lagrangian relaxation. 

Küme eleman sayılarının (cardinality) optimizasyon problemlerine yönelik 

yakınsak,  yeniden formüle etmeli ve dışbükey teknikler 

Özet 

Küme eleman sayılarının minimizasyon problemi, belirli doğrusal (veya doğrusal 

olmayan) kısıtları karşılayan minimum küme eleman sayısını içeren bir vektör bulmakla 

ilgilidir. Problem, başınç algılama problemi olarak da anılan problemle yakından ilişkilidir. 

Bu çalışmada, küme eleman kısıt problemleri ve küme eleman sayılarının minimizasyon 

problemleri için çeşitli yakınsak, yeniden formüle etme ve dışbükey gevşetmeler yer 

almakta ve yalnızca rank kısıtını dışlamaktan çok orijinal problemin yeniden formüle 

edilmesi/yakınsanması için amaca nasıl bir ceza fonksiyonu ekleneceğini tartışılmaktadır. 

Yeniden formüle etme teknikleri ile bazı hafif koşullarda, problem, ya karma tam sayılı 

doğrusal programlama ya da iki kademeli yarı tanımlı programlama problemlerine 

dönüştürülebilir. Küme eleman sayısı fonksiyonlarının sürekli yakınsanması, l1 

algoritmalarının (yeniden) ağırlıklandırılarak uygun ağırlıklarının belirlenmesi amacıyla 

majorlaştırma yönteminin uygulanmasına izin verir.      

Anahtar Sözcükler: Küme eleman sayılarının (cardinality) optimizasyon problemi, l1-

minimizasyonu, basınçlı algılama, dışbükey optimizasyon, (yeniden) ağırlıklandırılmış l 1- 

minimizasyonu, Lagrangian gevşetme. 
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1. Introduction 

The general cardinality minimization problem (CMP) over a convex set C, and cardinality 

constraint problem can be cast repsectively as 

         Minimize {Card (x): x ∈  C},     (1) 

and 

                                    Minimize {f(x): Card (x) ≤ τ, x ∈  C},        (2) 

The set C can be also non-convex in some situations. So CMP is to maximize the number 

of zero components or equivalently to minimize the number of non-zero components of a 

vector satisfying certain constraints. In another word, CMP is looking for the sparest 

vector in a given feasible set or looking for the simplest model for describing or fitting a 

certain phenomena. The card function, card(x), can be expressed as l0 norm. While l0 is 

not a norm, we can still call it l0 ’norm’, due to the following fact. 

1

0 0
0 0

1

lim lim ( ).
n pp

i
p p

i

x Card xx x
 



 
   

 


 

l0 norm is a non-convex, non-smooth and integer valued function, and the optimization 

problems with `card' objective or constraints are known as NP-hard problems [18, 28], 

and thus CMPs are not computationally tractable in general. 

These kinds of problems have many applications in such areas as finance [22, 7, 25], 

signal processing and control [27, 16, 21], statistics and principal component analysis [9, 

29, 33, 24], compressive sensing [1, 11, 4], etc. Due to the NP-hardness of CMP, the 

aim of this paper is to survey and introduce different SDP relaxations/approximations of 

CMPs. 

This paper is organized as follows. In section 2, we consider cardinality constraint prob-

lems, and discuss SDP relaxation methods for these problems based on Shor's lemma 

and duality methods. Also we show how this problem can be cast as a bilevel SDP 

problem which was first pointed out by Y.B.Zhao [31]. In section 3, we review various 

existing methods for solving CMPs under linear constraint, and as an example of 

weighted l1 techniques we introduce a continuous approximation of cardinality function 

and then apply linearization methods (majorization minimization methods) to solve the 

problem iteratively. In section 4, we study CMPs under nonlinear non-convex constraints, 

and show how to find an approximate solution for these problems using reformulation 

techniques and Lagrangian duality methods. We also explain how the dual problem can 

be reduced to a semidefinite problem. In section 5, we discuss CMP under 0-1 vectors, 

and explain how to reformulate these problems by adding certain penalty instead of 

dropping the rank constraint. 

2. Cardinality Constraint Problems 

Let us first start with a general cardinality constraint problem. A general cardinality 

constraint problem is of the form (2) where f (x) and C are convex. Card (x) ≤ τ is not a 

convex constraint, so we try to relax this constraint using semidefinite relaxation. Before 

doing so, we first note that norms are equivalent in finite dimensional spaces in the 

following sense: Suppose µ, v are norms on Rn. Then there exist scalars a,b ≥0, such 

that ɑ x µ ≤ x v ≤ b x µ,   ∈ Rn. 

For example we have 
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x 2 ≤ x 1 ≤ n x 2. 

To be more precise note that in general case for a polytope norm defined by max |aT x|, 

i = 1, ..., n, we have 

1,...,
max

1
, 0,T TT

x i
i n

x A x Ax A xa x 
 

    ∈ Rn, 

where   is a constant. 

Proposition 1. [9] The cardinality constraint Card (x) ≤ τ can be relaxed as the 

following inequality constraint 

 11 1 ( ), 0.T

XT x

x
tr xX    

Proof. For any given vector x = ( x1…xn )
T ≠ 0 obviously we have 

2 2
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and hence 
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x x
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 

  

i.e. 

 
1 1

2 2
21

( ) .
...

n

ii

n

x x
Card x

xx x
   

 


 (3) 

Note that the cardinality of the vector x (x1, ..., xn) is equal to that of the vector x = 

(
1x , ..., nx ), so by the fact that Card( x )= Card(x) ≤ τ, we define the vector ψ = (ψ1, 

...ψn) where for every i, ψi = 1 if xi 0; otherwise ψi = 0. By Cauchy-Schwartz 

inequality, i.e., 

2

, , . , .x x x    and noting that Card(x) ≤ τ, we have 

 
2 2 2

1 1
... ...

n n
x x x x     . 

Therefore we have 

                                                       1 2
x x

                                                 
(4)  

 

In what follows, we use semidefinite relaxation methods [18]. Consider the matrix, X=xxT, 

i.e., 
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Then (4) can be written as the following convex inequality (see e.g. [9]) 

1T x  1 ≤ τtr(X), 

where x denotes the element-wise absolute value of the matrix X. While the constraint X 

= xxT is not convex, it can be relaxed to X ≥ xxT, which can be written as 

                               
1T

X x

x

 
 
 

 ≥ 0  X - 0,Txx  Rank (X) = 1. 

by applying Schur’s lemma [17, 23, 15]. The proof is complete. 

In [31], Zhao proved that under certain conditions, matrix rank minimization can be 

formulated as a linear bilevel SDP problem. This motivates the following result. 

Proposition 2. If the set C is bounded and defined by linear constraints, the complexity 

of the cardinality constrained problem (2) is equivalent to a bilevel SDP problem. 

Proof. From the proof of Proposition 1, one can rewrite the problem (2) as of the form 

Minimize  f x  

 s. t. x C  (5) 

 1 1T X tr X  

TX x x .   

Now we can write the problem (8) as the following form 

Minimize  f x  

 s. t. x C   

 
 1 1T X tr X

 
(6) 

                                                                         
1T

X x

x

 
 
 

≥ 0  

Rank ( X )=1, 

which is equivalent to the following bilevel SDP form (see [31]) 

Minimize  f x  

 s. t. x C   

                                                  ˆ1 1T X tr X  (7) 
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The proof is complete. 

The constraint Rank(X)= 1 is not convex. In order to get a reasonable approxima- 

tion/relaxization of (2), a simple idea is to drop this constraint. This leads to the following 

problem 

Minimize  f x  

                                                  s. t. x C     

 
 1 1T X tr X

 
(8)  

1T

X x

x

 
 
 

 ≥ 0,  

which can be solved more efficiently than the original problem. Dropping the rank 

constraint, however, may result in a large gap between the optimal values of the relaxed 

problem (8) and the original problem. Thus we can use the penalty method instead of 

dropping the rank constrains to obtain better approximation of the original problem. This 

idea was first proposed in [31]. This can avoid the the lower level optimization in (7), and 

yield the following reformulation of (7). 

Minimize  f x  

 s. t. x C   

  1 1T X tr X  (9) 

                                                            
1T

X x

x

 
 
 

≥ 0, 

where ξ > 0 is the penalty parameter which is chosen to be sufficiently large. 

A special case of the problem (2) can be cast as 

Minimize  f x =
1

2

T Tx Px q x  

                                              s.t. Ax  b                                           (10) 

                                            ( )Card x    

0 ,i ix s  1,..., ,i n  

where P is an n×n symmetric matrix, q ∈ Rn, A ∈ Rm×n, b ∈ Rm, and τ ∈ N+. This 

problem was studied by Zheng, Sun and Li [32]. 

As we have seen above, a common way to solve the optimization problems with a cardi- 

nality function as an objective or constraint is to relax the cardinality function. We take 

the specific example above to further demonstrate this approach. First, the problem (10) 

can be reformulated as the following mixed integer quadratic problem 
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i 

i 

Minimize  f x =
1

2

T Tx Px q x  

s.t. Ax  b , 

                                                1 , 0,1 ,
nT u u   (11) 

0 , 1,..., ,i i ix s u i n    

where 1 still denotes the vector of ones. Note that the constraint ui ∈{0, 1}, can be 

written as ui 2−ui =0. Assuming P ≥ 0, the convex relaxation of the problem above can be 

achieved by replacing ui ∈{ 0, 1} by ui ∈ [0, 1]. So it leads to the following problem (see 

Zheng, Sun and Li [32]) 

Minimize  f x =
1

2

T Tx Px q x  

s.t. Ax  b , 

                                               1 , 0,1 ,
nT u u   (12) 

0 , 1,..., ,i i ix s u i n    

Note that the constraint ui ∈ [0, 1], can be written as u2−ui ≤ 0. Obviously, the optimal 

value of the problem (12) is a lower bound for the problem (10). An SDP relaxation for 

the problem (10) can be obtained as follows: Let X = xxT, and U = uuT which can be 

relaxed to X ≥ xxT and U ≥ uuT, yielding the relaxed problem 

Minimize  f x =
1

2

T Tx Px q x  

s.t. Ax  b , 

                                               1 , 0,1 ,
nT u u   (13) 

      
0 , 1,..., ,i i ix s u i n    

            
1T

X x

x

 
 
 

 ≥ 0, 
1T

U u

u

 
 
 

 ≥ 0. 

 

Relationship between (12) and (13) was characterized by the following result. 

Proposition 4. [32] Suppose that the feasible set of the problem (12) has an interior 

point (or a relative interior point, if Ax ≤ b includes equality constraint). If P ≥ 0, then the 

optimal value of the problems (13) and (12) are equal. 



M.J. Abdi, Y. Zhao / İstanbul Üniversitesi İşletme Fakültesi Dergisi 40, 2, (2011) 124-137 © 2011 

 

130 

 

3. CMP Under Linear Constraints 

The Cardinality minimization problem (CMP) with linear constraints, i.e., 

                                            Minimize {Card (x): Ax = b},                                      (14) 

where A ∈ Rm×n is a matrix with m < n, has been widely discussed in the field of 

compressive sensing [5, 20, 26] which deals with the signal processing/recovery which 

has a wide range of applications in such areas as image processing [19]. 

The most popular approach for solving (14) (which is NP-hard in general) is to replace the 

function card (x) by its convex envelop x 1 (see e.g. [12]). Hence a relaxation of (14) is 

as follows: 

                                       Minimize { x 1: Ax = b}, (15) 

which can be also written as 

             Minimize {s: x 1 ≤ s, Ax = b}.      (16) 

Clearly (15) and (16) are linear programming problems. For instance, (16) can be 

written as the linear program 

                                                  Minimize x 1T s  (17) 

                                                   s. t. s x s    (18) 

Ax b . 

Another effective method for solving the problem (14) is to apply weighted l1 techniques 

(see e.g. [6]). As an example let us consider the following continuous approximation of 

card (x) 

           

0 0
1

( ) lim sin( ).
n

i

i

x
Card x x atan




 
   

 
  (19) 

Hence for a given small ² > 0, an approximation counterpart of (14) is given as follows 

Minimize 
1

sin( ).
n

i

i

x
atan



 
 
 

  (20) 

                                                   s. t. Ax b . (21)

   

Note that 

    

  

2 2

2 2

1
sin ) sin ) cos )

1
sin ) , , .

i i i

i i

i

i

i i

i

x y y
ata n ata n ata n x y

y

y
ata n x y x y

y

     
       

        

 
    

  
 

Using linearization techniques (majorization minimization), one obtains the following 

iterative scheme: 
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i

x
x Ax b
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where
  

2
2

1

k

ix 

 can be interpreted as the weight which forces the nonzero component 

to be zero if possible. The initial point x(0) can be chosen as the optimal solution of 

problem (15). 

Before closing this section, it is worth mentioning that sometimes we are interested in 

finding a solution with a prescribed cardinality t. Such problems can be written as the 

following feasibility problem: 

Find x  

 s. t. Ax b  (23) 

( ) .card x t  

which can be reformulated as a d.c. programming. In fact, for x ∈ Rn, the problem above 

is equivalent to the minimization of (n − t) smallest components of x. 

Now suppose St(x) is defined as the summation over the t largest components of the 

vector x ( assume that 1x ≥
2 ... )nx x   

 
1

t

t i

i

S x x


  

which clearly is a convex function. Hence the problem (23) can be reformulated as 

Minimize { x 1 -  tS x : Ax = b}.                                   (24) 

 

which is a d. c. programming problem. This problem can be solved by the cutting plane 

method, which is a usual approach for solving d. c. problems. However, linearization 

method can be still used to obtain an approximate solution for the problem. 

                   Minimize { ( x 1 -  tS x )Tx : Ax = b}.                          (25) 

This is equivalent to 

     Minimize (sign(x) − g)T x 

      s. t. Ax = b, 

 g = Maximize uT x                (26) 

s. t. u ∈ [0, 1] 

 1T u = t, 

which can be viewed as a special linear bilevel programming problem. 
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4. CMP with Nonlinear Non-Convex Constraints 

In this section, we discuss the CMP with quadratic constraints, i.e., C in (1) is of the form 

C = {x: bix
2 − aixi − ci ≤ 0}, i = 1, ..., n. 

We assume that the constraint functions are not necessarily convex, i.e., bi is not 

necessarily positive. So the problem is NP-hard. In this section, we discuss the approach 

for the relaxation and/or reformulation of such problems. 

By adding a boolean valued slack variable v = (v1, ..., vn)T to the problem, the CMP (1), 

with non-convex quadratic constraints, can be reformulated as 

 

 

 

i is.t.   v x  0        (27) 

 0,1 , 1,2,...,iv i n   

2 0, 1,2,..., ,i i i i ib x a x c i n     

A similar reformulation can be found in [8]. We now give a dual formulation of this 

problem. 

Proposition 5. The dual SDP form of the problem above can be written as the following 

SDP problem 

, , ,

( , , ) ( , , )
min ( : 0)

( , , ) ( , , )

Tc b

b A
   

      


     

 
 

 
 

where A(λ, µ, β), c(λ, µ, β), b(λ, µ, β) are defined in (30), (31). 

Proof. We make some small changes to the objective of (27) and rewrite the problem as 

follows 

1

0

T
v

Maximize
x

   
   
   

 

s.t. 0i iv x         (28) 

 0,1 , 1,2,...,iv i n   

  
2 0, 1,2,..., ,i i i i ib x a x c i n     

where 0 ∈ Rn is a column vector with all of its components zeros. The condition vi ∈ {0, 

1} can be relaxed with v2 −vi ≤ 0 which is a convex constraint, producing the following 

relaxation problem: 

1

0

T
v

Maximize
x

   
   
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1

1
n

T

i

i

Maximize v v


  
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s.t. 0i iv x          

 0,1 , 1,2,...,iv i n   

2 0, 1,2,..., ,i i i i ib x a x c i n     

where 

 1 1,..., , ,..., , 1...1 , 0...0 .
T

n n

n times n times

v
v v x x

x  

   
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Applying Lagrange duality and adding some weight vectors µ, λ, β yields 

              
 
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, 1 1 1
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Note that 
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 
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      
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      
      

      
                 

 

Setting 

( , , )A    
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1
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0 00 0 0 0
, ( , , ) .
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n n n

c
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n b c

 

 
  

 

  

    
    
    
    

     
    

    
             

                (30)
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 ( , , )b    

1 1

1 1 1

0 0 0 0

0 0 0 0

0 0 0 01
,

0 0 0 02

0 0 0 0

0 0 0 0

n n

n n

b

n b

 

 

 

 

 
 
 
 
 
 
 
  
 

    (31) 

and introducing a new variable y for (v, x), the function Lv,x(µ, λ, β) can be written as 

Ly(λ, µ, β) = yT A(λ, µ, β)y + 2b(λ, µ, β)T y + c(λ, 

µ, β). 

Assume that λ, µ, β, θ are chosen such that 

Ly(λ, µ, β) − θ ≥ 0, ∀y ∈ 

R2n, 

then θ is an upper bound for the optimal value of (27). Also from chapter 3 of [2], we 

have 

g(y) = yT Ay + 2bT y + c − θ ≥ 0 ⇔ G(y, t) = yT Ay + 2btT y + (c − 

θ)t2 ≥ 0. 

So 

 

 

 

Then looking for the best upper bound for the main problem above becomes 

, , , : 0 .
Tc b

Max
b A

   



   

  
   

 

Setting θ = −γ yields a relaxation for the original problem 

, , , : 0 ,
Tc b

Min
b A

   



   

  
   

 

which is an SDP and can be solved efficiently. 

5. CMP with 0-1 variables 

In some situations, we are interested in minimizing the cardinality of a boolean vector x ∈ 

Rn, i.e xi ∈ {0, 1}, i = 1, ..., n. So, we may consider the CMP with 0-1 variables and 

quadratic constraints: 

Minimize Card(x) 

s.t.xTBix−Aix−bi≤0,i=1...,m (32) 

x∈{0,1}, 

 , 0 0.
Tc b

G y t
b A

 
   

 
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where Bi ≥ 0, Ai is a vector with appropriate dimension, bi is a contant. This problem is 

also discussed in [13] in which the feasible set is defined by a linear system. 

Define a new variable z = 2x − 1. Hence the problem above can be reformulated as 

Minimize Card(z + 1)  

subject to 0.25(z + 1)T Bi(z + 1) − 0.5(Ai(z + 1)) − bi ≤ 0, i = 1, ..., 

m  

z ∈ {−1, 1}. 

(33) 

Now let Z = zzT . By shor’s lemma, Z = zzT is equivalent to Z ≥ zzT and rank(Z) = 1. Also 

note that tr(Z) = n. Hence the problem (33) is equivalent to the following problem. 

Minimize 1T z  

s. t. 0.25(z + 1)T Bi(z + 1) − 0.5(Ai(z + 1)) − bi ≤ 0, i = 1, ..., 

m 

Z ≥ zzT , Z ≥ 0 

 (34) 

 

(34)  T r(Z) = n, Rank(Z) = 1.  

Since z ∈ {−1, 1}, we can remove the constraint tr(Z) = n and replace it by diag(Z) = 1. 

To relax the constraint Rank(Z) = 1, one can replace the rank function by the nuclear 

norm which is certain convex relaxation of the rank function. So we get the following SDP: 

Minimize  1T z  

s.t. 0.25(z + 1)T Bi(z + 1) − 0.5(Ai(z + 1)) − bi ≤ 0, i = 1, ..., 

m 

Z ≥ zzT , Z ≥ 0 

(35) 

 Diag(Z) = 1, Z ∗ ≤ γ,  

where γ is a constant depends on the bound of Z . 

As we mentioned in the previous sections, another simple approach to construct an 

approximation of the problem (34) is using penalty function as proposed by Zhao [31]. So 

we obtain the following approximation counterpart of (34): 

 
 

Minimize 
1
T 

z + ξ Z  
∗ 

 

s.t. 
0.25(z + 1)T Bi(z + 1) − 0.5(Ai(z + 1)) − bi ≤ 0, i = 1, ..., 

m 

(36) 

 Z ≥ zzT , Z ≥ 0, Diag(Z) = 1,  
 

where ξ > 0 is the penalty parameter. 
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6. Conclusion  

We have discussed different reformulations of cardinality constraint and cardinality 

minimization problems, and how convex techniques can be used to get approximate 

counterparts of these NP-hard problems. We have demonstrated that under mild 

assumption a cardinality constraint problem can be equivalently reformulated as a bilevel 

SDP problem. This involves how the penalty method can be used to reformulate the 

problem. Several important specific cases including CMP with linear constraints, CMP with 

nonlinear non-convex constraint, and CMP with 0 − 1 vectors have been discussed. 
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