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Abstract

The cardinality minimization problem (CMP) is finding a vector with minimum cardinality,
which satisfies certain linear (or non-linear) constraints. This problem is closely related to
the so-called compressive sensing problems. In this paper we survey and study different
approximation, reformulation and convex relaxations for both cardinality constraint
problems and cardinality minimization problems, and discuss how to add a penalty
function to the objective in order to get a reformulation/approximation model of the
original problems, instead of simply dropping the rank constraint. By reformulation
techniques, under some mild condition we may either transform the problem to a mixed
integer linear program (MILP) or the so-called bilevel SDP problems. We also point out
that a continuous approximation of cardinality functions can enable us to apply
majorization method to extract proper weights for the (re)weighted /1 algorithms.

Keywords: Cardinality optimization problem, I-minimization, compressive sensing, convex
optimization, (re)weighted I ;- minimization, Lagrangian relaxation.

Kiime eleman sayilarinin (cardinality) optimizasyon problemlerine yénelik
yakinsak, yeniden formiile etmeli ve disbiikey teknikler

Ozet

Kime eleman sayilarinin minimizasyon problemi, belirli dodgrusal (veya dodrusal
olmayan) kisitlan karsilayan minimum kiime eleman sayisini iceren bir vektdér bulmakla
ilgilidir. Problem, basing algilama problemi olarak da anilan problemle yakindan iliskilidir.
Bu calismada, kiime eleman kisit problemleri ve kiime eleman sayilarinin minimizasyon
problemleri igin gesitli yakinsak, yeniden formille etme ve disblikey gevsetmeler yer
almakta ve yalnizca rank kisitini dislamaktan c¢ok orijinal problemin yeniden formile
edilmesi/yakinsanmasi igin amaca nasil bir ceza fonksiyonu eklenecedini tartisilmaktadir.
Yeniden formule etme teknikleri ile bazi hafif kosullarda, problem, ya karma tam sayih
dogrusal programlama ya da iki kademeli yari tanimh programlama problemlerine
dénustardlebilir. Kime eleman sayisi fonksiyonlarinin  slrekli yakinsanmasi, /1
algoritmalarinin (yeniden) adirliklandirilarak uygun adirliklarinin belirlenmesi amaciyla
majorlastirma yénteminin uygulanmasina izin verir.

Anahtar Sozciikler: Kime eleman sayilarinin (cardinality) optimizasyon problemi, ;-
minimizasyonu, basincl algilama, disbilkey optimizasyon, (yeniden) adirlhiklandiriimis 1 ;-
minimizasyonu, Lagrangian gevsetme.
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1. Introduction

The general cardinality minimization problem (CMP) over a convex set C, and cardinality
constraint problem can be cast repsectively as

Minimize {Card (x): x € C}, (1)
and
Minimize {f(x): Card (x) <1, x € C}, (2)

The set C can be also non-convex in some situations. So CMP is to maximize the number
of zero components or equivalently to minimize the number of non-zero components of a
vector satisfying certain constraints. In another word, CMP is looking for the sparest
vector in a given feasible set or looking for the simplest model for describing or fitting a
certain phenomena. The card function, card(x), can be expressed as lo norm. While lo is
not a norm, we can still call it lo ‘norm’, due to the following fact.

: (L »
”ﬂb:hnmﬂh:hm(zjﬁfj = Card ().
p—0 p—0 T

lo norm is a non-convex, non-smooth and integer valued function, and the optimization
problems with “card' objective or constraints are known as NP-hard problems [18, 28],
and thus CMPs are not computationally tractable in general.

These kinds of problems have many applications in such areas as finance [22, 7, 25],
signal processing and control [27, 16, 21], statistics and principal component analysis [9,
29, 33, 24], compressive sensing [1, 11, 4], etc. Due to the NP-hardness of CMP, the
aim of this paper is to survey and introduce different SDP relaxations/approximations of
CMPs.

This paper is organized as follows. In section 2, we consider cardinality constraint prob-
lems, and discuss SDP relaxation methods for these problems based on Shor's lemma
and duality methods. Also we show how this problem can be cast as a bilevel SDP
problem which was first pointed out by Y.B.Zhao [31]. In section 3, we review various
existing methods for solving CMPs under linear constraint, and as an example of
weighted |: techniques we introduce a continuous approximation of cardinality function
and then apply linearization methods (majorization minimization methods) to solve the
problem iteratively. In section 4, we study CMPs under nonlinear non-convex constraints,
and show how to find an approximate solution for these problems using reformulation
techniques and Lagrangian duality methods. We also explain how the dual problem can
be reduced to a semidefinite problem. In section 5, we discuss CMP under 0-1 vectors,
and explain how to reformulate these problems by adding certain penalty instead of
dropping the rank constraint.

2. Cardinality Constraint Problems

Let us first start with a general cardinality constraint problem. A general cardinality
constraint problem is of the form (2) where f (x) and C are convex. Card (x) < 7is not a
convex constraint, so we try to relax this constraint using semidefinite relaxation. Before
doing so, we first note that norms are equivalent in finite dimensional spaces in the
following sense: Suppose el [l¢]|v @re norms on R". Then there exist scalars a,b =0, such

that ], < [xv < bl ¥ €R"

For example we have
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Ixll2 < f1xl2 < NI
To be more precise note that in general case for a polytope norm defined by max IaTxl,

i=1,..., n, we have

.....

where f is a constant.

Proposition 1. [9] The cardinality constraint Card (x) < 1 can be relaxed as the
following inequality constraint

XX
T x|1< Ttr(x),(XT1 ) >0.

Proof. For any given vector x = ( X;..X, )" # 0 obviously we have

%] .
0< <li1=1...,n,
X2+ 4+ X2
and hence
o %]
<Card(x) <,
T X+ X2
i.e.

2?:1|Xi| _ ”X”l
ﬁ+...+xf 1],

Note that the cardinality of the vector x (x1, ..., Xn) is equal to that of the vector |x| =

(%
...wn) where for every i, wj = 1 if xj#0; otherwise wj = 0. By Cauchy-Schwartz
inequality, i.e.,

<Card(x)<7. (3)

y reay

X.|), so by the fact that Card(|x| )= Card(x) < 7, we define the vector ¢ = (w1,

‘<|X|,‘w>‘2 S‘<|X|,‘|X|>.<w,w>‘. and noting that Card(x) < T, we have

Hx|1 +...+|x|n‘2 < r(|x|f +...+|x|i) .

Therefore we have

X, <~z I, (4)

In what follows, we use semidefinite relaxation methods [18]. Consider the matrix, X=xx,
i.e.,
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2
X XXy XX,
2
X = XX X o XX
2
anl XnXZ'” Xn

Then (4) can be written as the following convex inequality (see e.g. [9])
171x| 1 < 7tr(x),

where |X| denotes the element-wise absolute value of the matrix X. While the constraint X

T

= xx' is not convex, it can be relaxed to X = xxT, which can be written as

T

X X T
1 >0 < X- XX >0,Rank (X)=1.
X

by applying Schur’s lemma [17, 23, 15]. The proof is complete.

In [31], Zhao proved that under certain conditions, matrix rank minimization can be
formulated as a linear bilevel SDP problem. This motivates the following result.

Proposition 2. If the set C is bounded and defined by linear constraints, the complexity
of the cardinality constrained problem (2) is equivalent to a bilevel SDP problem.

Proof. From the proof of Proposition 1, one can rewrite the problem (2) as of the form
Minimize f(x)
s.t. xeC (5)
1 |X|1£ z‘tr(X)
X=x"X.
Now we can write the problem (8) as the following form
Minimize f(x)
s.t. xeC

1" [X|1<2tr (X) (6)

X X
[XT lJZO
Rank ( X )=1,
which is equivalent to the following bilevel SDP form (see [31])
Minimize f(X)
s.t. xeC

1'[X[1<tr(X) (7)
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X =argminitr (x):| 77 X |20
=argmin r(x): o120

The constraint Rank(X)= 1 is not convex. In order to get a reasonable approxima-
tion/relaxization of (2), a simple idea is to drop this constraint. This leads to the following
problem

The proof is complete.

Minimize f(x)
s. t. xeC

1" | X|1<2tr (X) (8)

Xx>0
X' 1) 7

which can be solved more efficiently than the original problem. Dropping the rank
constraint, however, may result in a large gap between the optimal values of the relaxed
problem (8) and the original problem. Thus we can use the penalty method instead of
dropping the rank constrains to obtain better approximation of the original problem. This
idea was first proposed in [31]. This can avoid the the lower level optimization in (7), and
yield the following reformulation of (7).

Minimize f(x)
s.t. xeC
I'|X[1<ztr(X) (9)

XxO
>
X' 1) 7

where & > 0 is the penalty parameter which is chosen to be sufficiently large.

A special case of the problem (2) can be cast as
Minimize f(x)=%xTPx+qTx
StAX <D (10)
Card(x) <7

0<x <s,i=1..,n,

where P is an nxn symmetric matrix, g € R, A ¢ RM*N p € RM, and 7 € N*. This
problem was studied by Zheng, Sun and Li [32].

As we have seen above, a common way to solve the optimization problems with a cardi-
nality function as an objective or constraint is to relax the cardinality function. We take
the specific example above to further demonstrate this approach. First, the problem (10)
can be reformulated as the following mixed integer quadratic problem
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1
Minimize f(x)=§xTPx+qTx
st.AX < b,
1"u<rz,u e{O,l}n, (11)
0<x <su,i=1..,n,
where 1 still denotes the vector of ones. Note that the constraint uj €{0, 1}, can be

written as uj2—uj =0. Assuming P = 0, the convex relaxation of the problem above can be

achieved by replacing uj €{ 0, 1} by uj € [0, 1]. So it leads to the following problem (see
Zheng, Sun and Li [32])

Minimize f(x):%xTPx+qTx
st. AX < b,
Tu<r,ue{01", (12)

Note that the constraint uj € [0, 1], can be written as _u2—ui < 0. Obviously, the optimal
value of the problem (12) is a lower bound for the problem (10). An SDP relaxation for

the problem (10) can be obtained as follows: Let X = xxT, and U = uu’ which can be

relaxed to X = xx! and U > uuT, yielding the relaxed problem
Minimize f(x) =%xT Px+q"x
st.AX < Db,
1TUSZ',U€{O,1}n, (13)

0<x <su,i=1..,n,

Relationship between (12) and (13) was characterized by the following result.

Proposition 4. [32] Suppose that the feasible set of the problem (12) has an interior
point (or a relative interior point, if Ax < b includes equality constraint). If P > 0, then the
optimal value of the problems (13) and (12) are equal.

129



M.J. Abdi, Y. Zhao / Istanbul Universitesi Isletme Fakiiltesi Dergisi 40, 2, (2011) 124-137 © 2011

3. CMP Under Linear Constraints

The Cardinality minimization problem (CMP) with linear constraints, i.e.,
Minimize {Card (x): Ax = b}, (14)
where A € RM*N js a matrix with m < n, has been widely discussed in the field of

compressive sensing [5, 20, 26] which deals with the signal processing/recovery which
has a wide range of applications in such areas as image processing [19].

The most popular approach for solving (14) (which is NP-hard in general) is to replace the
function card (x) by its convex envelop ||X||1 (see e.g. [12]). Hence a relaxation of (14) is
as follows:

Minimize {|X||:: Ax = b}, (15)
which can be also written as
Minimize {s: ||X||: <'s, Ax = b}. (16)

Clearly (15) and (16) are linear programming problems. For instance, (16) can be
written as the linear program

Minimize x 1's (17)
s.t. S<X<s (18)
Ax=D.

Another effective method for solving the problem (14) is to apply weighted /1 techniques

(see e.g. [6]). As an example let us consider the following continuous approximation of
card (x)

I X
Card(x) = |, = Ingsm(atan(—'J). (19)
e o1 =
Hence for a given small 2 > 0, an approximation counterpart of (14) is given as follows

Minimize Zn:sin(atan (gj) (20)

i=1

s.t. Ax=Dh. (21)
Note that
. || - M 1 M _
sm(atan[ - ) <sin(atan - )+ v cos(atan - )(|xi| |yi|)

) M 1
£sm(atan[ = )+ v (1= vi]). V%, y.

Using linearization techniques (majorization minimization), one obtains the following
iterative scheme:
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x Y = arg min{zn:t(—d: Ax=b}, (22)
x (Xik) +62

1
()—2 can be interpreted as the weight which forces the nonzero component
k 2
(X9) +e

where

to be zero if possible. The initial point x(0) can be chosen as the optimal solution of
problem (15).

Before closing this section, it is worth mentioning that sometimes we are interested in
finding a solution with a prescribed cardinality t. Such problems can be written as the
following feasibility problem:

Find X
s.t. Ax=b (23)
card(x) <t.

which can be reformulated as a d.c. programming. In fact, for x € R, the problem above
is equivalent to the minimization of (n — t) smallest components of x.

Now suppose St(x) is defined as the summation over the t largest components of the
vector |X| (assume that [X| 2 |x, >...2|x )

t
S, (X) - Z|Xi|
i=1
which clearly is a convex function. Hence the problem (23) can be reformulated as

Minimize {|X|1 - S,(X): Ax = b}. (24)

which is a d. c. programming problem. This problem can be solved by the cutting plane
method, which is a usual approach for solving d. c. problems. However, linearization
method can be still used to obtain an approximate solution for the problem.

Minimize {V (||X|1 - S;(X))"x : Ax = b}. (25)
This is equivalent to
Minimize (sign(x) — g)Tx
s.t. Ax = b,
g = Maximize ul x (26)
s.t.u €[0, 1]

1Tu=t

which can be viewed as a special linear bilevel programming problem.
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4. CMP with Nonlinear Non-Convex Constraints

In this section, we discuss the CMP with quadratic constraints, i.e., Cin (1) is of the form
C ={x: bix_2 —aixj—ci<0},i=1,..,n

We assume that the constraint functions are not necessarily convex, i.e., bj is not

necessarily positive. So the problem is NP-hard. In this section, we discuss the approach
for the relaxation and/or reformulation of such problems.

By adding a boolean valued slack variable v = (vi, ..., vn)Tto the problem, the CMP (1),
with non-convex quadratic constraints, can be reformulated as

n
Maximize) v, =1"v
i=1

st. vx,=0 (27)
v, €{0,1},i=1,2,...,n

bx’—ax —c <0,i=12,..,n,

A similar reformulation can be found in [8]. We now give a dual formulation of this
problem.

Proposition 5. The dual SDP form of the problem above can be written as the following
SDP problem

(4, B)+y b2 1 )’ J - 0)
b(2,1.8) A f))

where A(A, u, B), c(A, u, B), b(A, u, B) are defined in (30), (31).
Proof. We make some small changes to the objective of (27) and rewrite the problem as

follows
i) 1)
Maximize
0 X

s.t. VX (28)
v, €{0,1},i=1,2,..,n
bx’—ax —c <0,i=12,..,n,

minm%ﬁ(;/:[

where 0 € R is a column vector with all of its components zeros. The condition vj € {0,

1} can be relaxed with v2

relaxation problem:

—vj < 0 which is a convex constraint, producing the following

)
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s.t. ViX_,
v, €{0,1},i=1,2,..,n

bx’—ax —c <0,i=12,.,n,

[VJ = (Voo Vs Xy X, )T ,(1...1 : 0...0).
X n-times n-times

Applying Lagrange duality and adding some weight vectors y, A, B yields

where

L, (1, 4, B) =
1\ (v n n n 29
inf —( ] ( J+Zyi(vi2—vi)+ /Lvixi+2ﬂi(bixi2—a1xi—ci) . (29)
(vox)" R?" 0) \x) = = i-1
Note that
L, (&, 4, B)
vVY(m O 0 4 0 0 v,
: 0 0 o . 0 :
v, 0 0 g 0 0 24 v,
= +
|4 0 0 pb 0 X,
0 0 0 .0 :
x,JL0 0 4An 0 0 Bb,), . X
“l-x4 0 0 0 0 0 Yv) (0Y(0
0 0 0 0 0 : :
0 0 Ay, 0 0 0 |v | f0 [0
0 0 0 Bea, 0 0 X B —C
0 0 0 0o - 0 :
0O 0 O 0 0 Balx) (8] =<
Setting
4 0 0 4 0 0 0 (0
0 0 0 0
RN T s T R R (30)
ﬂ’ 1 = 1 /’ll 1 = .
A 0 O pgb O 0 B —C,
0 - 0 0 0 :
0 0 An 0 0 pgpb, B.) \—¢
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n 0 0 A4 0 0
o . 0 0o . 0
b apy=2 O Ot 00 A (31)
2l4, 0 0 gb 0 O
0 0 0o 0
0 0 An 0 0 fp

and introducing a new variable y for (v, x), the function Lv,x(4, A, B) can be written as

Ly(A, 1, B) = yT A, w, By + 2b(A, 1, B)T y + c(A,
H, B).

Assume that A, y, B, 6 are chosen such that
Ly(A/ M, B)—620, Vye
R2n

4

then 6 is an upper bound for the optimal value of (27). Also from chapter 3 of [2], we
have

a(y) =yTAy+ 2bTy+c— 620 <Gy t) =yTAy+ 2thy+ (c -
0)t2 > 0.
So

_ T
G(y,t)20<:>(cl o quo.

Then looking for the best upper bound for the main problem above becomes

c—-0 b
Maxg,wﬁ{e:( b Ajzo}

Setting 6 = —vy yields a relaxation for the original problem

. (c—6 b’
Mlnmﬂlﬁ{y.[ b AJZO},

which is an SDP and can be solved efficiently.

5. CMP with 0-1 variables

In some situations, we are interested in minimizing the cardinality of a boolean vector x &

RN, i.e xi € {0, 1}, i =1, ..., n. So, we may consider the CMP with 0-1 variables and
guadratic constraints:

Minimize Card(x)
s.t.xTBix—A/x—biSO,i=1...,m (32)

xe{0,13},
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where Bi = 0, Ai is a vector with appropriate dimension, bi is a contant. This problem is
also discussed in [13] in which the feasible set is defined by a linear system.

Define a new variable z = 2x — 1. Hence the problem above can be reformulated as

Minimize Card(z + 1)

subject to g o5z + 1) Bj(z + 1) — 0.5(Ai(z + 1)) = bj <0, i=1,..  (33)
m

zed{-1,13}.

Now let Z = zz! . By shor’s lemma, Z = zzTis equivalent to Z = zz" and rank(Z) = 1. Also
note that tr(Z) = n. Hence the problem (33) is equivalent to the following problem.

Minimize 1Tz

st 025+ 1) Bi(z+1) - 0.5Ai(z+ 1) -bj<0,i=1,.. 3%
m

Tr(Z) = n, Rank(Z) = 1.

Since z € {—1, 1}, we can remove the constraint tr(Z) = n and replace it by diag(Z) = 1.
To relax the constraint Rank(Z) = 1, one can replace the rank function by the nuclear
norm which is certain convex relaxation of the rank function. So we get the following SDP:

Minimize 1TZ

s.t. 0.25(z + 1) Bi(z + 1) = 0.5(Ai(z + 1)) —=bj <0,i=1,.. (35
m

Diag(Z) = 1, |||« < v,
where y is a constant depends on the bound of ||Z||

As we mentioned in the previous sections, another simple approach to construct an
approximation of the problem (34) is using penalty function as proposed by Zhao [31]. So
we obtain the following approximation counterpart of (34):

Minimize 1 27 ‘5”2”*

s.t. (36)

0.25(z + l)T Bi(z + 1) = 0.5(Ai(z+ 1)) - bj<0,i=1, ...,

Z>zz , 23>0, Diag(2) = 1,

where & > 0 is the penalty parameter.
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6. Conclusion

We have discussed different reformulations of cardinality constraint and cardinality
minimization problems, and how convex techniques can be used to get approximate
counterparts of these NP-hard problems. We have demonstrated that under mild
assumption a cardinality constraint problem can be equivalently reformulated as a bilevel
SDP problem. This involves how the penalty method can be used to reformulate the
problem. Several important specific cases including CMP with linear constraints, CMP with
nonlinear non-convex constraint, and CMP with 0 — 1 vectors have been discussed.
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