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Abstract 

In this paper, the optimal pricing and lot-sizing policies of a production lot-sizing model 

for deteriorating item under inflation and time discounting by considering two different 

decision making policies such as coordinated and decentralized decision making policies 

under which we derive the solution of the multivariate maximization problem are 

discussed. In addition, shortages are allowed and the unsatisfied demand is partially 

backlogged. The backlogging rate is a constant fraction of the on-hand inventory. The 

model is studied under inventory followed by shortages. We take demand as a function of 

selling price and time. The objective of this model is to maximize the total profit (TP) 

which includes the sales revenue, purchase cost, the set up cost, holding cost, shortage 

cost and opportunity cost due to lost sales. Theoretical results are given to justify the 

model. Finally, numerical examples are presented to determine the developed model and 

the solution procedure. Sensitivity analysis of the optimal solution with respect to major 

parameters is carried out. We propose a solution procedure to find the solution and 

obtain some managerial results by using sensitivity analysis. 

Keywords: Inventory Control, Deterioration, Inflation, Time – Discounting, Partial Backlogging. 

Enflasyon etkisi altında ve kıtlık gösteren bozulabilir ürünlere yönelik ekonomik 

sipariş büyüklüğü modeli için optimum fiyatlandırma ve sipariş büyüklüğü 

belirleme politikaları için basit yaklaşım 

Özet 

Bu çalışmada, enflasyon etkisi altındaki kısa ömürlü ürünler için üretim sipariş büyüklüğü 

modelinin optimum fiyatlandırma ve sipariş büyüklüğü politikaları ele alınmıştır. Çok 

değişkenli maksimizasyon problemleri olarak sonuçları elde edilen iki farklı karar verme 

politikası kullanılmıştır: Eşgüdümlü ve eşgüdümsüz karar verme politikaları. Ayrıca talep 

karşılayamamaya izin verilmiş ve karşılanamayan talepler kısmi olarak biriktirilmiştir. 

Biriktirme oranı eldeki mevcut stokun sabit bir oranı olarak belirlenmiştir. Model, 

karşılanamayan taleplerin stokta takibi yoluyla çalışılmıştır. Talep, satış fiyatı ve zamanın 

bir fonksiyonu olarak ele alınmıştır. Modelde amaç, satış geliri, satın alma maliyeti, 

hazırlık (set up) maliyeti, elde bulundurma maliyeti, ‘yok’ satıştan kaynaklanan elde 

bulundurmama ve fırsat maliyetlerini içeren toplam kârın maksimizasyonudur. Model 

verilen teorik sonuçlarla sınanmıştır. Son olarak, geliştirilen model ve çözüm prosedürüne 

ait sayısal örnekler verilmiştir. Temel parametrelere ilişkin en uygun çözüme ait duyarlılık 
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analizi gerçekleştirilmiştir. Çözüm bulmak amacıyla bir prosedür önerilmiş ve duyarlılık 

analizi kullanarak yönetsel bazı sonuçlar elde edilmeye çalışılmıştır.  

Anahtar Sözcükler: Stok Kontrol, Yıpranma, Enflasyon, Kısa Ömür, Kısmi Bekletme. 

1. Introduction 

Generally, goods in inventory do not always safeguard their physical characteristics 

because there are some items which are subject to risks like breakage, evaporation, 

obsolescence etc. The first attempt for assessing deteriorating items was made by Ghare 

and Schrader [1], who derived the revised form of the EOQ model assuming exponential 

decay. Dave and Patel [2] considered the inventory models for deteriorating items with 

linear increasing demand when shortages are not allowed over a finite horizon. Goyal and 

Giri [3] provided a detailed review of deteriorating inventory literatures. Tsao and Sheen 

[4] considered a replenishment model for deteriorating items with lot-size and time-

dependent purchasing cost under credit period. Recent research in this area includes: 

In contrast to the above EOQ models, Balkhi [5] first generalized the EPQ model for 

deteriorating items in which the demand, production and deterioration rates are 

continuous functions of time. After that Goyal and Giri [6] extend Balkhi’s [5] model to 

allow for partial backlogging. 

An increase in the general price level results in a reduction in the consumption power of 

money. Most of the classical inventory models did not consider the effects of inflation. 

But many of countries suffer from large scale inflation. It is therefore necessary to 

investigate how inflation influences various inventory policies. The inflationary effect on 

an inventory policy has been examined by several authors. The pioneer in this field was 

Buzacott [7]. Brahmbhatt [8] studied an economic order quantity under variable rate of 

inflation and mark-up prices. 

Recently, Mirzazadeh et al. [9] studied an EPQ model for deteriorating items with 

inflation-dependent demand under uncertain inflationary conditions and shortages. 

In classical economic order quantity model, it is often assumed that shortages are either 

completely backlogged or completely lost. As a physical phenomenon, some customers 

may like to prefer backlogging during the shortage period, while the others would not. In 

1995, Padmanabhan and Vrat [10] evolved an EOQ model for perishable items with 

stock-dependent demand. Chang and Dye [11] studied an EOQ model for deteriorating 

items with partial backordering. Goyal and Giri [6] established an EPQ model for 

deteriorating items with partial backlogging. Chen and Chen [12] developed an EPQ 

model for deteriorating items with complete backlogging. 

In this paper, we discuss the inventory policies for the production of a lot-sizing model for 

deteriorating items with selling price and time dependent demand. Our review of relevant 

literature failed to identify any model which considers the selling price under two different 

policies and time dependent demand function, over an infinite time horizon under partial 

backlogging with inflation and time discounting, and extends it to a finite horizon model. 

We discuss the model under the two types of policies by Chen and Chen [12] (the 

sufficient conditions cannot be verified analytically in their model) and finally compare 

them. Here we study the model under infinite horizon and extend it to the finite horizon 

proposed by Goyal and Giri [6]. Instead of using dynamic programming approach, for 

easy understanding , application and the verification of second order sufficient conditions, 

we solve the EPQ problems here by Lagrangian multipliers method. The rest of this paper 

is organized as follows. In section 2, the notations and assumptions used are listed. In 

section 3, we present the mathematical model. In section 4, numerical examples are 

given to illustrate the model. Finally, we conclude the paper. 
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2. Notations and Assumptions 

To develop the Mathematical model, the following notations and assumptions are being 

made: 

2.1 Notations 

The following notations are defined: 

K the fixed production set up cost per run 

H the holding cost per unit per unit time 

P the purchasing cost per unit  

P′        the selling price per unit, where P′ > P (a decision variable) 

θ(t)     the deterioration rate at time t, t[0,T] 

S the shortage cost per unit per unit time 

П the opportunity cost due to lost sales per  unit 

I(t)      the  inventory level at time t, t[0,T] 

R(P′,t) the demand rate at time t, t[0,T] 

Pp(t) the production rate at time t, Pp(t) > R(P′, t)where t[0,T]   

i′′        the discount rate of net inflation  

So the time at which the cycle begins with zero stock and the shortage begins to 

accumulate (a decision variable) 

S1 the time at which the shortage reaches its maximum and the production 

process starts to meet the demand (a decision variable)  

T the time where the shortage level reaches zero and the inventory starts to 

accumulate (a decision variable) 

T1 the time at which the inventory level reaches its maximum and the production 

process stops (a decision variable) 

S the time where the cycle ends with zero number of stocks (a decision variable) 

Q the production lot-size (a decision variable) 

TP the total relevant profit of the inventory 

2.2 Assumptions  

In addition, we use the following basic assumptions. 

 A single item inventory is considered over an infinite planning horizon. 
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 The demand rate R (P′, t) is a nonnegative and continuous function of time and a 

decreasing, convex function of selling price in the planning horizon.  

 The production rate Pp (t) is a known functions of time with Pp(t) > R(P', t). 

 The items deteriorate continuously over time which is a known function of time. 

 There is no repair or replacement of the deteriorated items during the production 

cycle. 

 The lead time is assumed to be zero. 

 Shortages are allowed, only a fraction B (0 ≤ B ≤ 1) of the demand is backlogged 

and the remaining fraction (1-B) is lost.  

3. Model Formulation 

There are two types of inventory models: Type i. Inventory followed by shortages, and 

Type ii. Shortages followed by inventories. Throughout our study we use inventory 

followed by shortages. In the proposed model a cycle can be divided into four periods. 

Here [So, S] is taken as one cycle duration. During [So, T] the inventory is on the 

negative side and [T, S] the inventory is on the positive side.  

A typical behaviour of the inventory in a cycle is depicted in the following fig.1.The 

inventory starts and ends with zero stock. So the shortage begins to accumulate at the 

early stage in inventory. The production starts only at time S1 to meet the current and 

backlog demands. T is the time when shortage level reaches zero; afterwards the positive 

level of the inventory begins to build up.T1 is the time when the production process 

stops; the inventory level then starts declining. Finally, the cycle ends with zero stock at 

time S.  

During the time duration [So ,S1], the inventory level starts with zero at So and from 

onwards the shortage begins to accumulate and reaches its maximum at S1 and only a 

fraction B is backlogged partially and the remaining fraction (1-B) is lost. Hence the 

inventory level is governed by the following differential equation: 

                                          
  ;;,' 1StStPRB

dt

tdI
o                                           (1) 

with the boundary condition   00 SI . Solving the differential equation (1), we get the 

inventory level as 

                                           ;;,' 10

0

StSduuPRBtI

S

t

                                    (2) 

During the time duration [S1, T], the production starts at S1 and meets the current and 

backlog demands so that the shortages become zero at T. Hence the inventory level is 

governed by the following differential equation: 
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Figure 1 A typical behaviour of the inventory in a cycle. 

                                    
 

  ;;,')( 1 TtStPRtP
dt

tdI
p                                      (3) 

with the boundary condition   0TI . Solving the differential equation (3), we get the 

inventory level as 

                                              TtSdttPRtPtI

t

T

p   1;,'                               (4)                                                                  

During the time duration [T, T1], the production of the item is continued and since the 

demand rate is lesser than  the production rate, the inventory level increases and meets 

the current demand, and the excess of the inventory is stored, so that deterioration takes 

place as soon as the product reaches the stock. The on hand inventory reaches maximum 

level at T1, where the production process comes to an end. Hence the inventory level is 

governed by the following differential equation: 

                                        
        ;;,' 1TtTtPRtPtIt

dt

tdI
p                              (5)                                                                     

with the boundary condition   0TI . Solving the differential equation (5), we get the 

inventory level as 

                                                 
  

t

T

duu

p

dtt
TtTdueuPRuPetI ;;,' 1

                                 (6) 

During the time duration [T1, S], the production of the item is stopped at T1, so that the 

on-hand inventory decreases due to the demand and deterioration, and the inventory 

reaches zero at S. Hence the inventory level is governed by the following differential 

equation: 

                                          
      ;;,' 1 StTtPRtIt

dt

tdI
                           (7)                                                               

with the boundary condition   0SI . Solving the differential equation (7), we get the 

inventory level as 
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                                                 
  

S

t

duudtt
StTdueuPRetI ;;,' 1

                                   (8) 

When t = S 1 , we have       

                                             
10

1

,')()(

S

T

P

S

S

duuPRuPduufB
                                   (9) 

and t = T 1 ,we have            

                                              
 

 

 


1

1

,','

S

T

S

T

duuduu

P dueuPRdueuPRuP
                                  (10) 

The present worth of the total inventory cost during the period [S0, S] is the sum of  

 Present worth of holding cost (HC1, HC2) 

 Present worth of shortage cost (SC1, SC2) 

 Present worth of opportunity cost and (OC) 

 Present worth of setup cost K e -i′′S1 

 Present worth of production cost (PC1, PC2) 

The present worth of the production cost during the production periods [S1, T] and 

 [T, T1] are given respectively by 

   


T

S

dtt
P

PtietPPC

1

''
1

 
(11) 

   


1

''

2

T

T

P

ti dttPetPPC

 

(12) 

The present worth of the holding cost for carrying inventory over the periods [T, T1] and 

[T1, S] are given respectively by 

                                             


1

''

1

T

T

ti dttIheHC                                                   (13)                                                                                                                       

                                            


S

T

ti dttIehHC

1

''

2                                                   (14)                                                                                            

The present worth of the shortage cost over the period [S0, S1] and [S1, T] are 

respectively given by  

    
1

0

''

1

S

S

ti dttIeSSC

 

(15) 

      












 

T

S

T

t

P

ti dtduuPRuPeSSC

1

,'''

2

 

(16) 

The present worth of the opportunity cost due to lost sales during the period [S0, S1] is 

given by 
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    
1

0

1,'''

S

S

ti dtBtPReOC 

 

(17) 

Therefore, the present worth of the total profit in [S0, S] is given by  

TP = the present worth of 

 

                            sales revenue - production cost - set up cost - holding cost 

- shortage cost - opportunity cost due to lost sales

 
 
 

 
  

          TP =

       

        
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 
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duudttti

T

T

t

T

duu

p

dtttiSi

T

S

P

ti

S

S

ti

S

S

ti

dttPRBedtduuPRuPes

dtduuPBResdtdueuPRehe

dtdueuPRuPeheKe

dttPtPedtetPRPdtetPBRP







            (18)                                                                                                                                                                       

Equation (18) is a function of the selling price P′ and the time variables S1, T, T1, and S, 

which can either be determined by the decentralized policy or by the centralized, 

coordinated policy. 

3.1 Model A: Decentralized Policy 

In the decentralized decision process the marketing department sets the price by 

maximizing its gross profit function disregarding the production cost, the market 

responds with a specific demand and the production department makes the lot sizing and 

scheduling decision with the objective of minimizing the total production cost while 

satisfying the demand [12]. 

The multivariate maximum problem under the decentralized policy can be formulated as 

follows: 

Maximize TP  

Subject to the constraints (9), (10), 0 < P′ < P′ max  and  

                                          So < S1 < T < T1 < S.                                                  (19) 

The gross profit function over[S 0 , S] can be expressed as  

                        'PTP =  


1

0

''),'()('

S

S

ti dtetPBRtpP +  


S

S

ti dtetPRtpP

1

''),'()('              (20) 

The optimal price over the cycle can be obtained by differentiating equation (20) with 

respect to P′ and setting the results equal to zero: 
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 
'

'

dP

Pd TP
= 

    
 
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



















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dP

tPdR
tpPtPRe

dt
dP

tPdR
tpPtPRBe

S

S

ti

S

S

ti

1

1

0

'

,'
','

'

,'
','

''

''

= 0                 (21) 

Let P′* be the solution of equation (21) which represents the optimal price during the 

cycle. To show the optimality of the solution, we shall demonstrate that the gross profit 

function in equation (20) is concave in P′, i.e., its second order sufficient condition is 

strictly less than zero: 

                   
 
2

2

'

'

dP

Pd TP
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  
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  

 











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
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tPRd
tpP
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e

dt
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tPRd
tpP
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S
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S

S
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1

1

0

2

2
''

2

2
''

'

,'
'

'

,'
2

'

,'
'

'

,'
2

< 0           (22) 

Proposition 1 The gross profit function  'PTP is concave in P′, provided the demand 

function is the form: ),'( tPR =  'bPa  f (t). 

Proof  Substituting the demand function with  'bPa  f (t) into equation (22), we have 

   
 
2
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dP

Pd TP
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dttfPbtPPtfPbe

dttfPbtPPtfPbBe

S

S
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S

S
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1

1

0

)('1')('2

)('1')('2

21''

21''









            (23) 

Since B > 0, b > 0, 1 ,   tPP ' > 0 and f(t) > 0 for So < S1 < T < T1 < S, equation 

(23) is strictly negative. 

The objective of the decentralized policy is to minimize the total cost. 

Our problem is to find S1, T, T1, P′ and S to minimize the total cost. 

To develop a solution to the problem, we reduce the problem into an equality constrained 

Lagrangian as   
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and for the sufficiency condition, their corresponding Hessian matrix is negative definite.  
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From the above results it is clear that: 
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Since the second order sufficiency conditions for maximisation are also obtained the 

optimum solution obtained here becomes the unique optimal solution. 

The production lot-size can be obtained by integrating the production rates over  11,TS : 

                                                             Q=  
1

1

T

S

p dttP                         (35) 

Summarizing the above results, we can now establish the following solution procedure to 

obtain the optimal solution of our problem.  
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3.2 Solution procedure for model A 

Step  1:     Fix P′. 

Step  2:     Initially take S 0 = 0. 

Step  3:     Use equation (25) to find T as function of S1(Use MATLAB). 

Step  4:     Use equation (26) to find T1 as function of S and S1. 

Step  5:     Use equation (28) to find  as a function of S and S1. 

Step  6:     Use equation (27) to find S as a function of S1. 

Step  7:     Use equation (29) to find  as a function of T1. 

Step  8:     Use equation (30) to find S1. 

Step  9:     Use S1 value in equation (27) to find S. 

Step10:     Use S1 value in equation (25) to find T. 

Step 11:    Use S, S1 values in equation (26) to find T1. 

Step 12:    Use S and S1 values in equation (28) to find . 

Step 13:    Use T1 value in equation (29) to find . 

Step 14:  If S1, T, T1 and S values satisfies Equations (31) to (34) go to next step;             

otherwise go to step 1. 

Step 15:    Using (21), find P′ value. 

Step 16:    If P′ satisfies (22), go to next step; otherwise go to step 1.  

Step 17:  If the difference between the two P′ values are sufficiently small stop the     

procedure; otherwise go to step 2 and repeat the steps 2 to 16 till P′ 

converges. If yes go to step 18. 

Step 18:   Enter this P′ as optimal one and repeat step 2 to step to find S1, T, T1and S     

values for the P′ value given in step 14. 

 Step 19:   Using (18), find TP value. 

 Step 20:   Using (35), find Q value.  

 Step 21:   For the second cycle, take S0 = S and continue the above procedure till  

                 S = H. 

With the help of above given prescriptions one can easily solve the given model A. 

3.3 Model B: Coordinated Policy 

 In contrast to the sequential process, the coordinated policy makes the pricing and 

production decisions at a time [12]. 

 The multivariate maximum problem under the coordinated policy can be formulated as 

follows: 

 Maximize TP Subject to the constraints (9), (10), 0 < P′ < P′ max  and  

                                So < S1 < T < T1 < S.                                                            (36) 
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Under coordinated policy, production lot-size and selling price are determined 

simultaneously by solving the first order differential equations of model A.  
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So it satisfies the second order sufficiency condition 0
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Summarizing the above results, we can now establish the following solution procedure to 

obtain the optimal solution to our problem.  

3.4 Solution procedure for model B 

 Step 1:     Fix P′. 

 Step 2:     Initially take S0=0. 

 Step 3:     Use equation (25) to find T as function of S1 (Use MATLAB). 

 Step 4:     Use equation (26) to find T1 as function of S and S1. 

 Step 5:     Use equation (28) to find  as a function of S and S1. 

 Step 6:     Use equation (27) to find S as a function of S1. 

 Step 7:      Use equation (29) to find  as a function of T1. 

 Step 8:      Use equation (30) to find S1. 

 Step 9:      Use S1 value in equation (27) to find S. 
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 Step 10:     Use S1 value in equation (25) to find T. 

 Step 11:     Use S, S1 values in equation (26) to find T1. 

 Step 12:     Use S and S1 values in equation (28) to find . 

 Step 13:     Use T1 value in equation (29) to find  . 

 Step 14:   If S1, T, T1 and S values satisfies Equations (31) to (34) go to next step; 

otherwise go to step 1. 

 Step 15:     Using (37), find P′ value. 

 Step 16:     If P′ satisfies (38), go to next step; otherwise go to step 1.  

 Step 17:   If the difference between the two P′ values are sufficiently small stop the 

procedure; otherwise go to step 2 and repeat the steps 2 to 16 till P′ 

converges. If yes go to step 18. 

 Step 18:    Enter this P′ as optimal one and repeat step 2 to step to find S1, T, T1and S 

values for the P′ value given in step 14. 

 Step 19:     Using (18), find TP value. 

 Step 20:     Using (35), find Q value.  

 Step 21:     For the second cycle, take S0 = S and continue the above procedure till 

                   S = H.  

With the help of above given prescriptions one can easily solve the given model B.                                                                                                                                                                                          

3.5 The finite time horizon model  

The model developed in the pervious section can also be considered over a finite planning 

horizon H by suitably adjusting the production cycles.  The following steps are followed:  

1. Continue to find the optimal replenishment policies of the successive cycles until 

 







n

i

n

i

ii CLHCL
1

1

1

 where CLi denotes the ith cycle-length, i =1, 2…n+1. 

2. For n production-cycles, increase each cycle proportionally to finish the cycle exactly at 

H. Then modify the values of the decision variables accordingly and evaluate the total 

cost TC (n) by summing up the cost over n cycles. 

3. Similarly for (n +1) cycles, decrease each cycle proportionally to finish the (n +1) 

cycle at H and evaluate TC (n+1). 

4. Finally, determine TCnear opt = min {TC (n), TC (n+1)} [6]. 

4. Numerical Example 

In this section, numerical examples are proposed to illustrate the proposed model and its 

solution procedure. Optimal replenishment policies for the decentralized and coordinated 

policies are shown in Table 1 and Table 2 respectively. Sensitivity analyses are also 

reported for the model mentioned above and are shown in Table 3. Here we consider the 

same example of [12] to see the optimal replenishment policy while considering partial 

backlogging rate under inflation and time discounting. 

Example 1  

Let us consider H = 5, K = 4, h = .3, s = .1, B = .05,  i′′ = .12,    = .01,  H = 5, 
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 v  = .1v, P  t  = 10e
t02.
, P p  t = 150e

t02.
, R  tp ,' =  '5100 P e

t02.
 in appropriate 

units. The optimum values for the decentralized policy and coordinated policy are shown 

in Table 1 and Table 2.                 

Table 1 Optimum values for the decentralized policy 

   S0                S1               T              T1              S               P′                      TP 

0.000           0.0200      0.0202       0.4240      2.1026          14.5               109.8405 

2.1026         2.1226      2.1228       2.3752      3.3242          14.4                 58.7820 

3.3242         3.3624      3.3626       3.5764      4.3543          14.4                 43.4194 

4.3543         4.3751      4.3745       4.5674      5.2535          14.4                 34.8126 

Table 2 Optimum values for the coordinated policy 

  S0                  S1               T               T1              S               P′                       TP 

0.0000          0.0200       0.0201       0.3871        2.5945        16.1               117.0486 

2.5945          2.6145       2.6147      2.8288        3.9118        15.8                 57.6949 

3.9118          3.9318       4.1155      3.5764        4.9909        15.7                 41.8980 

From the numerical results obtained by us, which are shown in Table 1 and Table 2, we 

conclude that the selling price and the profit of the product using model B are better than 

that of model A. 

In order to find out how various parameters affect the profit of our model we are going to 

study the sensitivity analysis. Sensitivity analyses on various parameters for model A and 

model B are shown in Table 3. 

Table 3 Sensitivity analyses on various parameters

 

Table 3.1  Effect of B  on  TP 

 B           Case1 TP         Case2TP 

0.05        109.8405       117.0486 

0.09        112.1558       120.9544 

0.50          94.7561       113.7430 

 

Table 3.2  Effect of π  on  TP 
             Case1TP         Case2TB 

0.001       109.9454       117.1798 

0.010       109.8405       117.0486 

0.120       108.4700       113.9620 

Table 3.3  Effect of i″ on TP 

     

Table 3.4 Effect of s on TP 

   s           Case1TP        Case2TP 

0.01          111.4780      119.9926 

0.10          109.8405      117.0486 

0.20          107.4087      112.9808 

 

 

Table 3.5  Effect of h on TP 

  h            Case1TP         Case2TP 

0.90          109.8405       117.0486 

2                98.0489        111.7579 

4                72.0444          85.6157 

 

 

Table 3.6  Effect of K on TP 

  K             Case1TP          Case2TP 

 2               111.7323       118.8586          

 4               109.8405       117.0486             

 6               107.9476       115.2373 

 

Table 3.7  Effect of a on TP 

 a              Case1 TP          Case2TP 

100             123.6275       126.4560 

150             109.8405       117.0486 

200             117.0486       114.2357 

 

Table 3.8  Effect of b on TP 

  i″           Case1TP        Case2TP    

 0.11        113.7489       120.6577       

 0.12        109.8405       117.0486         

 0.22          79.4760         87.1963 

  b                Case1 TP       Case2TP    

  9               156.8051      152.1266      

10               109.8405      117.0486          

11                 69.0763        85.3767 
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4.1 Managerial Implications 

Based on our numerical results, we obtain the following managerial phenomena: 

 Manufacturers who use coordinated policy have more profit than those having 

decentralized policy. 

 During shortages, the manufacturers who minimize their shortage cost have 

better results. 

 In order to maximize the profit, the manufacturers could reduce the cost for 

holding the items. 

 When the manufacturers backlog the items partially, they must reduce the 

opportunity cost, which gives them more benefit. 

 Manufacturers who have high backlogging parameter value suffer more than that 

those having less backlogging parameter value. 

 Increasing the unit cost of the items and the inflation rate minimizes the profit of 

the company.   

4.2 Special cases 

 By taking i'' = 0, our model reduces to that of an optimal pricing and lot-sizing 

model of an EPQ model for deteriorating items with partial backlogging. 

 If we take i'' = 0, and B =1, our model reduces to that of an optimal pricing and 

lot-sizing model of an EPQ model for deteriorating items with complete 

backlogging. 

 If we take B =1, our model reduces to that of an optimal pricing and lot-sizing 

model of an EPQ model for deteriorating items with complete backlogging under 

inflation and time discounting. 

 If we take  (t) = constant, our model reduces to that of an optimal pricing and 

lot-sizing model of an EPQ model for constant deteriorating items with partial 

backlogging under inflation and time discounting. 

 If we take R  tp ,' = 100e
t02.
i.e. P' = 0, our model reduces to that of a lot-sizing 

policies of an EPQ model for deteriorating items with partial backlogging under 

inflation and time discounting. 

 If we take P p  t  =a constant, our model reduces to that of an optimal pricing 

and lot-sizing model of an EPQ model for deteriorating items with constant 

production and partial backlogging under inflation and time discounting. 

 If we take P  t = a constant, our model reduces to that of an optimal pricing and 

lot-sizing model of an EPQ model for deteriorating items with constant purchasing 

cost and partial backlogging under inflation and time discounting. 

Similarly it is possible for us to derive some more models from the prescribed model. In 

practical life after production, the value of certain items like wine increase with time. 

Such items are known as ameliorating items (See [13], [14], [15]). 

 If we take  (t) = - (t), our model reduces to that of an optimal pricing and lot-

sizing model of an EPQ model for ameliorating items with partial backlogging. 

For ameliorating model all the special cases discussed above (for deteriorating items) 

also holds true. 
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5. Conclusions 

In this paper, we discussed the effects of partial backlogging on the production inventory 

problem of a product with time-varying demand under inflation and time discounting. 

Our model is suitable for any given time horizon in any product life cycle including hi-

tech products. Inflation and time discounting are important factors in recent time. In 

keeping with this reality, these factors are incorporated in the discussed model. From the 

numerical values we concluded that coordinated policies are better than decentralized 

policy under inflation and time discounting. We provided some useful practical 

applications for the manufacturers. Some special cases of our model are also discussed 

which elaborate upon the importance of our model and its wider applications in 

manufacturing. Optimum production quantity can also be obtained from our model. Our 

model is also suitable for ameliorating items also. Finally, the sensitivity of the solution 

to changes in the values of different parameters has been discussed.  

The proposed model can be extended in several ways. For instance, we may apply the 

deterministic demand function to stochastic fluctuating demand patterns. Finally, we 

could generalize the model to allow for quantity discounts, permissible delay in 

payments etc.  
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