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Abstract 

Even in scientific disciplines, forecast failures occur. Four possible states of nature (a 
model is good or bad, and it forecasts well or badly) are examined using a forecast-error 
taxonomy, which traces the many possible sources of forecast errors. This analysis shows 
that a valid model can forecast badly, and a poor model can forecast successfully. 
Delineating the main causes of forecast failure reveals transformations that can correct 
failure without altering the ‘quality’ of the model in use. We conclude that judging a 
model by the accuracy of its forecasts is more like fools’ gold than a gold standard. 
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Tahmin çıktıları ile ekonomik modelleri değerlendirmeme üzerine 

Özet 

Tahmin başarısızlıkları bilimsel disiplinlerde dahi gerçekleşmektedir. Bu çalışmada tahmin 
hatalarının pek çok olası kaynağını izleyen tahmin-hata sınıflandırması kullanılarak dört 
olası durum (bir model iyi ya da kötüdür ve iyi ya da kötü tahminler) incelenmiştir. Bu 
analiz, geçerli bir modelin kötü tahmin yapabileceğini ve zayıf bir modelin başarılı tahmin 
yapabileceğini göstermektedir. Tahmin başarısızlığının temel sebeplerini tarif etmek, 
kullanılan modelin ‘kalitesi’ni arttırmadan başarısızlığı düzelten dönüşümleri ortaya 
çıkarmıştır. Sonuç bölümünde, bir modeli tahminlerinin geçerliliğine dayanarak 
değerlendirmenin göz boyamaktan ibaret olduğu üzerinde durulmuştur.  

Anahtar Sözcükler: Model Değerlendirmesi, Tahmin Başarısızlığı, Model Seçimi 

1. Introduction 

There are four main purposes for building an econometric model: describing the 
evidence, testing economic theories, policy analysis, and forecasting.  Several steps are 
involved in a model’s construction. Empirical models need to be formulated, usually on 
the basis of subject-matter theory; selected from a potentially large class of 
‘representative’ models, according to some criteria (possibly including forecasting 
performance on subsamples of the available data); estimated by an appropriate 
statistical method; and evaluated, where the success of the finally chosen model is 
sometimes judged by its ‘end-of-sample forecasting performance’. When the sole 
purpose of a model is to make ex ante forecasts of future outcomes, the ‘accuracy’ 
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thereof as judged by some loss function can provide one useful evaluation criterion (see 
e.g., [1] and [2]). However, to quote Hendry [3]: 

Judging econometric models by their forecasting success seems such a 
natural procedure that it might occasion surprise to question its usefulness. 

As we will show below, the ability of forecasting to reveal even gross mis-specifications of 
a model depends both on the properties of the data processes and on the structure of the 
model: good models can forecast poorly and bad models can forecast well.  Of course, it 
is also true that good models can forecast well and bad models can forecast poorly, 
which makes it clear that forecast performance is not a discriminating criterion between 
good and bad models. 

Nevertheless, beliefs in the efficacy of judging a model, and the underlying theory, by its 
forecasts clearly persist. It is often claimed that ex ante forecasts are the strongest test 
of the validity of an estimated econometric model, and consequently, the failure of 
economists to forecast the large changes worldwide from the 2007–2010 financial crisis 
and ensuing recession signals the lack of scientific status of economics. A typical example 
is Gideon Rachman, Financial Times, September 6, 2010 citing Joe Stiglitz in support3. 
Clements and Hendry [4] provide two examples of such unsubstantiated claims. First: 

any inflation forecasting model based on some hypothesized relationship 
cannot be considered a useful guide for policy if its forecasts are no more 
accurate than ... a simple atheoretical forecast ... [5] 

That statement is despite the analysis in [6] showing that one should never select policy 
analysis models by forecast accuracy, nor necessarily reject their policy implications 
because of poor forecasts (notwithstanding the critique in [7]; see [8] for the history; 
and [9] for a counter-critique). Second: 

if a dynamic modeling approach is to be convincing, it needs to say 
something about the behavior of unemployment out of sample [10]. 

Clements and Hendry [4] consider the second paper in detail and conclude: 

Out-of-sample forecast performance is not a reliable indicator of whether an 
empirical model offers a good description of the phenomenon being 
modelled, nor therefore of the economic theory on which the model is based. 

An empirical model that produces forecasts for a future time period that transpire to be 
‘accurate’ for the later measured outcomes seems to deserve epithets like ‘credible’ or 
‘good’. However, even finessing the contentious issue of how to measure the ‘accuracy’ 
of forecasts (see [11] and section 4), using some new settings, we reiterate that there 
need be no connection between the validity, or verisimilitude, of a model, in terms of the 
‘goodness’ of its representation of the economy, and any reasonable measure of its 
forecast accuracy. 

The opening quote from Hendry [3] also makes clear that this issue has been a concern 
for some time–but Hendry was far from the first to discuss the problem. Mills [12] has 
recently reminded us that Bradford Bixley Smith [13] saw many of the key issues that 
would confront the analysis of nonstationary time series. Just before the onset of the 
1929 financial crisis and Great Depression, Smith wrote presciently about the problems 
of economic forecasting, in particular, see [14] and [15]. Somehow his research 
contributions to both modelling and forecasting were completely forgotten, despite being 
published in the Journal of the American Statistical Association. Hendry and Richard [16] 
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showed the dangers of evaluating estimated models by dynamic simulation outcomes, 
which are, of course, conditional multi-period ahead forecasts. Nevertheless, the issue 
remains both important and misunderstood, so we re-analyze the relation between the 
‘quality’ of a model and the ‘quality’ of its forecasts. 

The structure of the paper is as follows. Using examples from disciplines that are 
avowedly scientific, section 2 shows that forecast failure still occurs, so cannot entail any 
implications about scientific status. Section 3 proposes an analytic framework based on 
the four possible states of nature created by the combinations that a model is good or 
bad, and it forecasts well or badly. An explicit, if simple, example traces the many 
possible forecast errors that can occur. Section 4 shows how difficult it is to even 
measure the ‘accuracy’ of forecasts, then section 5 shows that a valid model can 
unfortunately forecast badly. 

Section 6 considers the conditions under which a poor model can nevertheless forecast 
successfully. Section 7 delineates the main causes of forecast failure, and section 8 
considers transformations that correct such forecast failure, without altering the ‘quality’ 
of the model in use. Section 9 concludes. 

2. No Discipline Should Be Judged by Its Forecasts 

If a failure to forecast entailed a lack of scientific status, that same charge could also be 
laid against a number of other disciplines that most people would doubtless class as 
sciences. As two examples, geologists and oceanographers failed to predict the 2004 
Indian Ocean tsunami; and NASA failed in its prediction that Apollo 13 would get to the 
Moon. These two examples highlight key insights. The former was due to a lack of both 
the pertinent information to forecast the undersea earthquake that caused the tsunami, 
and measuring instruments that could record its devastating progress, a lacuna now 
corrected by a system of satellites. The latter exemplifies ever increasing ‘forecast 
failure’, since the lunar module has still not arrived at its destination. Yet who would 
reject Newton’s laws of gravity, or even NASA’s forecasting algorithms, because of this 
outcome? Rather, the unanticipated explosion of an oxygen cylinder precipitated the 
problem–an accident outside the ‘universe’ of events considered when formulating the 
forecast. 

These are two of the many reasons why the financial crisis and its consequences were 
not forecast in advance: most of the information was lacking at the required time, and 
some of the causes (such as the bankruptcy of Lehman Brothers) were unanticipated till 
they happened. By itself, such a forecast failure tells us nothing more about the quality 
of economic reasoning or the entailed models than does Apollo 13 about Newton’s laws.  
As we have shown in previous research (see [17] and [18]), the forecasts from a given 
econometric model can be good or bad depending on how they are used, almost 
independently of the verisimilitude of the model. 

3. An Analytic Framework 

There are four possible states of nature, as follows: 

(I) A model forecasts successfully, and is indeed a valid representation of the relevant 
data-generating process (DGP) in-sample and over the forecast horizon. 

(II) A model forecasts successfully, but in fact is invalid as a representation of even the 
in-sample DGP. 

(III) A model deservedly suffers forecast failure because it is a poor approximation to the 
in-sample DGP. 
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(IV) A model suffers forecast failure, yet is a correct in-sample representation of the 
DGP. 

If all four cases can occur, then it should be clear that forecast performance cannot 
differentiate good from bad models. And all four can occur, as we now discuss. 

The first is obvious, but impossible to establish from the success of the forecasts alone: 
whether or not a model is a good representation of the DGP needs to be judged on that 
basis, and not on whether it can forecast the future. 

The second is sufficiently misunderstood that we devote section 6 to analyzing the many 
settings in which a model can forecast quite successfully, but in fact is an invalid 
representation of the DGP. Surprisingly, a model which uses no causal variables can be 
the ‘best’ forecasting device available. 

The third seems relatively obvious, but again with the caveat that whether or not it is a 
bad representation of the DGP has to be established independently of the quality of the 
forecasts. 

Finally, in section 5, we analyze the many possible causes of an outcome in which a good 
model of the DGP nevertheless suffers forecast failure. 

The analytical example below helps illustrate these four cases. It is an extension of that 
in [19] (see [20] for an exposition, and the excellent discussion in [21]). Consider a 
stationary scalar autoregressive DGP with an additional exogenous regressor �� such 
that: 

�� = � + ����	 + 
�� + �� where ��~ IN �0, ��
�� with |�| < 1 (1) 

and IN�0, σ�
�� denotes an independent normal distribution with mean, E���� = 0, and 

variance ����� = ��
�. Equation (1) can be rewritten in the equilibrium-correction form: 

∆�� = �� − 1!����	 − "! + 
��� − ϗ! + �� (2) 

where E���� = ϗ and: 

$���� = " =
� + 
ϗ
�1 − �!

 (3) 

When %��& is an innovation process, (1) is constant, �'(	 is known and the data are all 
correctly measured, then the ‘best’ possible forecast is based on knowing the DGP, so 
that: 

�)*'(	|' = � + ��' + 
�'(	 (4) 

with the forecast error: 

�) *'(	|' = �'(	 − �)*'(	|' = �'(	~+,�0, ��
�� (5) 

which has a mean of zero and a variance of ��
�. Consequently, a ‘good forecast’ �-*'(	|' is 

presumably one where E.�'(	 − �-*'(	|'/ ≅ 0  and V.�'(	 − �-*'(	|'/ ≅ ��
�. Unfortunately, the 

assumptions needed for (4) to produce the ‘perfect’ outcome in (5) are unrealistic, so let 
us ‘deconstruct’ the sources of possible forecast errors. The general case is considered in 
[22]. 



J. L. Castle and D. F. Hendry / İstanbul Üniversitesi İşletme Fakültesi Dergisi 40, 1, (2011) 1-14 © 2011 

 

5 

 

When (1) is the DGP, the parameters �, �, ϗ and 
 are constant in sample (already a 
strong assumption) and estimated over 2 = 1, … , 4, using "̂ = ��- + 
6ϗ-!/�1 − �-! from (3), 
then the forecast for 4 + 1 from �-' (an estimate of the forecast origin) using a forecast 
�̂'(	for �'(	 is: 

�-*'(	|' = "̂ + �-��-' − "̂! + 
6��̂'(	 − ϗ-!. (6) 

Denote all the expected values of the in-sample estimates by (e.g.) E�"̂� = "8 etc. The 1-
step ahead forecast error is �- *'(	|' = �9'(	 − �-*'(	|' where �9'(	is the ‘flash’ or initial estimate 
of �'(	 against which the forecast will be evaluated at time 4 + 1. Let �̅'(	 = ��9'(	 − �'(	! 
be the initial measurement error, and allow every forecast-period parameter to have 
changed from its in-sample value (denoted *, where from (3), the new equilibrium mean 
is "∗ = ��∗+ 
∗ϗ∗!/�1 − �∗! with |�∗| < 1!. Then �- *'(	|' leads to the forecast-error taxonomy in 
(7):4 

                �- *'(	|' ≅ �1 − �∗!�"∗ − "! − 
8�ϗ∗ − ϗ!                 [A] 

+ ��∗ − �!��' − "! + �
∗ − 
!��'(	 − ϗ∗!  [B] 

+ �1 − �!�" − "8! − 
�ϗ − ϗ8!    [C] 

+ �� − �8!��' − "! + �
 − 
8!��'(	 − ϗ∗!  [D] 

+ �1 − �8!�"8 − "̂! − 
8�ϗ8 − ϗ-!   [E] 

+ ��8 − �-!��' − "! + <
8 − 
6=��'(	 − ϗ!  [F] 

+ �̅'(	 + �8��' − �-'! + 
8��'(	 − �̂'(	! + �'(	.  [G] (7) 

The first two rows correspond respectively to terms arising from changes in means in [A] 
and slopes in [B], mean mis-specification in [C] and slope mis-specification in [D], mean 
and slope estimation in [E] and [F], and measurement mistakes and errors in [G]. 

First, if there is no parameter change, rows [A] & [B] will be zero. If there is no mis-
specification, [C] & [D] will be zero. If the estimation sample is very large, rows [E] & [F] 
will be negligible. And if the data are accurate and �'(	 is known, row [G] reduces to 
�'(	so then �-*'(	|' will deliver a ‘good forecast’. Thus, a good model can forecast well. But, 
as we will show, it need not. 

From (7), the 16 possible individual problems and all their joint occurrences create far 
too many cases to consider even for first moment mistakes (see [23] for a discussion of 
the general issue of forecast uncertainty), but the next two sections discuss a number of 
salient settings. However, that huge number of different ways in which a forecast can 
deviate from the ‘optimum’ in (4), despite the simplicity of this setting, signals why 
judging a model by its ex ante forecast performance may not be straightforward. 

  

                                           
4 This is deliberately simplified by dropping the interaction terms <
8 − 
6=�ϗ − ϗ-! + ��8 − �-!�" − "̂! − ��8 − �-!��' −
�4−
>−
�4+1−�4+1, which are usually of a smaller order in probability: the interested reader can add their 
implications to the analysis below. 
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4. Measuring Forecast ‘Accuracy’ 

The difficulty of simply measuring forecast ‘accuracy’ is emphasized by Clements and 
Hendry [11], prompting discussant’s comments that are longer than the original paper 
(also see those authors’ reply in [24] and an update in [25]: Ericsson [26] provides a 
clear introduction. One problem is the lack of invariance of conventional measures like 
mean-square forecast errors, (MSFEs), to admissible linear transformations of the 
variable being forecast, to whether a single or several variables are under consideration, 
and whether one or multi-step ahead forecasts are being evaluated. 

 

Figure 1 Who Wins: Forecaster α or b? 

Comparisons based on MSFEs can yield inconsistent rankings as apparently innocuous 
changes are made, as Figure 1 illustrates. In this simulated-data graph, when forecasting 
by �-'(? the level of a variable �'(?, ℎ = 1, … , A from a forecast origin at 4 = 1975�E! in the 
left-hand columns, forecaster α is apparently less accurate than �)'(? by forecaster b in 
the lower left panel, and indeed has a larger MSFE. Yet when forecasting the change 
∆�'(? in the right-hand panels, ∆�-'(? is clearly more accurate than ∆�)'(?, and now has a 
smaller MSFE. Worse still, since the forecast-origin value �' is known, the levels derived 
from the changes forecast by a can be cumulated as ∆y-G(	 + yG etc., to deliver much more 
accurate levels forecasts than the original (an illustration of the potential efficacy of an 
intercept correction). 

There are three important lessons from this simple example. First, without an explicit 
agreed measure, evaluation is simply not unique. Secondly, even a given set of forecasts 
like y-G(H is potentially subject to amendment by devices like intercept corrections: is one 
to evaluate the forecast or the model that made the forecast? Finally, while forecast 
evaluation could use a specific loss function, from which an optimal predictor is derived 
(as in [1] and [2]), the outcome now depends on the choice of that loss function, and 
well-defined mappings between forecast errors and costs are anyway not typical in 
macroeconomics (and could still not be invariant to admissible transformations as in 
Figure 1). It seems odd that a ‘gold standard’ should lack a unique measure of the 
quality of the gold. 
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5. A Valid Model Can Forecast Inaccurately 

There are four known situations under which an estimated correct specification of a DGP, 
with constant parameters both before and after forecasting, can nevertheless forecast 
inaccurately relative to its insample performance. These are: 

(i) a change in the collinearity of unmodelled exogenous variables, even when their 
future values are known; 

(ii)  measurement errors at the forecast origin; 

(iii) mis-measured flash estimates of the forecast outcome that will be revised later; and 

(iv) a changed measurement system. 

We address these in turn. It is well known that forecasts can be inaccurate in an absolute 
sense because of a low signal-to-noise ratio, but the cases here concern relative 
inaccuracy of forecasts as against fit. 

(i) Breaks in the marginal process alter the collinearities between explanatory variables, 
and this is important for its impact on the most collinear combination, which thereby has 
the smallest eigenvalue (say IJ) in the K L K data second-moment matrix (see [27]). In 
general, breaks reduce collinearities, and hence increase the smallest eigenvalue in the 
forecast period relative to its in-sample value (to say IJ

∗ > IJ). Thus, despite an increase 
in the information content of the data, there is an adverse impact on the MSFE when 
collinearity changes. Worse, that impact on MSFE depends on IJ

∗ /IJ , so can be very 
large, and is unavoidable because deleting the collinear variables does not help unless 
they are actually irrelevant. However, immediate updating of the parameter estimates in 
the next period can attenuate that effect. Nevertheless, a very bad forecast can result 
from a wellspecified, constant model in that setting. This result is ‘hidden’ in [E] and [F] 
in (7), which relates to first moments only. 

(ii) As briefly discussed above, measurement errors can be large at the forecast origin, 
and can deliver inaccurate forecasts despite the model being excellent. Given the correct 
specification and constant parameters in (7), but introducing mis-estimation of the 
forecast origin, so the model is correct but the data are not, forecast failure can occur: a 
good model can appear to forecast badly. It may not be known at the time of the 
forecast that the origin is badly measured, so for a while the forecast will be judged a 
failure. Later revisions will of course correct that mis-perception, but the point remains: 
forecast accuracy is an unreliable guide to model validity. 

(iii) As noted, this setting is similar to (ii), but now the mis-measurement occurs for the 
forecast outcome, initially suggesting that failure occurred when compared to an 
incorrect flash value for �'(	. Again, although later revisions may reverse that 
judgement, the point remains that an apparently bad forecast need not entail that the 
model is invalid. Castle, Fawcett and Hendry [28] consider differentiating between breaks 
and measurement errors at the forecast origin. 

(iv) Entire measurement systems can change. Judged against a new system, a good 
forecast can appear to be very bad. A ‘classic’ example is the major shift in the 
measurement of the opportunity cost of holding narrow money (M1) in the UK in 1984 
quarter 3. This was induced by the introduction of tax deduction before payment of bank 
deposit interest earnings and compulsory reporting thereof to the tax authorities,5 when 
previously interest income had been paid pre-tax and left to individual reporting (see 
[29] and [30]). Forecasts based on a model where the opportunity cost is measured by 

                                           
5 Finance Bill (no. 2)1984, clause 43: see http://www.legislation.gov.uk/ukpga/1984/43/schedule/8/enacted. 
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the outside interest rate are wildly inaccurate over the horizon after 1984, when high 
rates of interest were paid on checking accounts. However, they are as accurate as in-
sample fitted values when a model with identical estimated coefficients is used but with 
the correct (learning-adjusted) differential interest rate measure: see [31] for a recent 
update. 

Thus, these four examples illustrate how a good model can forecast poorly. The next 
section considers cases in which an invalid model can nevertheless forecast accurately. 

6. An Invalid Model Can Forecast Accurately 

In this section, we consider three cases where the forecasting model does not coincide 
with the DGP and yet this does not lead to forecast failure. First, in a stationary, ergodic 
world, empirical models whose parameters are estimated by least-squares must be 
consistent for their associated conditional expectations (when second moments exist). 
Under stationarity, sample second moments converge to their population counterparts, 
and so continuous functions thereof do so as well. Consequently, forecasts from such 
models must on average attain their expected accuracy unconditionally. Mathematical 
analyses are provided by Miller [32] and Hendry [33]. For the DGP in (1) under 
constancy, the main possible in-sample mis-specification is not knowing that �� should be 
included. When the DGP is constant and the data are correctly measured with means of 
zero, but �� is incorrectly omitted, then 
6 =  
8 = 0 in (7). However, that mistake adds 
very little additional cost to forecasting, as E.�- *'(	|'/ ≅ 0  when all variables have mean 
zero, although there is an additional variance term from 
�V�zG(	�. More importantly, the 
in-sample error variance estimate is ‘inflated’ by as much as the forecast-error variance, 
so the mis-specified model forecasts as well as is anticipated. A key reason for this state 
of affairs has been known since ancient times concerning ‘saving the appearances’. A 
classic example is the epicycle system of Ptolemy (see [34]), where the stationarity of 
the solar system’s behaviour entailed that even an incorrect model thereof would 
forecast approximately as accurately as it fitted.6 In economics, if some simple 
datatransformations (such as to growth rates) produced time series that were stationary 
and ergodic, forecasts on average would have the same error variances as within-sample 
fits and hence would reject �% of the time on a properly calibrated test with a theoretical 
rejection rate of �%. 

Next, in a correctly specified model of a stationary process, large-sample forecast 
accuracy only depends on the variance of the innovation process. By construction, that 
variance cannot be reduced without either extending the information set or reducing the 
implicit discrete-time measurement interval. Thus, the innovation variance provides an 
irreducible lower bound to forecast error variances if the observation period and the ex-
ante information set are fixed. When some component has a ‘large’ variance, then poor 
forecasts will result even from the ‘correct’ model, whereas, if the error variance is 
‘small’, one can obtain accurate forecasts despite using an inappropriate information set. 
Moreover, it can be proved that: 

a] the conditional expectation is the unbiased minimum MSFE predictor; 

b] a dominant, encompassing, model in-sample will provide the minimum MSFE forecasts 
in large samples. 

Unfortunately, such theorems are cold comfort in processes subject to unanticipated 
shifts. 

                                           
6 Spanos [35] shows that the Ptolemaic system can be rejected against the Copernican by the larger, and 
systematic nature of the, errors in the former. 
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Third, in processes where all the variables have zero means and no trends, the forecast 
error taxonomy in [17] shows that changes in the parameters can be very difficult to 
detect (also see [36]), a result that can be extended to include mis-specification of the 
model in use for the DGP. In (7), consider �∗ = � = 0 and ϗ∗ = ϗ = 0, so "∗ = " = 0, 
entailing that all variables have mean zero, and that is known, so that rows [A], [C] and 
[E] are zero. Given a large estimation sample size, correct specification, and accurate 
data, then rows [D], [F] and [G] in (7) are also approximately zero, other than �'(	, with 
E��'(	� = 0 and V��'(	� = ��∗!�

�. Then: 

E.�- *'(	|'/ ≅ $���∗ − �!�' + �
∗ − 
!�'(	� + E��'(	� 

= ��∗ − �!E��'� + �
∗ − 
!E��'(	� = 0, 

so the forecast is unbiased despite any changes in the parameters. Taking the special 
case where 
∗ = 
 and ignoring second-order effects for simplicity: 

V.�- *'(	|'/ ≅ �P∗ − �!�V��'� + ��∗!�
� 

Since|�| < 1  and |�∗| < 1, ��∗ − �!� will generally be small: e.g., for �∗ = 0.8 and � = 0.4, 
then ��∗ − �!� = 0.16. Thus, only a small fall in��∗!�

� is needed to leave V.�- *'(	|'/ ≅ ��
�. 

Despite the dynamic feedback coefficient having doubled, so the model is now a poor 
representation of ‘reality’, the forecast remains good on the usual criteria: a ‘changed’ 
model can even forecast quite well. 

Combining these mean-zero cases, so the model is mis-specified by omitting ��, and all 
the other parameters change, still entails a similar conclusion: $.�- *'(	|'/ ≅ 0, and 
V.�*'(	|'/ ≅ V��-��, so the forecasts look ‘fine’, as Monte Carlo simulations confirm. Most of 
these conclusions also hold for multi-step forecasts. 

7. The Causes of Forecast Failure 

When the DGP entails a non-zero equilibrium mean, " ≠ 0, either because � ≠ 0 or ϗ ≠ 0, 
then any change in parameters will induce systematic mis-forecasting, even if the model 
is correctly specified for the DGP in-sample and accurately estimated. Setting all rows 
[B]–[G] to have expectations of zero, row [A] alone delivers: 

E.�- *'(	|'/ ≅ �1 − �∗!�"∗ − "! − 
�ϗ∗ − ϗ! ≠ 0. (8) 

Furthermore, (2) ensures that such a forecast error will persist because the DGP will 
correct towards "∗ whereas the model reverts towards "̂. Written in equilibrium-correction 
form: 

DGP: ∆�'(? = �P∗ − 1!��'(?�	 − "∗! + 
∗��'(? − ϗ∗! + �'(? (9) 

Model:  ∆�-*'(?|' = ��- − 1!<�- *'(?�	|' − "̂= + 
6��'(? − ϗ-!.   (10) 

Since economic data are indices and can have arbitrary units (such as trillions versus 
billions), parameters like " and ϗ are arbitrary, yet determine the extent of systematic 
forecast failure after a shift. 

Section 6 showed that the mis-specification of incorrectly omitting �� hardly changed the 
apparent cost of forecast errors when all means were zero. A very different outcome 
emerges when intercepts are non-zero, even if they stay constant, so �∗ = � and ϗ∗ = ϗ. 
Now, even if � = 0, and despite the model being correctly specified with 
∗ = 
, � = �8 
etc., so only the dynamic feedback parameter ρ shifts, then from (7): 
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E.�- *'(	|'/ ≅ �1 − �∗!�"∗ − "! = 
ϗ
�W∗�W!

�	�W!
≠ 0, 

which can be extremely large depending on the magnitude of 
ϗ. Even more surprising, 
in such a setting, this failure is little affected by not including �� in the model, as (11) 
shows: 

E.�- *'(	|'/ ≅ �1 − �∗!�"∗ − "! + 
E��'(	 − ϗ� = �1 − �∗!�"∗ − "!. (11) 

Consequently, it is the existence of a non-zero mean for �� that causes forecast failure 
after the shift in �, not the goodness of the specification. 

The one case where the mis-specification of incorrectly omitting �� differs from including 
it is when the only shift is in ϗ to ϗ∗. Now, from (7), in the latter case, E.�- *'(	|'/ ~ 0 
whereas omission entails 
6 = 
8 = 0 so leads to: 

E.�- *'(	|'/ ≅ 
�ϗ∗ − ϗ8! = 
ϗ∗ (12) 

as ϗ8 = 0 when exclusion occurs. This is perhaps the case that may suggest that forecast 
evaluation is useful in model choice, since the failure is uniquely induced by the incorrect 
specification, but that is just one of dozens of possible sources of forecast failure. 

However, these results highlight a deeper problem discussed by Hendry and Mizon [37] 
(see [38] for a non-mathematical explanation): the very theorems that underpin 
intertemporal analyses in economics also fail when unanticipated shifts occur. 
Specifically, conditional expectations formed today for an outcome tomorrow are neither 
unbiased nor minimum MSFE, and the law of iterated expectations (namely the 
expectation today of the conditional expectation tomorrow equals the unconditional 
expectation tomorrow), no longer holds as the integrals required to prove the 
conventional result must be over the same distribution, but are now over different 
distributions. Forecast failure entails analytical failure. 

8. Correcting Forecast Failure 

Is all lost? Let us return to the Apollo 13 example: why are NASA’s forecasting algorithms 
not thrown into doubt despite a large forecast failure? The answer probably lies partly in 
their generic basis in Newton’s laws, which remain indubitable for such purposes, and 
partly in the fact that the same algorithms correctly forecast the new trajectory of the 
module almost immediately after the explosion, and indeed during the astronauts’ return 
to Earth. Thus, surely one should judge the model successful in the same way if a 
forecasting model had that property–namely that despite a failure from an unanticipated 
location shift it correctly forecasts shortly after. 

Unfortunately, forecast failure is relatively easily ‘hidden’ (or ‘fixed’) one period after 
such a location shift. Consider a one-step forecast from (10) at time 4 + 1 when the break 
occurred at 4, so that: 

∆�-*'(�|'(	 = ��- − 1!��'(	 − "̂! + 
6��'(� − ϗ-!. (13) 

As (13) shows, the initial forecast error will be essentially repeated, and a sequence of 
systematic, typically same-signed, forecast errors will occur. To avoid that problem, 
difference equation (13) instead of using (13) itself to produce: 

∆�-*'(�|'(	 = ∆�'(	 +  ��- − 1!∆��'(	 − "̂! + 
6∆��'(� − ϗ-! (14) 
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= ∆�'(	 + ��- − 1!∆�'(	 + 
6∆�'(�, 

taking the now known lagged value ∆�'(	 to the right-hand side. Compare that to the 
outcome of the equivalent operation on the DGP: 

∆�'(� = ∆�'(	 + ��∗ − 1!∆�'(	 + 
∗∆�'(� + ∆�'(�. (15) 

The difference between (14) and (15) is �) *'(�|'(	 = ∆�'(� − ∆�-*'(�|'(	, which is: 

�) *'(�|'(	 = ∆�'(	 + ��∗ − 1!∆�'(	 + 
∗∆�'(� + ∆�'(� − ∆�'(	 − ��- − 1!∆�'(	 − 
6∆�'(� 

               = ��∗ − �-!∆�'(	 + <
∗ − 
6=∆�'(� + ∆�'(�. (16) 

Hence, E.�- *'(�|'(	/ has a small value. Castle et al. [31] show how effective (14) can be at 
forecasting directly after a break. Other methods of offsetting shifts like those in (9) 
include intercept correction. 

An alternative interpretation is that forecasting growth rates makes judging failure much 
harder, which is indeed the case, but not necessarily for the reason in (16) (see [11]). A 
useful check is on the accuracy of the level outcome, which cumulates the forecast errors 
of the differences, and can reveal that, while the sequence of forecasts of (say) 1%, 1%, 
..., 1% never lie significantly outside their ex ante forecast intervals when the outcomes 
are 2%, 2%, ..., 2%, the cumulative error is 1%, 2%, ..., k% for k-steps ahead, which is 
eventually detectable as statistically unsatisfactory. 

9. Conclusion 

Judging the ‘validity’ of a model by the accuracy of its ex ante forecasts seems closer to 
fools’ gold than the gold standard that many seem to believe it is. We have shown how 
many factors determine the goodness or otherwise of a forecast, and how few depend on 
the verisimilitude of the model relative to the data-generating process. 

Not only does such an evaluation not discriminate good models from bad, selecting a 
model by its forecasting performance over a short period also places too much weight on 
a small set of data points designated the ‘forecast period’. 

How can one select then evaluate an empirical model? That is another, rather longer, 
story, to which a possible answer is offered in [39]. 
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