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Abstract 

This paper introduces and develops a novel and computationally feasible alternative 
approach to the analysis of categorical, dichotomous, and mixed data sets in structural 
equation models (SEMs) to overcome currently existing problems. Our approach is based 
on the Gifi system. The Gifi system uses the optimal scaling methodology to quantify the 
observed categorical variables. In the quantification process, information in the observed 
variable is retained in the quantified variable. That is, the Gifi system transforms 
categorical data to continuous data without destroying the scale properties of the 
categorical variables. The scaling is thus preserved in the transformed nonlinear 
continuous Gifi data space. Hence the transformation is invertible. This is one of the 
unique characteristics of the Gifi system which avoids the arbitrary thresholding 
specification that is currently practiced and used in the literature. After the Gifi 
transformation, we analyze the transformed data set using SEM based on the 
multinormal distributional assumption. Such an approach legitimizes the distributional 
assumption of multivariate normality in SEM.  

Information-theoretic model selection criteria such as Akaike’s [1] AIC, Bozdogan’s [2] 
Consistent AIC, called CAIC, and the information-theoretic measure of complexity ICOMP 
criterion of Bozdogan [3-7] are introduced and develop as measures of fit in SEMs. The 
model with the minimum values of the criteria is selected as the best fitting model 
among a portfolio of candidate models. 

We provide a real benchmark numerical example using SEM on a categorical data set 
which measures the quality of life (QOL) to illustrate the versatility and flexibility of our 
approach using the Gifi transformations on this data set and fit five alternative SEM 
models by scoring the model selection criteria.  
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Kategorik ve karma veri setlerinin yapısal eşitlik modellemesinde (YEM) Gifi 
yaklaşımı kullanımı ve bilgi karmaşıklığı kriteri (ICOMP) 

Özet 

Bu çalışmada Yapısal Eşitlik Modelleri’nde (YEM) kategorik, ikili veya karma veri setlerinin 
analizine ilişkin var olan problemleri çözmek için özgün bir alternatif yaklaşım olarak Gifi 
yöntemi önerilmiştir. Gifi yönteminde, kategorik değişkenleri nicel hale dönüştürmek için 
optimal ölçekleme yöntemi kullanılır. Nicelleştirme sürecinde gözlenen değişkendeki bilgi, 
dönüştürülmüş değişkende aynen korunur. Yani Gifi yöntemi, kategorik değişkenlerin 
ölçek özelliklerini bozmadan kategorik veriyi sürekli veriye dönüştürür ve bu dönüştürme 
işleminde herhangi bir bilgi kaybı söz konusu olmaz. Ölçek özellikleri, dönüştürülmüş 
doğrusal olmayan sürekli Gifi veri uzayında saklanır. Bu nedenle dönüştürme işleminden 
geriye dönüş mümkündür. Bu işlem, literatürde halen uygulanmakta olan rasgele 
belirlenmiş başlangıç değerlerini göz ardı eden Gifi sisteme özgün bir özelliktir.  

Gifi dönüşümünden sonra, çoklu normal dağılım varsayımına dayalı YEM kullanılarak 
dönüştürülmüş veri seti analiz edilmiştir. Böyle bir yaklaşım YEM’de, kategorik veriler için 
göz ardı edilen çok değişkenli normal dağılım varsayımını sağlamaktadır.  

Akaike’nin [1] Akaike Bilgi Kriteri (AIC), Bozdogan’ın [2] Tutarlı Akaike Bilgi Kriteri (CAIC) 
ve Bozdogan’ın [3-7] Bilgi Karmaşıklığı Kriteri (ICOMP) gibi bilgiye dayalı model seçim 
kriterleri YEM’de uyumun bir ölçümü olarak uygulanmaktadır. Minimum kriter değerini 
veren model, rakip modeller arasında veriye en iyi uyumlu model olarak seçilir. 

Bu çalışmada yaşam kalitesinin ölçüldüğü gerçek bir kategorik veri seti kullanılmıştır. Bu 
veri setine Gifi dönüşüm uygulayarak önerilen yaklaşımın çok yönlülüğü ve esnekliği 
gösterilmiştir. Ayrıca dönüştürülmüş veri seti üzerinden farklı YEM için model seçim kriter 
değerleri elde edilmiş ve minimum kriter değerini veren en iyi model belirlenmiştir.  

Anahtar Sözcükler: Yapısal Eşitlik Modelleri (YEM), Gifi Yöntemi ve Dönüşümü, Akaike Bilgi Kriteri 
(AIC), Tutarlı Akaike Bilgi Kriteri (CAIC), Bilgi Karmaşıklığı Kriteri (ICOMP) 

1. Introduction and Purpose 

In this paper, we shall introduce a new and novel data-analytic approach to modeling 
structural equation models (SEMs) with continuous, categorical and mixed data sets as 
an alternative to the currently practiced threshold modeling technique where the discrete 
data are treated as coming from a hidden continuous normal distribution with a specified 
fixed threshold. 

In general, factor analysis (FA), structural equation modeling (SEM), and other statistical 
modeling techniques have been developed under the assumption that the observed 
variables have continuous multivariate normal (Gaussian) distributions. These techniques 
are very much dependent upon the quality and type of the data set at the disposal of a 
researcher. But much of the real world data sets are of three types- continuous, 
categorical and mixed.  A continuous data set is one in which all the variables in it are in 
continuous form.  That is, all the variables are continuous. If a variable can take on any 
value between its minimum value and its maximum value, we call it a continuous 
variable; otherwise, it is called a discrete variable. A categorical data set is one in which 
all the variables in it are either ordinal (ordering of the categories exists) or nominal (no 
specific ordering of the categories exists). A particular form of categorical data set is a 
binary data set in which all the variables take values 0 and 1’s. A mixed data set is one 
which contains some of the variables in continuous form and the rest of the variables in 
categorical form. In other words, a mixed data set is a combination of both continuous 
and categorical variables.  
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In reality, much of the data sets obtained in behavioral, economic, medical, and social 
sciences typically involve a relatively small number of continuous variables. By and large, 
the measured variables are categorical, binary, or mixed data types. In such data 
structures, we cannot any longer assume multivariate normal distribution to model the 
data. 

Consequently, the analysis of SEMs with ordered categorical and mixed data sets is quite 
difficult and challenging. A major difficulty is that presence of categorical and binary (or 
dichotomous) variables violate the assumptions of continuity and multivariate normality 
that are needed in SEM. Also, a more serious consequence of the presence of discrete 
variables, in the form of categorical variables, is the violation of the covariance structure 
hypothesis [8]. Furthermore, we need to compute the multiple integrals associated with 
the cell probabilities that are induced by the ordered categorical variables [9].  

As is well known, structural equation models (SEMs) consist of two components, a 
measurement model and a structural model. When we have categorical, dichotomous or 
mixed data sets, these have implications concerning the measurement component of 
SEMs. The structural component of SEM remains intack and it is the same as in the 
continuous data case (Skrondal and Rabe-Hesketh [10, 11]).  

In reviewing the literature, we note that the early work in the analysis of factor analysis 
(FA) model and SEMs with categorical, dichotomous, and mixed data sets appear to be 
due to Christoffersson [12], Muthén [13-18], Muthén and Christoffersson [19], Muthén  
and Kaplan [20], Bartholomew [21], and Bartholomew [22], to mention a few. For a 
good source of a review article on the recent developments of the factor analysis (FA) of 
categorical variables, we refer the readers to Mislevy [23]. In most of these previous 
works by and large research focus has been on using the threshold modeling where the 
discrete data are treated as coming from a hidden continuous normal distribution with a 
specified fixed threshold.  Based on this, several multistage estimation techniques such 
as the weighted least-squares (WLS), generalized least-squares (GLS), and full and 
limited information techniques have been proposed and developed to reduce the 
computational complexity in SEMs. 

Most recently Lee [9], treating discrete data as observations coming from a hidden 
continuous distribution with a threshold specification, introduced a Bayesian approach for 
analyzing SEMs with categorical data sets. Although, this is an interesting approach, it 
still does not resolve the existing problems in SEMs. For example, in the Bayesian 
approach, we still need to evaluate the posterior distribution of the model which is rather 
complicated and, moreover, the analysis is computationally intensive using the Gibbs 
sampler method [24]. 

With these existing problems in mind, the primary objective of this paper is to introduce 
and develop a novel and computationally feasible alternative approach to analyze 
categorical, dichotomous, and mixed data sets in SEMs to resolve the existing problems. 
Our approach is based on the Gifi [25] system or transformation. The Gifi system uses 
the optimal scaling methodology to quantify the categorical variables. In the 
quantification process, information in the observed variable is retained in the quantified 
variable. In other words, the Gifi system transforms categorical data to continuous data 
without destroying the scale properties of the categorical variables and the 
transformation has the “one-to-one and onto” feature. In this manner, the scaling is 
preserved in the transformed nonlinear continuous Gifi data space. Hence, the 
transformation is invertible. This is one of the unique characteristics of the Gifi system, 
which avoids the arbitrary thresholding specification that is currently practiced and used 
in the literature. After the Gifi transformation, we can now analyze the transformed data 
set using SEM based on the multinormal distributional assumption. Such an approach 
legitimizes the distributional assumption of multivariate normality or other multivariate 
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distributions in SEM, since this can be easily tested using the existing multivariate tests 
in the literature.  

In addition to the introduction of the Gifi system or transformation, our objective in this 
paper is also to introduce and develop information-theoretic model selection criteria such 
as Akaike’s [1] classic information criterion (AIC), Bozdogan’s [2] Consistent AIC, called 
CAIC, and the information-theoretic measure of complexity ICOMP criterion of Bozdogan 
[3-7] as measures of fit in SEMs. The model with the minimum values of the criteria is 
selected as the best fitting model among a candidate of portfolio of models. 

The paper is organized as follows. In Section 2, we set up the general structural equation 
models (SEMs) with latent variables and measurement error. In Section 3, we briefly 
discuss SEMs with categorical, dichotomous, and mixed data sets and present the idea of 
threshold modeling. In Section 4, we introduce and discuss the Gifi [25] system. That is, 
we present homogeneity analysis and mapping the data to Gifi space. Section 5 presents 
several information-theoretic model selection criteria. For space considerations, we 
restrict the detailed proofs and dervations of these criteria where appropriate. For more 
details on information criteria, we will refer the readers to Bozdogan [3-7, 26, 27], 
Bozdogan and Haughton [28], Bozdogan and Bearse [29] and Bozdogan and Ueno [30]. 
In Section 6, we provide the derived forms of the model selection criteria in SEMs. In 
Section 7, we provide a real benchmark numerical example using SEM on a categorical 
data set which measures the quality of life (QOL) to illustrate the versatility and flexibility 
of our approach using the Gifi transformations on this data set and fit alternative SEM 
models by scoring the model selection criteria. We show that, the transformed 
categorical data using SEM is the best fitting model. Later, after we select the best 
model, we also choose the best parsimonious SEM using the information criteria. We 
compare our results with those obtained by Lee’s [9] using the Bayesian approach. 
Section 8 concludes the paper with some discussion and future work. 

2. The General Structural Equation Models (SEMs) with Latent Variables and 
Measurement Error 

During the past two decades, structural equation models (SEMs) have become a popular 
data-analytic tool in social and behavioral sciences for the analysis of the causal modeling 
of complex multivariate data sets. SEMs have been very useful in solving many 
substantive problems in several cross-disciplinary areas. These include, but are not 
limited to, engineering, management and information sciences, market research, 
genomic research involving DNA data mining. Because of their importance in data 
analysis, SEMs are well established and known under several other names, such as 
LISREL models, covariance structure models, and latent variables and measurement 
error models. An excellent review on SEMs in terms of statistical practice, theory, and 
directions can be found in Bentler [31] and the references therein. 

More formally, structural equestion models (SEMs) with latent variables and 
measurement error (or LISREL models) are those complex models involving specified 
causal structures among the unobserved latent variables or hypothetical constructs 
induced from the observed multivariate X-Y data. 

Given the observed data: 
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and 
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there are two aspects in the construction and the use of structural equations models 
(SEMs) in studying dependence. Hereafter, we will use the acronym SEM or SEMs for 
brevity. 

1) Structural dependence of the latent variables obtained from the measurement models, 
and 

2) The dependence among the p observed endogenous y-variables and the q exogenous x-
variables which are studied by the measurement models. 

In general, these two aspects are characterized within the full SEM given in Jöreskog and 
Sörbom [32] in matrix notation as follows. 

 
Structural equation model: 
  

 
( 1) ( )( 1) ( )( 1) ( 1)r r r r r s s r

Bη η ξ ζ
× × × × × ×

= + Γ +  (1) 

Measurement model for y: 
 

 
( 1)( 1) ( 1)( )

y
pp rp r

y η ε
×× ××

= Λ +  (2) 

Measurement model for x: 

 
( 1) ( 1)( 1)( )

x
q qsq s

x ξ δ
× ×××

= Λ +  (3) 

where η (eta) is a ( 1)r × vector of latent endogenous (or dependent) variables, ξ (xi) is 
( 1)s × vector of latent exogenous (or independent) variables, ζ (zeta) is ( 1)r × vector of 

latent errors in equations, B (beta) is a ( )r r× coefficient matrix for the latent 

endogenous variables, and Γ is a ( )r s×  coefficient matrix for the latent exogenous 

variables.  

The structural model specifies the causal relationships among the latent endogenous 
variables inB , between the exogenous and endogenous variables inΓ , and describes 
unexplained residuals of the latent factors inζ . 

The usual assumptions for the structural model are that: ( ) 0, ( ) 0, ( ) 0E E Eη ξ ζ= = = , ζ
is uncorrelated with ξ , and ( )I B− is nonsingular. The covariance matrices are: 

 ( ) ( )E phiξξ ′ = Φ  (4) 

is an ( )s s× covariance matrix of the latent exogeneous variables, and 

 ( ) ( )E psiζζ ′ = Ψ  (5) 

is a ( )r r× covariance matrix of the latent errors in equations.  
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The measurement model specifies how the observed variables, x and y , are determined 

through yΛ and xΛ by the latent variables, ξ  and η , respectively. The ε  and δ  terms 
represent the residuals in x and y  unexplained by ξ  and η . The usual assumptions are: 

( ) 0, ( ), ( ) 0,E E Eη ξ ε= = and ( ) 0E δ = . Furthermore, ε is uncorrelated with , ,η ξ and δ . 
Likewise, δ  is uncorrelated with , ,ξ η  and ε . The covariances matrices in the case of the 
measurement model are: 

 ( ) ( )E εεε ε′ = Θ = Σ  (6) 

a ( )p p× covariance matrix of ε , and 

 ( ) ( )E δδδ δ′ = Θ = Σ  (7) 

a ( )q q× covariance matrix of δ . 

For more on the above set up of SEM, we refer the readers to Jöreskog and Sörbom [32], 
Bollen [8], and others. 

2.1. Implied Model Covariance Matrix 

Let Σ  be the population covariance matrix of y and x , and let θ  be tha parameter vector 
of the model. ThenΣ  is a function of the free parameters in θ , denoted by ( )θΣ and is 

given by the following partitioned matrix of dimension ( ) ( )p q p q+ × + : 

 
1 1 1

1

( ) ( )
( )

( ) ( )

( ) ( )( ) ( )
.

( )

yy yx

xy xx

y y y x

x y x x

I B I B I B

I B
ε

δ

θ θ
θ

θ θ
− − −

−

Σ Σ 
Σ =  Σ Σ 

′ ′ ′ Λ − ΓΦΓ + Ψ − Λ +Θ Λ − ΓΦΛ
=  ′ ′ ′ ′Λ ΦΓ − Λ Λ ΦΛ +Θ 

 (8) 

Hence, if the structural equation model (SEM) is correct, then the basic fundamental 
hypothesis of the general SEM is 

 ( ).θΣ = Σ  (9) 

We note that the elements of the implied model covariance matrix ( )θΣ  is a function of 

the elements of yΛ , xΛ , B , Γ , Φ , Ψ , δΘ , and εΘ matrices. 

To be able to use the SEMs, we need to specify the pattern of the elements of these eight 
matrices. There are three kinds of specifications that are given in Jöreskog and Sörbom 
[32]. These are: 

1) Fixed parameters- that have been assigned given values, 
2) Constrained parameters- that are unknown but equal to one or more other 

parameters, and 
3) Free parameters- that are unknown and not constrained to be equal to any other 

parameter. 
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2.2. Estimation of Model Parameters 

To estimate the unknown parameters of the SEMs, with the assumption that the 
observed variables have a multivariate normal distribution, and providing that the model 
and parameter identifiability hold, we use one of the most popular methods. Namely, we 
use the maximum likelihood (ML) estimation.  

In SEM, there are usually more unobserved variables than observed variables in the 
model and identifiability depends on the choice of model and the specification of fixed, 
constrained, and free parameters. In SEM, there are 1 / 2( )( 1)p q p q+ + +  equation in t  

unknown parameters 1 2, , , tθ θ θK , t  being the total number of free parameters in the 

model. Hence, a necessary condition for identification of all parameters is that 

 
1

( )( 1).
2

t p q p q≤ + + +  (10) 

If a parameter θ can be determined from these equations, we say that this parameter is 
identified. Otherwise, it is not. Another way to check the parameter identifiability is to 
check the rank of the estimated Fisher information matrix of the model. Indeed, the 
existing canned “black-box” SEM software checks the identification of the model by 
checking the positive definiteness of the information matrix (FIM). For more on these, we 
refer the readers to Jöreskog and Sörbom [32]. 

Under the assumption that the observed variables are continuous and have interval 
scales, we consider that 

 ( )( )( , ) 0, ) ( )~ (p qz y x N multivariate normalθ+′ ′ ′= Σ  (11) 

with the probability density function 

 
1 2( ) 2 1

( ; ) (2 ) ( ) exp ( ) .
2

p qf z z zπ θ θ−− +  ′Σ = Σ − Σ 
 

 (12) 

Suppose we have a random sample of n observations 1 2, , , nz z zK . We define the likelihood 

of all the samples for the SEM by 

 
2( ) 2

1

1
( ) (2 ) ( ) exp ( ) .

2

n
nn p q

i i
i

L z zθ π θ θ−− +

=

 ′= Σ − Σ 
 

∑  (13) 

The log likelihood function is 

 

( )
1

1

1
( ) log ( ) ( ) log(2 ) log ( ) ( )

2 2 2

( ) log(2 ) log ( ) ( ) ,
2 2 2

n

i i
i

n n
l L p q z z

n n n
p q tr S

θ θ π θ θ

π θ θ

=

−

′≡ = − + − Σ − Σ

= − + − Σ − Σ

∑
 (14) 

where S  is the sample ML estimator of the covariance matrix of the data which uses n as 

the divisor. That is, /S A n= , and where 
1

n

i i
i

A z z
=

′=∑ is the sums-of-squares-and-cross-

product (SSCP) matrix. 

The negative two times the log likelihood function becomes 
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 ( )12 ( ) 2log ( ) ( ) log(2 ) log ( ) ( ) .l L n p q n ntr Sθ θ π θ θ−− ≡ − = + + Σ + Σ  (15) 

Instead of maximizing the log likelihood function, we equivalently minimize the following 
fit (or discrepancy) function to obtain the MLE’s. 

 ( )1log ( ) ( ) log ( ).MLF tr S S p qθ θ−= Σ + Σ − − +  (16) 

Similarly, other specific fit functions are based on different types of parameter estimates. 
The most commonly used ones are: unweigted least squares (ULS), weighted least 
squares (WLS), and the generalized least squares (GLS). 

There are many small scale practical examples where explicit solutions for the structural 

parameters which minimize MLF exist. However, in general, in SEMs, the implied model 

covariance matrix ( )θΣ , even in the simplest hybrid models is a nonlinear function of the 

parameters, and, consequently, of the parameter estimates. This makes MLF a 

complicated nonlinear function of the structural parameters, and explicit solutions are not 
always found (Bollen [8, p. 108]). Therefore, in the literature of SEM, there are several 

iterative algorithms used to minimize MLF to find the maximum likelihood (ML) estimators 

of the structural parameters. These include, Fletcher-Powell [33] (FP), Fletcher-Reeves 
[34] (FR), Gauss-Newton (GN), Newton-Raphson (NR), and Fisher Scoring (FS) 
algorithms. For the analysis of SEM, these algorithms are implemented in various existing 
standard canned computer programs such as LISREL (Jöreskog and Sörbom [32]), EQS 
(Bentler [35]), and other computer packages.  

The minimization procedure, for example, for the Fletcher-Powell (FP) algorithm uses the 

first-order derivatives and approximations to the second-order derivatives of MLF , and 

the convergence of the algorithm is quite rapid to obtain the MLEs. At the convergence, 

let ˆˆ ( )θΣ  denote the maximum likelihood estimator (MLE) of the implied covariance 

matrix ( )θΣ . Then, the estimated implied model covariance matrix is 

 
1 1 1

1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )( ) ( )ˆˆ ( ) .
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )

y y y x

x y x x

I B I B I B

I B

ε

δ

θ
− − −

−

 ′ ′ ′Λ − ΓΦΓ +Ψ − Λ +Θ Λ − ΓΦΛ
Σ =  

′ ′ ′ ′Λ ΦΓ − Λ Λ ΦΛ +Θ  
 (17) 

For a comprehensive review of the iterative algorithms for SEM, we refer the readers to 
Lee and Jennrich [36] and Jamshidian and Bentler [37]. 

2.3. Fisher Information Matrix (FIM) and Its Inverse (IFIM) 

Let θ̂ denote a vector of maximimum likelihood (ML) estimates of the model structural 
parameters that maximizes log ( )L θ in (14), or equivalently, minimizes MLF and that both 

functions contain the sample covariance matrix S  of the observed variables. 

Let us denote 

 
( )2 log

( )
L θ

θ
θ θ

∂
=

′∂ ∂
e  (18) 

to be the Hessian matrix of the log likelihood function. Then the expected Fisher 
information, or in short Fisher information matrix (FIM) is defined as 
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( )
( )2 2

( ) ( )

log
.

2
ML

E

L n F
E E

θ θ

θ
θ θ θ θ

= −

  ∂  ∂ = − =      ′ ′∂ ∂ ∂ ∂     

c e

 (19) 

If we are able to take the expectation in (19), then the estimated covariance matrix 
ˆˆ ( )Cov θ of the parameter vector of the model, or quivalently, the estimated inverse Fisher 

information matrix (IFIM) ˆ JN
c  is given by  

 

( )
1

2

ˆ

logˆˆ ˆ( ) .
L

Cov E
θ θ

θ
θ

θ θ

−

=

  ∂ 
= = −  ′∂ ∂   

JN
c

    

(20) 

If we cannot take the expectation in (19), then the estimated inverse of the observed 

Fisher information matrix ˆ
Obs
JN

c is given by 

 
( )

ˆ

1
2 logˆ .Obs

L

θ θ

θ
θ θ

=

−
  ∂ 

= −  ′∂ ∂   

JN
c  (21) 

The primary advantage of using ˆ JN
c over ˆ

Obs
JN

c as an estimator of 1−
c is that ˆ JN

c is a 

maximum likelihood estimator (MLE) of 1−
c  which follows from the invariancy property 

of the MLE’s. In many cases, taking expectations is difficult especially when the log 
likelihood function is a nonlinear function of the parameters. In such cases, working with 
ˆ

Obs
JN

c  is a reasonable choice. Indeed in SEM software such as EQS, LISREL, Mplus, SAS 

(Calis), the standard error of the parameter for the jth parameter in θ is computed as 

 

 ˆ ˆ( )j jjSE θ = JN
c  (22) 

where ˆ
jj
JN

c
 
is the ( , )j j th  entry of ˆ JN

c . 

Since we assumed that the observed variables are continuous and have interval scales, 

and since ( )( )( , ~) 0, ( )p qz y x N θ+′ ′ ′= Σ multivariate normal, modifying the results in 

Bozdogan [38], Williams, Bozdogan, Aiman-Smith [39], and following the derivations in 
Bozdogan [7], the estimated inverse-Fisher information matrix (IFIM) for the general 
SEM is given by 
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 (23) 
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where ˆˆ ( )θΣ  is given in (17). In (23) the matrix ( )p qD+
+ is the Moore-Penrose inverse of 

the duplication matrix ( )p qD + . The duplication matrix ( )p qD +  
is a unique 

2 1
( ) ( )( 1)

2
p q p q p q+ × + + + matrix, and so its Moore-Penrose inverse is 

 ( ) 1

( ) ( ) ( ) ( )p q p q p q p qD D D D
−+

+ + + +′ ′=  (24) 

which is a 
21

( )( 1) ( )
2

p q p q p q+ + + × +
 
matrix. Further, note that  

 ( ) ( )( )
ˆ ˆˆ ˆ( ) ( ) ,p qD vech vecθ θ+ Σ = Σ  (25) 

where ( )vech • denotes the half-vec operator. For any ( )m m×  matrix A  the vector 

( )vech A  denotes the 1 2 ( 1) 1m m + ×  vector that is obtained from ( )vec A by eliminating 

all supradiagonal elements of A . For example, for 2m = ,  

 ( ) ( )11 21 12 22 11 21 22( ) , , , ( ) , , .vec A a a a a and vech A a a a′ ′= =  

where the supradiagonal element 12a has been removed. Thus, for symmetric A , ( )vech A

only contains the distinct elements of A . Now, if A  is symmetric, the elements of 
( )vec A are those of ( )vech A with some repetitions. For more on these, see, e.g., Magnus 

[40], and Magnus and Neudecker [41]. 

We shall use these results in computing the information complexity (ICOMP) criterion 
later for the fitted structural equation models (SEMs).  

LISREL computer program checks the parameter identifiability by computing the Fisher 
information matrix (FIM) and the standard errors (SEs) of the parameters. If FIM is 
positive definite, then the model and the structural parameters are identified. If FIM is 
singular, the model and the structural parameters are not identified.  

3. SEMs with categorical, dichotomous, and mixed data sets: The current state 

As we note from the discussion of in Section 2 above, and in general, the theory of factor 
analysis (FA) and structural equation models (SEMs) have been developed under the 
assumption that the observed variables have continuous multivariate normal (Gaussian) 
distributions. These techniques are very much dependent on the quality and type of the 
data sets at hand.  

In reality, much of the data sets obtained in behavioral, economic, medical, and social 
sciences usually involve a relatively small number of continuous variables. By and large, 
they contain many categorical, binary, or mixed variables. In such data structures, we 
cannot any longer assume multivariate normal distributions to model the data. 
Consequently, the analysis of SEMs with ordered categorical and mixed data sets is quite 
difficult and challenging. This is due to the fact that, presence of categorical and binary 
(or dichotomous) variables violate the assumptions of continuity and multivariate 
normality that are needed in SEM. Also, a more serious consequence of the presence of 
these discrete variables is the violation of the covariance structure hypothesis [8, p. 
434]. Furthermore, we need to compute the multiple integrals associated with the cell 
probabilities that are induced by the ordered categorical variables [9, p. 141].  
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In the literature of SEM, currently, the state-of-the affairs is that when the categorical 
variable is ordinal it is thought of as the discretized version of unobserved continuous 
variable and where the discrete data are treated as coming from a hidden continuous 
normal distribution with a specified fixed threshold. It is because of this that the name 
“threshold model” is used. 

Threshold model: 

Let 
*
jy denote the latent continuous variable and let jy  be the corresponding observed 

ordered categorical variables with jc response categories. Each observed categorical 

response jy
 
is related to a latent continuous response 

*
jy  via a threshold model.  For 

ordinal observed responses it is assumed that  

 

*
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
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M  (26) 

where ,1 ,2 , 1, , ,
jj j j cτ τ τ −L are thresholds. For example, if we have four odered response 

categories, Figure 1 shows the histogoram of four odered response categories.  

 

Figure 1 Histogoram of Four Odered Response Categories [42] 

Figure 2 shows the underlying normal distribution with a threshold specification. 

 

 

Figure 2 The Underlying Normal Distribution with a Threshold Specification [42] 

The ordered categorical observations that give the histogram in Figure 1 can be captured 
by the standard normal distribution (0,1)N  with appropriate thresholds as in Figure 2. 
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For a random vector 1 2( , , , )py y y y= K of ordinal categorical items, the distribution of the 

underlying continuous random vector 
* * * *

1 2( , , , )py y y y= K  is multivariate normal with a 

correlated structure.  As the probability density function of y involves a complicated 
integral of high dimension, the statistical analysis is nontrivial and challenging. In the 
literature, current research focus has been on using the threshold modeling where the 
discrete data are treated as coming from a hidden continuous normal distribution with a 
specified fixed threshold.  Based on this, several multistage estimation techniques such 
as the weighted least-squares (WLS), generalized least-squares (GLS), and full and 
limited information techniques have been proposed and developed to reduce the 
computational complexity in SEMs. 

Most recently Lee [9], treating that the discrete data as observations coming from a 
hidden continuous distribution with a threshold specification, introduced a Bayesian  
approach for analyzing SEMs with categorical, dichotomous, and mixed data sets.  

Although, Bayesian approach is an interesting approach, it still does not resolve the 
currently existing problems in SEMs. For example, in the Bayesian approach, we still 
need to evaluate the posterior distribution of the model which is rather complicated and, 
moreover, the analysis is computationally intensive using the Gibbs sampler method 
[24]. 

With these existing problems in mind, and rather than assuming that the discrete data 
are treated as coming from a hidden continuous normal distribution with a specified fixed 
threshold, in the next section we introduce a rather novel and computationally feasible 
alternative approach to analyze categorical, dichotomous, and mixed data sets in SEMs. 

This approach is called the Gifi system or transformation.  

4. Homogeneity Analysis and Mapping the Data to Gifi Space 

The Gifi [25] system was originally developed by Albert Gifi at the Department of Data 
Theory at Leiden University dating back to 1968. This novel procedure was later 
popularized in the Netherlands and nore widely in Europe by the emergence of the Gifi 
[25] book by his academic followers. For this see, e.g., Heiser and Meulman [43], 
Meulman [44-49], Meulman and der Kooij [50], Meulman et al. [51], and Michailidis and 
de Leeuw [52] who reviewed the concepts of Gifi transformation applied on a pure 
categorical data set. It was shown in detail the application of several classical 
multivariate techniques on the transformed scale to identify patterns in the categorical 
set.  

In the United States, not much work has been done using this procedure from model 
selection point of view, except the work of Katragada [53], Katragada and Bozdogan 
[54]. 

4.1. What is Optimal Scaling? 

The idea behind optimal scaling is to assign numerical quantifications to the categories of 
each variable, thus allowing standard procedures to be used to obtain a solution on the 
quantified variables. The optimal scale values are assigned to categories of each variable 
based on the optimizing criterion of the procedure in use. Unlike the original labels of the 
nominal or ordinal variables in the analysis, these scale values have metric properties. 

Two algorithms are used to analyze the data in Gifi space. One algorithm is Optimal 
Scaling Method (OSM) and other one is Linear Combination Method (LCM). In OSM, the 
p-dimensional categorical variables are transformed to p-dimensional continuous 
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variables. The LCM, on the other hand, does linear combinations of the categories of the 
p-dimensional categorical variables and transforms them into 1-dimensional continuous 
space. LCM is useful when the dimension of the categorical variables is very large. 

Let ( )1, , , ,j mk k kK K  be the m-vector containing the number of categories of each 

variable, and let p denote the dimensionality of the analysis that one needs to choose. 

Let each variable ( 1, , )j j mν = K be coded into an ( )jn k×  indicator matrix jG . An 

indicator matrix indicates which categories are scored by which objects. Rows of an 
indicator matrix usually refer to objects and columns to categories. Its elements consist 
of zeros (not scored) and ones (scored).  

Homogeneity analysis determines quantifications of the categories of each of the 
variables such that homogeneity is maximized. Let � be the ( )n p× matrix (usually � ≤ �) 

containing the object scores. If jy , a jk -vector, is the quantification of the categories of 

variable jν , then j jG y  represents a single quantification or transformation of the n 

objects for variable jν . Without additional conditions on the jy , objects in the same 

categories get the same quantification. In homogeneity analysis, simultaneous 

quantifications for each of the variables are collected in the jk p×  matrices jY , called 

multiple nominal quantifications. Thus matrices j jG Y  induce p  multiple quantifications of 

the objects for variable jν . For example, 
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 (27) 

where j jG y  represents a single transformation of the n  objects induced by variable j . 

Perfect homogeneity is defined if all multiple quantifications of the objects are the same 

for all variables which means that 1 1 m mX G Y G Y= = =L . Homogeneity analysis thus 

amounts to minimizing 

 

( ) ( )

( ) ( )

1
1
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1
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m j j
j

j j j j

X Y Y SSQ X G Y

trace X G

m

Y X
m

G Y

σ
=

…… = −

′= − −

∑
 (28) 

over object scores X and multiple nominal quantifications jY
 
under appropriate 

normalization conditions. It should be emphasized that the choice of normalization of X  
is crucial. In equation (28), ( )SSQ •  denotes the sum of squares. The loss function in 

equation (28) is at the heart of the Gifi [25] system.  
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We minimize the above loss function simultaneously over X and jY  by employing an 

iterative method called Alternating Least Squares (ALS) algorithm.  After the current 
quantifications are used to find a solution, the quantifications are updated using that 
solution. The updated quantifications are then used to find a new solution, which is used 
to update the quantifications, and so on, until some criterion is reached that signals the 
process to stop. 

4.2. Dimensionality 

The dimensionality p  is important in this study, because choosing a different 
dimensionality will lead to different transformations of the data as we can no longer 
assume the solutions to be nested when we require category points to be on a line. 
Multiple nominal variables have different quantifications in p dimensions. In general, the 
categories of non-multiple-nominal variables fit on a straight line. If there are no 
dependencies in the data, the maximum number of dimensions, when the first α
variables are multiple nominal, is 

 
1

( 1) ( )j
j

k m
α

α
=

− + −∑  (29) 

In the case of non-multiple-nominal variables only, people use the first p  dimensions for 

which the eigenvalues ( 1, , )j j pλ = K  of the correlation matrix between the quantified 

variables is larger than1/ m . If a dimension has an eigenvalue smaller than1/ m , it 
explains less variance than an individual variable; such a dimension has little or no 
generalizability. If there are multiple nominal variables, there is no easy rule. It remains 
true that if an eigenvalue is smaller than the reciprocal of the maximum number of 
dimension, the corresponding dimension has little generalizability and could better be 
discarded. 

4.3. Optimally-Scaled Analysis 

We suppose our observations are measured on a set of nominal, ordinal or numerical 
variables or any mixture of these variables collected in a data matrix X ( )n p× in which 

the rows correspond to n objects (or individuals) measured on m columns (variables). 

Suppose for the ( )m α− non-multiple nominal variables that j j jq G y= and :jq I R→ is a 

function that assigns quantifications to the categories of variable jν , such that the 

transformed categories j j jq q ν=
 
are optimally scaled. This produces a p-dimensional 

matrix X  of scores for all objects where X  is the ortho-normalized (on Ω ) version of  
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= + 
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We define scores in X  with means zero, and uncorrelated dimensions for the n
observations. Then we propose to use nonparametric discriminant procedures to estimate 
the unknown distribution of the object scores X  which are the (standardized) averages 

over quantified variables
t

j jq a . 

After transforming the mixed-data into a Euclidean space, the new data preserves the 
information as the one before the transformation. The only new characteristic of the 
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transformed data is to be homogeneous, continuous, and free of any distribution. Once 
the nonlinear variables are transformed to a linear scale (Euclidean space), we apply SEM 
on the transformed continuous data to carry out our analysis under a multivariate 
distributional assumption. Of course, any distributional assumption requires mostly 
multivariate normality assumption at the outset as the starting point. But one should 
bear in mind that this may not be tenable always. What is unique and advantageous 
about our proposed approach is that, we do not need to assume that the observations 
are coming from a hidden continuous distribution with a threshold specification to 
analyze SEMs with categorical, dichotomous, and mixed data sets.  

In the next section, Section 5, we discuss the information theoretic model selection 
criteria we use in this paper and give their derived forms for SEMs. 

5. Information Theoretic Model Selection Criteria and Complexity Measure 

As is well known model selection is arguably one the most fundamental problems in 
scientific research. One of the major difficulties in statistical modeling of data is the 
choice of an appropriate model that fits the data. The main purpose of model evaluation 
is to “understand” the observed data. Researchers and practitioners alike seek to learn 
the model and study the quality of the model by a process which is called statistical 
model identification or selection. In recent years, in the literature, the necessity of 
introducing the concept of model selection has been recognized and the problem is posed 
in how to choose the “best approximating” model among a class of competing models 
with different numbers of parameters by a suitable model selection criterion given a data 
set. Also, there is presently a great deal of interest in simple criteria represented by 
parsimony of parameters for choosing one of a set of competing models to describe a 
given data set. The general principle for parsimony is that a simpler model is preferable 
to a more complex one, known as Occam's razor, named after the English Franciscan 
friar William of Ockham who is known in the scientific community by his famous razor. 
Occam's razor states that “entities should not be multiplied beyond necessity.” It 
advocates the simplest possible explanation for the data that we have observed, but no 
simpler explanation than that (see, e.g., Bozdogan [2, 7], Paquet [55], and others.). 

Therefore, to operationalize these concepts in statistical modeling and model evaluation 
problems, the concept of information theoretic or entropic underpinning and a measure 
of complexity plays an important role. At the philosophical level, complexity involves not 
just the number of parameters but also the notion of connectivity patterns and the 
inderdependencies of the estimated parameters of the model and its model components. 
Without a measure of “overall” model complexity, prediction of model behavior and 
assessing model quality is difficult. This requires detailed statistical analysis and 
computation to choose the best fitting model among a portfolio of competing models for 
a given finite sample Bozdogan [2]. 

Based on Akaike’s [1] classic AIC , in the literature many model selection procedures that 
take the form of a penalized likelihood (a negative log likelihood plus a penalty term) 
have been proposed.  

For a general multivariate linear or nonlinear model defined by 

Statistical Model=Signal+Noise, 

a summary diagram for AIC  and ICOMP in terms of a loss function is given by  
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Lack of fit
AIC

Loss ICOMPLack of Parsimony

Profusion of Complexity


⇒ 

= ⇒+ 
+   

5.1. Akaike’s Information Criterion (AIC) 

AIC  is considered as the grandfather of all the information criteria. It was first 

developed and introduced by Akaike [1]. Since its introduction, AIC  has had a 
fundamental impact on statistical model evaluation in scientific research. The introduction 
of AIC  transformed the recognition of good modeling in statistics away from 
conventional hypothesis testing type procedures. As a result, many important statistical 
modeling techniques have been developed in various cross-disciplinary fields. 

AIC as an extension of the maximum likelihood principle is a measure of the “goodness 
of fit” of a model to the data. Data with greater uncertainty will exhibit less information. 
Akaike’s [1] information criterion (AIC) is defined by 

 ˆ( ) 2 log ( ) 2 ( ),kAIC k L m kθ= − +  (31) 

where ˆ( )kL θ  is the maximized likelihood function, k̂θ is the maximum likelihood estimate 

of the parameter vector kθ  under the model kM , and ( )m k is the number of free 

parameters estimated within the model (the penalty component) which is a measure of 
complexity that compensates for the bias in the lack of fit when the maximum likelihood 
estimators (MLEs) are used. Therefore, in AIC, the compromise takes place between the 

maximized log likelihood, i.e., ˆ2 log ( )kL θ− (the lack of fit component) and m(k), the 

number of free parameters estimated within the model (the penalty component). 

For an untrained eye, the AIC can be easily explained as a punishment fitness function, 
because it punishes the model for any variation that the model fails to explain, and at the 
same time, for any additional number of parameters that the model employs. The 
minimum of AIC is chosen to indicate the best fitting model. 

5.2. Consistent Akaike’s Information Criterion (CAIC) 

Since it is well known that AIC  has several disadvantages, i.e., there is an overfitting 
tendency and there is no model selection consistency, to penalize the 
overparametrization more strongly, Bozdogan [2] improved and extended AIC   

analytically in several ways. These extensions make AIC  asymptotically consistent, and 
that overparameterization is penalized more stringently to pick the simplest of the true 
models whenever there is nothing to be lost in doing so. Here, we only give one of the 
forms of these extensions. 

The Consistent AIC  is defined by 

 ˆ( ) 2 log ( ) ( )[log( ) 1],kCAIC k L m k nθ= − + +  (32) 

where log( )n  denotes the “natural logarithm” of the sample sizen , and ( )m k is the 

number of free parameters estimated within the model (the penalty component) when 

kM is the model. 
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Similar to AIC , the minimum of CAIC is chosen to be the best fitting model among a 

portfolio of competing alternative models. Note that CAIC  punishes the model more 

stringently than does AIC . 

5.3. Information Complexity (ICOMP) Criteria 

To measure how the parameter estimates are correlated with one another in the model 
fitting process, that is, to take into account the “Profusion of Complexity”, and to guard 
against model misspecification of structural relationships, Bozdogan [4, 6, 7] introduced 
several forms of a new class of information-theoretic measure of complexity criterion 
called ICOMP as a decision rule for model selection in statistical modeling to help provide 
new approaches relevant to statistical inference. In ICOMP, I is for information and COMP 
for complexity to distinguish it from other non-information theoretic complexity 
measures.  

The development of ICOMP has been motivated in part by Akaike’s [1] classic AIC . 

However, in contrast to AIC , ICOMP is based on the structural complexity of an element 
or set of random vectors via a generalization of the information-based covariance 
complexity index of van Emden [56].  

5.3.1. ICOMP as an Approximation to the Sum of Two Kullback-Leibler 
Distances 

Instead of penalizing the number of free parameters directly, ICOMP penalizes the 
covariance complexity of the model. It is defined by 

ˆ ˆ2 log ( ) 2 ( ),k ModelICOMP L Cθ= − + Σ  (33) 

where ˆ( )kL θ  is the maximized likelihood function, k̂θ is the maximum likelihood estimate 

of the parameter vector kθ  under the model kM , and C represents a real-valued 

complexity measure and ˆˆˆ ( )Model kCov θΣ =  represents the estimated covariance matrix of 

the parameter vector of the model. This covariance matrix in ICOMP is estimated several 
ways. One of the ways to estimate this covariance matrix is to use the celebrated 
Cramer-Rao lower bound (CRLB) matrix through its inverse. That is, the estimated 

inverse Fisher information matrix (IFIM) ˆ JN
c of the model given by 
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θ

θ
θ θ

−
  ∂ 

= −  ′∂ ∂   
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(34) 

where the expression in bracket is the (s s)× matrix of second partial derivatives of the 

log-likelihood function of the fitted model evaluated at the maximum likelihood 

estimators θ̂ . For this, see, e.g., Cramér [57] and Rao [58-60]. 

The estimated IFIM provides us an achievable accuracy of the parameter estimates by 
considering the entire parameter space of the model. IFIM is a measure of the best 
precision with which a parameter can be estimated from statistical data. It measures the 
quantum of information and measures the curvature of the log likelihood function of the 
model. The diagonal elements of IFIM contain the estimated variances or squared 
standard errors of the estimated parameters, while the off-diagonals of the matrix 
contain their covariances.  



E. Deniz Howe, H. Bozdogan, S. Katragadda / İstanbul Üniversitesi İşletme Fakültesi Dergisi 40, 1, (2011) 86-
123 © 2011 

103 

 

In its general form, for univariate and multivariate models (linear and/or nonlinear) 
ICOMP is defined by 

 1
ˆ ˆ2log ( ) 2 ( ),kICOMP L Cθ= − + JN

c  (35) 

where 

 1

ˆ 1ˆ ˆ( ) log log
2 2

s tr
C

s

 
= − 

 

JN
JN JNc

c c  (36) 

is the maximal information complexity of the estimated inverse Fisher information matrix 

(IFIM) of the model, and where ˆ ˆdim( ) ( ).s rank= =JN JN
c c  

The use of 1
1

ˆ( )C −
c in the information-theoretic model evaluation criteria takes into 

account the fact that as we increase the number of free parameters in a model, the 
accuracy of the parameter estimates decreases. As preferred according to the principle of 

parsimony, ( )ICOMP IFIM chooses simpler models that provide more accurate and 

efficient parameter estimates over more complex, overspecified models.  

We note that, the trace of IFIM in the complexity measure involves only the diagonal 
elements analogous to variances while the determinant involves also the off-diagonal 

elements analogous to covariances. Therefore, ( )ICOMP IFIM  contrasts the trace and 

the determinant of IFIM , and this amounts to a comparison of the geometric and 
arithmetic means of the eigenvalues of IFIM  given by 

 ( ) ( ) ( )ˆ2 log log / ,M a gICOMP IFIM L sθ λ λ= − +  (37) 

where 1 1ˆ ˆˆ ˆdim ( ) ( )s rankθ θ− −= =c c , and where aλ is the arithmetic mean and gλ  is the 

geometric mean of the eigenvalues of 1ˆ −
c . 

We note that ( )ICOMP IFIM  now looks in appearance like the CAIC  of Bozdogan [2], 

Rissanen’s [61]MDL , and Schwarz’s [62] Bayesian criterion SBC , except for using 

( )log /a gλ λ  instead of using ( )log n  denotes the natural logarithm of the sample sizen .  

A model with minimum ( )ICOMP IFIM  is chosen to be the best among all possible 

competing alternative models.  

With ( )ICOMP IFIM , complexity is viewed not as the number of parameters in the 

model, but as the degree of interdependence (i.e. the correlational structure among the 

parameter estimates). By defining complexity in this way, ( )ICOMP IFIM  provides a 

more judicious penalty term than AIC ,MDL , SBC , or CAIC . The lack of parsimony 

and the profusion of complexity are automatically adjusted by 1
1

ˆ( )C −
c  across the 

competing alternative portfolio of models as the parameter spaces of these models are 
constrained in the model selection process. 
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5.3.2. ICOMP as an Estimate of Posterior Expected Utility:
 PEUICOMP  

In the literature, the idea of using two utility functions 1U and 2U  that are multiplied to 

define a utility U whose posterior expectation is (approximately) maximized to select a 

model was considered notably by Poskitt [63], and others. If we relate utility 1U to the 

lack of fit component of the model and 2U to the complexity of the parameter space of the 

model, i.e., the dimension of the model, we introduce a new ICOMP class of criteria as a 
Bayesian criterion in maximizing a posterior expected utility(PEU) following the results 
from Bozdogan and Haughton [28]. 

ICOMP as a Bayesian criterion in maximizing a posterior expected utility (PEU) is given 
by 

 ( ) ( ) ( )( )1
1

ˆ ˆˆ2log 2 .M MPEU
ICOMP IFIM L k Cθ θ−= − + + c   (38) 

The decision rule is to choose the minimum of ( )ICOMP IFIM  over the class of models 

, 1,2, ,kM k K= K  that is the best fitting model. 

5.3.3. ICOMP for Misspecified Models: _ MissPEUICOMP   

Suppose that the fitted model is the wrong or misspecified model.  

Different choices of utility 2U may depend on other characteristics that a researcher can 

consider on the parameter vector Mθ  
if the model M  is under consideration. Therefore, 

the full specification of the form of the utility function 2U  is important. By defining 

different forms of the utility 2U  we can, therefore, obtain other forms of

( )
PEU

ICOMP IFIM that give us many useful class of model selection criteria one of which 

is the form of ICOMP in the case of a misspecified model. Therefore, the choice of the 
utility 

 
( ) ( )2 1

ˆ ˆ ˆexpU tr C = − − 
JN JN

c o c
  (39) 

would lead to 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1
1_

1
1

ˆ ˆˆ ˆ ˆ2 log 2 2

ˆ ˆˆ ˆ ˆ2 log 2 .

M MPEU Miss

M M

ICOMP IFIM L k tr C

L k tr C

θ θ

θ θ

−

−

= − + + +

 = − + + +
 

c

c

JN

JN

c o

c o

 (40) 

Note that ( )ˆ ˆtr JN
c o  is the well-known Lagrange-multiplier test statistic. See, for example, 

Takeuchi [64], Hosking [65], and Shibata [66]. 

We can approximate ( )ˆ ˆtr JN
c o  by 

 ( )ˆ ˆ .
2

nk
tr

n k
≅

− −
JN

c o  (41) 
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This corrects the bias for small as well as large sample sizes if the model is misspecified. 
Hence, (40) becomes 

 

( ) ( ) ( ) ( )( )
( ) ( )( )

1
1_

1
1

ˆ ˆˆ ˆ ˆ2 log 2 2

ˆ ˆˆ2 log 2 2 .
2

M MPEU Miss

M M

ICOMP IFIM L k tr C

nk
L k C

n k

θ θ

θ θ

−

−

= − + + +

 = − + + + − − 

JN
c o c

c

 (42) 

If the model is correctly specified, then   

 ( )ˆ ˆ ( ) .ktr tr I k= =JN
c o  (43) 

Therefore, ( )
_PEU Miss

ICOMP IFIM reduces to 

 

( ) ( ) ( )( )
( ) ( )( )

( )( )

3

1
1_

1
1

1
3 1

ˆ ˆˆ2log 2 2

ˆ ˆˆ2 log 3 2

ˆˆ2 .

M MPEU AIC

M M

M

ICOMP IFIM L k k C

L k C

AIC C

θ θ

θ θ

θ

−

−

−

= − + + +

= − + +

= +

c

c

c

 (44) 

For more details on these, we refer the readers to Bozdogan and Haughton [28], and 
Bozdogan [6, 7].   

6. Derived Computational Forms of Information Criteria in SEMs 

In this section we show the derived forms of the information theoretic model selection 
criteria we discussed in Section 5 to trade off between parsimony and fit in structural 
equation modeling (SEM) and how this trade off affects the scoring of model selection to 
rank the models according to the minimum of the model selection criteria. It is well 
known that the number of free model parameters influences complexity. In SEM even if 
the models may have the same number of parameters but different structures, such 
models can posses different complexities. With this in mind, our goal is to score the 
models with model selection criteria and study the models in terms of their 
generalizability. 

Under the assumption that the observed variables are continuous and have interval 
scales, and multivariate Gaussianity, i.e.,  

 ( )( )( , ) 0, ) ( )~ (p qz y x N multivariate normalθ+′ ′ ′= Σ  (45) 

and using the maximum likelihood estimators, we have  

• Akaike’s [1] information criterion (AIC) for the structural equation model (SEM) 
given by 

 ( )1ˆ ˆˆ ˆ( ) ( ) log(2 ) log ( ) ( ) 2 ,AIC SEM n p q n ntr S kπ θ θ−= + + Σ + Σ +  (46) 

where k  is the number of parameters. 

• Consistent AIC (CAIC) (Bozdogan[2]) for SEM is: 
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( )1ˆ ˆˆ ˆ( ) ( ) log(2 ) log ( ) ( )

[log( ) 1].

CAIC SEM n p q n ntr S

k n

π θ θ−= + + Σ + Σ

+ +
 (47) 

To derive ( )
PEU

ICOMP IFIM and ( )
_PEU Miss

ICOMP IFIM we need to compute the trace 

and the determinant of IFIM given in (23), so that we can score the complexity measure 
1

1
ˆ( )C −
c . From Magnus [40] and Magnus and Neudecker [41], and following the results 

in Bozdogan and Bearse [29], we have 

 

( )

( )

( )

1
( ) ( )

22 2

1

22 2

1

1 2ˆ ˆ ˆˆ ( ) ( )

1 2 1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
4 4 2

1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( ) ,
2

p q p q

p q

jj
j

p q

jj
j

tr tr tr D D
n n

tr tr tr
n n

tr tr tr
n n

σ

σ

− + +
+ +

+

=

+

=

 ′= Σ + Σ⊗Σ  

 
 = Σ + Σ + Σ +
  

 
 = Σ + Σ + Σ +
  

∑

∑

c

 (48) 

and 

 

1
( ) ( )

( ) ( )

1
( )( 1)

2
( ) ( )

1 2ˆ ˆ ˆˆ ( )

1 2ˆ ˆ ˆ( )

1 1ˆ ˆ ˆ2 ( ) .

p q p q

p q

p q p q

p q p q p q

p q p q

D D
n n

D D
n n

D D
n n

− + +
+ +

+
+ +

+ +

+ + + +
+ +

+ +

′= Σ • Σ⊗Σ

  ′= Σ • Σ⊗Σ 
 

    ′= Σ • Σ⊗Σ   
   

c

 (49) 

Since  

 
11/2( )( 1)

( ) ( )
ˆ ˆ ˆ2 ( ) 2 ,

p qp q p q
p q p qD D

+ ++ + − + + −
+ +

′Σ⊗Σ = Σ  (50) 

then 

 

1
( )( 1)

121 1/2( )( 1)1 1ˆ ˆˆ 2 .
p q p q p q

p qp q p q

n n

+ + + +
+ +− − + + −   

= Σ • • Σ   
   

c  (51) 

Simplifying (51) further, we have  

 

1
( ) ( )( 1)

2 21 1/2( )( 1)1ˆˆ 2 .
p q p q p q

p q p q p q

n

+ + + + +
+ +− − + + − = Σ  

 
c  (52) 

Now taking the natural log of (52), we obtain 
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1 1 1ˆˆlog ( 2) log ( ) ( )( 1) log
2

1
( )( 1) log(2)

2
1ˆ( 2) log ( ) ( )( 1) log( )
2

1
( )( 1) log(2).

2

p q p q p q p q
n

p q p q

p q p q p q p q n

p q p q

−    = + + Σ + + + + + +      

− + + −

 = + + Σ − + + + + +  

− + + −

c

 (53) 

Using the definition of complexity in (36), we obtain a computationally convenient form 

of the expression for 1
1

ˆ( )C −
c given by  

 

( )
( )2

2 2

11
1

1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( )
2ˆ log

2

1 1 1ˆ( 2) log ( ) ( )( 1) log( )
2 2 2

1
( )( 1) log(2)

4

p q

jj
j

tr tr tr
n ns

C
s

p q p q p q p q n

p q p q

σ
+

=−

  
Σ + Σ + Σ +  

  =
 
 
  

 − + + Σ + + + + + +  

+ + + −

∑
c

 (54) 

which requires only the computation of traces and determinants and that 1
1

ˆ( )C −
c avoids 

the construction of the full IFIM. Note that all the required inputs to (54) are readily 
available as part of the standard output of most SEM packages or can be programmed in 
MATLAB or R macro language. This saves computational time when the IFIM is a very 
large matrix when we have high-dimensional multivariate X-Y data which is very 
attractive. Further, it shows the scalability property of the complexity measure. 

Hence, ( )
PEU

ICOMP IFIM for the SEM is given by 

 
( ) ( )

( )

1

1
1

ˆ ˆˆ ˆ( ) log(2 ) log ( ) ( )

ˆ2

PEU
ICOMP IFIM n p q n ntr S

k C

π θ θ−

−

= + + Σ + Σ

+ + c
 (55) 

with 1
1

ˆ( )C −
c  given in (54) in its scalar open form. 

Similarly, ( )
_PEU Miss

ICOMP IFIM for SEM is given by 

 

( ) ( )
( )

1

_

1
1

ˆ ˆˆ ˆ( ) log(2 ) log ( ) ( )

ˆ2 2 .
2

PEU Miss
ICOMP IFIM n p q n ntr S

ns
k C

n s

π θ θ−

−

= + + Σ + Σ

 + + + − − 
c

 (56) 

Comparing AIC, CAIC, and the two forms of ICOMP(IFIM) criteria, we see that the 
difference between these criteria are in the crutial penalty term. 

Next, we show a real numerical example using our approach on a benchmark data set. 
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7. A Real Numerical Example: Structural Equation Modeling and Analysis of 
Quality of Life (QOL) Data 

According to Wikipedia, the term quality of life (QOL) is used to evaluate the general 
well-being of individuals and societies. This term has been used in a wide range of 
contexts and it should not be confused with the concept of standard of living. Here our 
aim is to model the quality of life (QOL) in healthcare. 

The Wolrd Health Organization Quality of Life (WHOQOL) project was initiated in 1991. 
The aim was to develop an international cross-culturally comparable quality of life 
assessment instrument.  

Quality of life (QOL) is a broad multidimensional concept that usually includes subjective 
evaluations of both positive and negative aspects of life. The concept of health related 
quality of life (HRQOL) and its determinants have evolved since the 1980s to cover those 
overall quality of life that can be clearly shown to affect health. It has become an 
important concept for health care. Focusing on HRQOL as a national standard can bridge 
boundaries between disciplines and between social, mental, and medical services. 
Therefore, HRQOL has great value for clinical work and the planning and evaluation of 
health care as well as for medical research. 

QOL has generally been accepted as a multidimentional concept that is best modeled by 
a number of latent constructs. 

Items in a QOL instrument comprises 26 items of questions Q1 to Q26 measure the 
broad domains such as physical health, psychological health, social relationships, and 
environment. All of the items are measured on an ordinal categorical scale with 1 to 5 
points.  

Our data set for structural equation modeling (SEM) of the QOL is taken from Lee [9] and 
it consists of n=338 observations on 26 categorical variables (questions). Figure 3 shows 
frequency distribution of the questions in the WHOQOL data set.  
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Figure 3 Box Plots and Frequency Distribution of the Questions in the WHOQOL 
Data Set 

Figure 4 shows the frequency distributions of the first 12 questions Q1-Q12 out of 26 
questions. 
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Figure 4 Frequency Distributions of the First 12 Questions Q1 to Q12. 

The description of the 26 questions for the QOL data is given in Table 1. 

In his analysis, Lee [9], treating that the QOL data as observations coming from a hidden 
continuous normal distribution with a fixed threshold specification, introduced a Bayesian  
approach to fit SEM to QOL data set despite the fact that non-rigorous treatments of the 
ordinal items as continuous can be subjected to criticism and can lead to erroneous 
conclusions and errors. Also, it is not clear how the discrete nature of the data is taken 
into account to analyze this ordered categorical data set within the Bayesian framework. 
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Table 1 The Description of the Questions Q1-Q26 for the Quality of Life (QOL) 
Data 

Q1=Overall Quality of Life (QOL) Q14=Self-esteem 

Q2=Overall health Q15=Negative feeling 

Q3=Pain and discomfort Q16=Personal relationship 

Q4=Medical treatment dependence Q17=Sexual activity 

Q5=Energy and fatigue Q18=Social support 

Q6=Mobility Q19=Phsical safety and security 

Q7=Sleep and rest Q20=Physical environment 

Q8=Daily activities Q21=Financial resources 

Q9=Work capacity Q22=Daily life information 

Q10=Positive feeling Q23=Participation in leisure activity 

Q11=Sprituality/personal beliefs Q24=Living condition 

Q12=Memory and concentration Q25=Health accessibility and quality 

Q13=Bodily image and appearance Q26=Transportation 

In this paper, we analyzed the same data set regarding the quality of life (QOL) with our 
novel Gifi transformation approach without assuming that the ordinal categorical data as 
observations coming from a hidden continuous distribution. 

We also considered four latent variables of the instrument WHOQOL-100 (Power, 
Bullingen and Hazper [67]). The first item (Q1) is an observed endogenous variable 
intended to address one latent endogenous variable named QOL. The seven items 
(Q3 to Q9) are intended to address physical health, the next six items (Q10 to Q15) 
are intended to address psychological health, the next three items (Q16 to Q18) are 
intended to address the social relationship, and the last eight items (Q19 to Q26) are 
intended to address the environment.  

To be able to model and analyze this data set rigorously using SEM, first, we transformed 
the categorical variables using the Gifi transformation to continuous variables by our 
newly developed Gifi MATLAB module.  See, e.g., Katragada [53], Katragada and 
Bozdogan [54]. After the Gifi transformations, we then used LISREL to fit SEMs to both 
the original categorical data and the continuous Gifi transformed data.  We scored four of 
the above information criteria on the fitted models. Namely, we scored AIC, CAIC,

( )
PEU

ICOMP IFIM , and ( )
_PEU Miss

ICOMP IFIM on Model on Continuous Data and Model 

on DiscreteData. The description of these two models is given as follows. 

Model on Continuous Data: Full structural equation model with 1 observed 
endogenous variable, 24 observed exogenous variables, 1 latent endogenous variable, 4 
latent exogenous variables fit to categorical data with 59 free parameters. 
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Model on DiscreteData: Full structural equation model with 1 observed endogenous 
variable, 24 observed exogenous variables, 1 latent endogenous variable, 4 latent 
exogenous variables fit to discrete data with 59 free parameters. 

Our results are given Table 2.  

Table 2 Information Criteria Scores for Gifi Transformed and Discrete Data Sets 

Models AIC CAIC ( )
PEU

ICOMP IFIM  ( )
_PEU Miss

ICOMP IFIM  

Continuous Data 1160 11444 14672 14816 

Discrete Data 20621 20905 22967 23111 

According to the results in Table 2, we see that the model on continuous Gifi transformed 
data set is better than the model using the original data discrete data set based on the 
minimum of the information criteria. 

Next, we specify different SEM sub models models to fit to the Gifi transformed data set 
and compare them with the full saturated SEM. Model 1 is the full SEM which includes all 
observed endogenous and exogenous variables.  

Model 1: Full structural equation model consist of 2 observed endogenous variables, 24 
observed exogenous variables, 1 latent endogenous variable, 4 latent exogenous 
variables with 50 free parameters. The structure of Model 1 is given by 

 
(24 1) (24 4) (4 1) (24 1)

(1 1) (1 1) (1 1) (1 1)

(1 1) (1 4) (4 1) (1 1)

x

y

x
y

ξ δ
η ε

η ξ ζ

× × × ×

× × × ×

× × × ×

= Λ +
= Λ +
= Γ +

 (57) 

The estimated structural relationship between latent exogenous variables ( 1ξ , 2ξ , 3ξ , and 

4ξ ) and the latent endogenous variable ( )η is  

 1 2 3 4
(3.13) (0.19) ( 0.26)(1.08)

2.27 0.09 0.92 0.14η ξ ξ ξ ξ ζ
−

= + + − +  (58) 

In (58), the numbers in the parenthesis indicate the Wald statistics. According to these 

values, with 0.05α = , only physical health ( 1ξ ) has a significant effect on QOL.  

Psychological health ( 2ξ ), social relationship ( 3ξ ) and environment ( 4ξ ) are not 

significant at 0.05α =  level of significance. 

Model 2: Sub structural equation model with 2 observed endogenous variables, 21 
observed exogenous variables, 1 latent endogenous variable, 3 latent exogenous 
variables with 49 free parameters is given by 

 
(21 1) (21 3) (3 1) (21 1)

(1 1) (1 1) (1 1) (1 1)

(1 1) (1 3) (3 1) (1 1)

x

y

x
y

ξ δ
η ε

η ξ ζ

× × × ×

× × × ×

× × × ×

= Λ +
= Λ +
= Γ +

 (59) 

For Model 2, we excluded latent exogenous variable social relationship, because if we 
excluded psychological health or environment, the other latent exogenous variables were 
not significant to study QOL.  

The estimated structural equation for Model 2 is  
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 1 2 4
(5.28) (2.37) (1.98)

1.66 0.53 0.38 .η ξ ξ ξ ζ= + + +  (60) 

According to Model 2, physical health, psychological health and environment are 
significant to study QOL.  

Model 3: Is a measurement model with 24 observed exogenous variables and 4 latent 
exogenous variables with 54 free parameters given by 

 (24 1) (24 4) (4 1) (24 1)xx ξ δ× × × ×= Λ +  (61) 

In Model 3, we analyzed the measurement model only with observed exogenous 
variables. Again, we used four latent exogenous variables in this model.  

The results from fitting these three SEMs to select the best fitting model and the scores 
of four information criteria are summarized in Table 3.  

Table 3 Scores of the Information Criteria for Models 1, 2, and 3 

Models 
No. of 

parameters 

No. of free 

parameters 

 

AIC 

 

CAIC 

 

( )
PEU

ICOMP IFIM  

 

( )
_PEU Miss

ICOMP IFIM  

Model 1 325 59 1160 11444 14672 14816 

Model 2 253 49 10402 10639 12793 12908 

Model 3 200 54 10598 10858 13277 13407 

Looking at Table 3, we see that all the criteria are minimized at Model 2. We would 
therefore select Model 2 as the best fitting structural equation model (SEM). Note that, 
the information criteria do not choose Model 1, which is the full saturated SEM, indicating 
that it is an inferior model to address the relations of QOL with latent constructs. 

8. Conclusions and Discussion 

Analysis of categorical, dichotomous, and mixed data sets is one of the most difficult and 
challenging problems in structural equation modeling (SEM). This is due to the fact that, 
presence of categorical and dichotomous variables violate the assumptions of continuity 
and multivariate normality that are needed in SEM. 

In this paper we introduced and developed a novel and computationally feasible approach 
to analyze categorical, dichotomous, and mixed data sets in SEMs to resolve the current 
existing problems using the novel Gifi [25] system or transformations to analyze 
categorical, binary, and mixed-data sets in SEM research. Gifi system uses optimal 
scaling of the categorical variables to analyze data that are difficult or impossible for the 
usual standard statistical techniques to handle.  

In addition to the introduction of the Gifi system or transformation, in this paper we also 
introduced and derived information-theoretic model selection criteria such as Akaike’s [1] 
classic information criterion (AIC), Bozdogan’s [2] Consistent AIC, called CAIC, and the 
information-theoretic measure of complexity ICOMP criterion of Bozdogan [3-7] to 
choose the best fitting SEMs. The model with the minimum values of the criteria is 
selected as the best fitting model among a candidate of portfolio of models. 

We applied our proposed approach to model and analyze the quality of life (QOL) data in 
heathcare by showing the generalizability and flexibility of our approach over the 
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currently used threshold modeling techniques where the categorical data are treated as 
coming from a hidden continuous normal distribution with a specified arbitrary threshold. 

Based on our numerical results for the QOL data the results obtained with real categorical 
variables, the model which is generated from continuous Gifi transformed data is better 
than the model which is generated from the original categorical data based on the 
minimum of the information criteria. Furthermore, the advantage of our approach is that, 
we did not analyze the categorical data set by treating the data as coming from a 
univariate standard normal distribution. Also we do not have an arbitrary threshold 
specification. And, we did not assume that the normal distribution was hidden. Our 
approach in general takes into account the dimensionality of the data among the 
categories in the continuous Gifi space in the transformed data set. This allows us to use 
multivariate Gaussian, or other more general multivariate distributions in SEM 
framework. 

For the QOL data set, the best SEM selected the Gifi transformed continuous data. It 
used 1 observed endogenous variable, 21 observed exogenous variables, 1 latent 
endogenous variable, and 3 latent exogenous variables.  

We claim that the analysis and modeling based on the Gifi transformed continuous data, 
is much easier and more reliable than direct analysis of the categorical data set assuming 
a hidden univariate normal distribution.  

As we note, Lee [9] also analyzed the QOL data using WinBUGS (a Bayesian program) 
through Bayesian treatment of the ordered categorical variables by fixing the thresholds 
at both ends in order to solve the identification problem. He estimated the other 
unknown thresholds simultaneously with the structural parameters. Lee [9] indicates that 
WinBUGS is not straightforward to apply to estimate the unknown thresholds and 
structural parameters simultaneously. When we compare our best fitting model Model 2 
for QOL data set, although we did not follow a Bayesian approach, we see that our Model 
2 is much more simple and parsimonious than that of Lee’s [9] Bayesian models. In the 
Bayesian SEM, Lee also assumed the multivariate normality under the fitted models.  

Although this is one of the caveats in the analysis of any multidimensional data set, and 
we are not always guaranteed to satisfy the multivariate Gaussian assumption, we can 
always use Mardia’s [68-70] – test for multivariate normality to test our assumptions. 
This test consists of two tests – one for kurtosis, and one for skewness. To this end, we 
used Mardia’s test to test the multivariate normality for the QOL data set. Figure 5 shows 
the kurtosis and skewness tests results for the QOL data set. 

 

Figure 5 Mardia’s [68-70] Multivariate Normality Test for the QOL Data Set 
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Under the null hypothesis of multivariate normality, the theoretical value for kurtosi is 
675. The sample value of 883.63 suggests the data are more highly peaked than 
expected.  The test statistic follows a standard normal distribution under the null 
hypothesis, and we see the sample test statistic of 52.2 is well outside of the ±1.96 
critical range.  Thus, we reject the null hypothesis of Gaussian kurtosis.  In the left pane 
of Figure 5, we see the theoretical distribution with the red vertical bars indicating the 
critical region.  The test statistic is indicated by *. 

Under the null hypothesis, the skewness should be 0 and Mardia’s test statistic follows a 
chi-square distribution.  For this dataset, the sample skewness is 143.97, indicating more 
skew than expected.  The sample test statistic 8110.07 is well out of the [0, 3051.93] 
critical range, and the p-value is much smaller than 0.0000.  Thus, we also reject the null 
hypothesis of Gaussian skewness.  These results are shown graphically on the right pane 
of Figure 5. 

Since both tests strongly reject the null hypothesis, with p-values of <<0.000, we can 
safely reject the null hypothesis of multivariate Gaussian distribution.  It appears that the 
QOL data are both more peaked and more skewed than expected. 

To remedy such situations, our future goal in this direction will involve the extension of 
the proposed novel approach here under a more general multivariate distribution, such 
as the multivariate skewed power exponential (MVSPE), where we can take both 
skewness and kurtosis of the data into account. Alternatively, we can develop a new SEM 
under misspecification by relaxing the distributional assumptions on the model and utilize 
multivariate kernel density estimation (KDE) approach to SEM to robustify the model 
selection process in the presence of skewness and kurtosis. A first attempt toward this 
goal has been made in Deniz, Howe, and Bozdogan [71], and further work is in progress 
to be reported elsewhere. 

In conclusion, we note that with the novel Gifi transformations we achieve an important 
advantage in that the results of the final best fitting model can be reverse-mapped to the 
original scale from the transformed scale since the Gifi transformation has a one-to-one 
mapping of the nonlinear values to the linear values. With the currently utilized 
techniques and the Bayesian methods, we do not have such benefits. Other advantages 
of our approach include the applicability of the proposed methods to many other 
multivariate data mining techniques, such as classification and clustering, probabilistic 
principle component analysis, mixture-model cluster analysis, factor analysis, 
discriminant analysis to mention a few, when the observed data are mixed, categorical, 
or purely binary.   
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Appendix 

Here we provide the input parameters and the the path diagrams of Model 1, Model 2, 
and Model 3 in our analysis. The path diagrams for the fitted models are shown in 
Figures A.1 to A.3. 

We note that our models are much simpler than that of the Bayesian approach proposed 
by Lee (2007). 

MODEL 1 Parameters are: 

'

1.00 0.95 1.92 1.62 0.97 2.44 1.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1.00 0.59 0.44 0.48 0.93 0.82 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.13 0.80 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.61 0.55 0.59 0.58 0.850.46 0.57

x

 
 
 Λ =
 
 
 

1.00

1.00y
 

Λ =  
 

   ( )1.54 0.06 0.63 0.10Γ = −    

0.08

0.11 0.28

0.05 0.17 0.16

0.09 0.19 0.15 0.21

 
 
 Φ =
 
 
     

( )0.27Ψ =    

 
( )0.16 0.17 0.21 0.17 0.20 0.14 0.22 0.22 0.20 0.17 0.18 0.23 0.22 0.16 0.06 0.13 0.23 0.18 0.15 0.200.25 0.19 0.12 0.16diagδθ =  

( )0.00 0.00diagθ∈ =  

MODEL 2 Parameters are: 

'

1.00 0.96 1.91 1.62 0.98 2.45 1.94 0 0 0 0 0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 1.00 0.59 0.44 0.49 0.94 0.82 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0.60 0.54 0.59 0.61 0.83 0.44 0.57
x

 
 Λ =  
 
 

1.00

1.00y
 

Λ =  
 

   ( )1.12 0.36 0.26Γ =    
0.08

0.11 0.28

0.09 0.19 0.22

 
 Φ =  
 
 

   ( )0.28Ψ =    

( )0.16 0.17 0.21 0.17 0.20 0.14 0.22 0.22 0.20 0.17 0.18 0.23 0.22 0.23 0.18 0.15 0.20 0.24 0.20 0.130.16diagδθ =

( )0.00 0.00diagθ∈ =  

MODEL 3 Parameters are: 

' 1.00 0.59 0.43 0.48 0.91 0.81 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1.00 0.60 0.54 0.58 0.58 0.83 0.45 0.57x

 
Λ =  

 
 

1.00

1.00
y

 
Λ =  

 
   ( )0.72 0.39Γ =    

0.29

0.19 0.22

 
Φ =  

 
   ( )0.33Ψ =  

( )0.21 0.19 0.18 0.18 0.23 0.22 0.23 0.18 0.15 0.200.24 0.20 0.12 0.16diagδθ =
 

( )0.00 0.00diagθ∈ =  
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Figure A1 Path Diagram for Model 1 
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Figure A2 Path Diagram for Model 2 
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Figure 
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Figure A3 Path Diagram for Model 3 
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