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Abstract

In this manuscript, we introduce and study the concept of (m;,m)-GG convex functions and some algebraic properties of them. In addition,
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1. Preliminaries and Fundamentals

A function f : I — R is said to be convex if the inequality

fx+(1=t)y) <tf () +(1=1) f()

is valid for all x,y € I and ¢ € [0, 1]. If this inequality reverses, then f is said to be concave on interval I # 0.

Convexity theory provides powerful principles and techniques to study a wide class of problems in both pure and applied mathematics. A
convex function is a continuous function whose value at the midpoint of every interval in its domain does not exceed the arithmetic mean of
its value at the ends of the considered interval. Readers can find more informations in the articles [2, 6, 7, 9, 13, 15, 16, 20, 21, 22] and the
references therein.

Let f: I — R be a convex function. Then the following inequalities hold:

(15) gty s L1

for all a,b € I with a < b [1, 3]. Both inequalities hold in the reversed direction if the function f is concave. This inequality is well-known in
the literature as Hermite-Hadamard inequality. This inequality gives us upper and lower bounds for the mean-value of a convex function. If
the function f is concave both of the inequalities in above hold in reversed direction.

Definition 1.1 ([14]). A function f:1 C Ry = (0,00) — R is said to be GA-convex function on I if
FAYH) <ar@+(1=2)£ ()

holds for all x,y € I and A € [0,1], where x*y'~* and A f (x)+ (1 — L) f (y) are respectively the weighted geometric mean of two positive
numbers x and 'y and the weighted arithmetic mean of f(x) and f(y).
Definition 1.2 ([18]). A function f : [0,b] — R is said to be m-convex for m € (0, 1] if the inequality

flax+m(l—a)y) < af(x)+m(l—a)f(y)
holds for all x,y € [0,b] and & € [0,1].
Definition 1.3 ([11]). The function f :[0,b] — R, b > 0, is said to be (my,my)-convex, if

fmitx+my(1—1)y) <mytf(x) +ma(1—1)f(y)

forallx,y €1, t €[0,1] and (my,my) € (0,1]%.
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Definition 1.4 ([14]). The GG-convex functions (called in what follows multiplicatively convex functions) are those functions f : 1 — J
(acting on subintervals of (0,00)) such that

xy€landr € [0.1] = f (') < ()10
i.e., for which log f is convex.

The class of all GA-convex functions is constituted by all functions f : I — R (defined on subintervals of (0,)) for which

x,y€landt€[0,1] =>f<x17tyt> <tfx) +(1=0)f().

For some recent results concerning Hermite-Hadamard type integral inequalities for GG-convex and GA-convex functions we refer interested
reader to [4, 8, 10, 17, 23, 24].
In [10], Kadakal gave the concept of the (m,m;)-GA convex function.

Definition 1.5 ([10]). Let the function f : [0,b] — R and [my,m;] € [0, 1}2. If

f<am1tbmz(1*t)> <mtf(a)+my (1 —t)f(b)~

forall [a,b] € [0,b] and t € [0,1], then the function f is called (my,m;)-GA convex function, if this inequality reversed, then the function f is
called (my,my)-GA concave function.

A refinement of Holder integral inequality which has better approach than Holder integral inequality can be given as follows:

Theorem 1.6 (Holder-Iscan Integral Inequality [S]). Let p > 1 and % + é = 1. If f and g are real functions defined on [a,b] and if | f|7, |g|?
are integrable functions on interval [a,b] then

/a.b |f(x)g(x)|dx < bla{(/ab(b—x) |f(x)de); (/ub(b—x)lg(x)|qu>;+ (/ub(x—a)|f(x)|de>; (/f(x—a)g(X)qux):]}.

A refinement of power-mean integral inequality which has better approach than power-mean inequality and obtained as a result of the
Holder-Iscan integral inequality can be given as follows:

Theorem 1.7 (Improved power-mean integral inequality [12]). Let ¢ > 1. If f and g are real functions defined on [a,b] and if | f|, | f||g|?
are integrable functions on [a,b] then

[1r@swlas < bla{</j(b—X)|f(X)dX>1; ([ o-slrwilscoras)’

#([n-ars <x>ldx)1:' (f b(x—a>|f<x>||g<x>|wx)‘I’}.

The main purpose of this paper is to introduce the concept of (mp,m;)-GG convex functions and establish some results connected with new
inequalities similar to the Hermite-Hadamard integral inequality for this class of functions.

2. Some Algebraic Properties of (m;,m;)-GG Convex Functions
In this section, we introduce a new concept, which is called (m;,m)-GG convex functions and we give by setting some algebraic properties
for the (m;,m;)-GG convex functions, as follows:

Definition 2.1. Let the function f : [0,b] — R and (my,my) € [0,1]% If

 (nr5m00) < [ (), @

forall [a,b] € [0,b] and t € [0,1], then the function f is said to be (my,m;)-GG convex function, if the inequality (2.1) reversed, then the
Sunction f is said to be (my,my)-geometric geometric concave function.

We discuss some connections between the class of the (m,m;)-GG convex functions and other classes of generalized convex functions.
Remark 2.2. When my; = my = 1, the (my,m;)-GG convex (concave) function becomes a GG convex (concave) function defined in [14].
Proposition 1. The function f : (0,00) — R is (my,my)-GG convex function on the interval I if and only if Inof : (0,00) — R is (m,m;)-GA

convex function on the interval I.

Proof. (=) Suppose that f : (0,00) — R is (my,m,)-GG convex function. Then, we have

(o) (@ 5™ =) < { [ (@)™ /B } <mitin fla) +ma(1 1) In f(b).

Hence, the function Inof is (m,m;)-convex function on the interval In/.
(<) LetIlnof : (0,00) — R, (my,my)-GA convex function on the interval Inl. Then, we get

(nof) (a5} < mieln f(@)+ma(1—1)In £ (D)

e(lnof)(amlfb’”z(‘*’)) < emltln_f'(a)+m2(]—t)lnf(b)

which means that the function f(x) is (m;,m;)-GG convex function on /. O
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Theorem 2.3. Let f,g: (0,00) = R. If f and g are (my,m;)-GG convex functions, then fg is an (my,my)-GG convex function.

Proof. Let f,gbe (my,m;)-GG convex functions, then

(fg) (amlfb”h(l*f)) f mltbmz (- > ( mltb’”z(l—t>>
[f(a)]'"lf[ f(b )]mzl —1) g(a )}mlt[g(b)}mz(l—t)

= [(f9) @™ [(fg) (&)™),

O

Theorem 2.4. If f: (0,00) — (0,00) is a (my,my)-GG-convex and g : (0,00) — R is a (my,my)-GG convex function and nondecreasing, then
gof:(0,00) = Ris a (my,my)-GG convex function.

Proof. Forx,y€landt € [0,1], we get

o () oy
g (Lr@)™ [ro)™0=")
B (@)™ [g (FB)I™I .

IA

IN

This completes the proof of theorem. O

Theorem 2.5. Let my,my € (0,1],0 < a™ < b™ and fo : [@™ ,b™] — R be an arbitrary family of (my,my)-GG convex functions and let
F(x) =supy fa(x). If J = {u € [a™,b™] : f(u) < o} is nonempty, then J is an interval and f is an (my,my)-GG convex function on J.

Proof. Lett €[0,1] and a,b € J be arbitrary. Then

f(amltbmz(lfz)) _ Supfa(am‘tbmz(lft))
sup ([fee(@)]™ ()" ))
sup[fa (a)]™" sup [fa (o))

= @™ @)= <ee.

IN

IN

This shows simultaneously that J is an interval, since it contains every point between any two of its points, and that f is an (m;,m;)-GG
convex function on J. This completes the proof of theorem. O

Theorem 2.6. If the function f : [a™,b™] — R is an (my,m;)-GG convex function then f is bounded on the interval [a™ ,b™2].

Proof. Let K = max {[f(a)]™ ,[f(b)]™} and x € [a, ] is an arbitrary point. Then there exists a z € [0, 1] such that x = a”*b"(1=!)_ Thus,
since mit +mp(1 —1) < 1 we have

) < f (@5 00) < [f@)" )"0 <K =M.

Also, for every x € [a™,b™] there exists a A € { Z%, 1] such that x = Av/a™b™ and x = 7”""/1%. Without loss of generality we can
suppose x = AV a™b™. So, we have

s (Vampm) =7 | \| [V VT)} < f<x>f<W>.

Using M as the upper bound, we get

£ (Vampm) 2 (Vamsm)
fx) = ; ( W) > m

=m.

A

This completes the proof of theorem. O
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3. Hermite-Hadamard Inequality for (m;,m;)-GG Convex Function
The goal of this section is to establish some inequalities of Hermite-Hadamard type for (my,m;)-GG convex functions. In this section, we
will denote by L [a,b] the space of (Lebesgue) integrable functions on the interval [a,b] .

Theorem 3.1. Let f : [a™,b™] — R be an (my,m;)-GG convex function. If a < b and f € L[a,b], then the following Hermite-Hadamard
type integral inequalities hold:

b2 a™ phm2
5) < [ (2
NI
S m.aml u du
[f ()" — [f(a)]m‘ myf(a)+maf(b)
I [f(0)™ —In[f(@)]™ = > : G.1)

Proof. Firstly, since function f is (m,m;)-GG convex function, we have

<\/f7 +f()

for all x,y € I. If we substitute x = a”1*p"(1=1) and y = " (1=")p™! in the above inequalities for 7 € [0, 1], we can write

F(Vambm) <[ f @mtm0) f (@m0 )

f(am,tbmz(l t>+f( my (1= t)bmzl>
) .

<

Now, if we take integral in the last inequality with respect to 7 € [0, 1], we deduce that

1
f(‘ /a’"lb’”z) < / \/f(amlzbmz(lft))f(aml(lft)bmzt)dt
JO
1 b"2 ] a™ pm
Inb™ —Ina™ /le uf(\/ﬁ)f< u )du
1 b f(u)
< - - JAT
STV CESTY I P

Secondly, by using the property of the (my,m;)-GG convex function of f, we can write
£ (@mtpm0=0) < [£@)™ ()™ < matf(a) +ma (1-1) £(8),

If the variable is changed as u = @™?p™(1=7) then

L P O @ mfe) s mf)
Inb™ — Ina™ /aml u du= In[f()]" —In[f(a)™ : 2 .

This completes the proof of theorem. O

Corollary 3.2. If we take m; = my =1 in the inequalities (3.1), then we have the following inequalities:

() = gt [ e () o

L[, SO @)

Inb—1Ina J,

u T Infb)—Inf(a) 2

A

This inequalities coincide with the inequalities in [4].

4. Some New Inequalities for (m,m;)-GG Convex Functions

The main purpose of this section is to establish new estimates that refine Hermite-Hadamard integral inequality for functions whose first
derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is (m1,m)-GG convex function by
using the Holder and power-mean integral inequalities. In order to prove next theorems, we need the following identity for differentiable
functions.

Lemma 4.1 ([23]). Let f:1 C Ry = (0,00) — R be a differentiable function and a,b € I with a < b. If f'(x) € L([a,b)), then
b2f( 7a2f / o lnbflna/ 3(17;)b3zf/ (alftbt) dt.
0

Now, we will obtain some new Hermite-Hadamard type integral inequalities for (m,m;)-GG-convex functions.
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Theorem 4.2. Let f: Ry = [0,00) — R be a differentiable function and f' € L(|a,b]) for 0 < a < b < . If |f'| is (my,m;)-GG convex
1
function on the interval [O,max {a’”l ,bm H Sor [my1,ms] € (0, 1}2, then the following integral inequality holds

P fla)—d®f(b) b Inb—Ina_ [ 50,/ LN\N"™ 500/ L\ ™
— < m m .
. /axf(x)dx <220 (@ g (@) (o)) @1
where L is the logarithmic mean.
Proof. By using Lemma 4.1 and the inequality
f/ (alftbt) _ f’ (am%)ml(lfl)f, (bmliz)mﬂ < f’ <a%> my(1—t) f’ (b%) mzz7
we get
b*f(a) —a*f(b) —/bxf(x)dx < Inb—Ina /la (1=1) 3t 7 (al tbt)
2 a 2 0
Inb—1Ina [! 31 ml(l —t) mot
< I 3t | gt my m
< /0 SU0p |7 ( i b z) ) di
Inb—Ina 1 5 L\ (ot
< —1) 3.3t | o ’ -
< 5= /0 SU-0p3 | f ( ) (b z) di
1 m
~ Inb—Ina (b’”2> ( ‘)‘
- my 1\ m
In (b3 1 (brr12> > “In (a3 f ( o )‘ 1)
_ Inb—Ina 3o (AN 3 )™
ey (g o) (6
This completes the proof of theorem. O

Corollary 4.3. Under the assumption of Theorem 4.2, if we take m; = my = 1 in the inequality (4.1), then we have the following inequality:

2 a _az b —Ina
M,/{l xf(x)dx‘ < %L (@1 @5 )]). @2)

Theorem 4.4. Let f: Ry = [0,o0) — R be a differentiable function and f' € L([a,b]) for 0 < a < b < o and assume that g > 1. If |f'|? is a
1
(m1,my)-GG convex function on the interval [O,max {aml ,bm™ H Sor [m1,m] € (0, 1]2, then the following integral inequality holds

bzﬂ”’)%zazf(b)f/abxf(x)dx < L’;ML (.07 ) L0 (f’ ()™ (bmz)‘qmz), 4.3)

where L is the arithmetic mean and % + é =1

Proof. By using Lemma 4.1, Holder’s integral inequality and the inequality

T e M o P (5

which is the property of the (my,m;)-GG convex function of |f|?, we get

bzf(a);a2f(b)_/”xf(x)dx‘ - 1nb;1na /01 3113 | 41 (al tbt)
el e
0
< lnb—lna |: 3(1- tb3t |: mL q)ml(ll) (f’ (bmlz)‘q)mzfdt:| q
lnb;lnaL ( 3p b3p> (f/ (aﬁ>’qml Iy (b@>’qm2> 7
where
[ (@005 Y ar = (a0, 57)
and

L (@)™ =) ae=n (@)™ ).

This completes the proof of theorem. O
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Corollary 4.5. Under the assumption of Theorem 4.4, if we take my = my = 1 in the inequality (4.3), then we have the following inequality:

lnb Ina 1

2f(a) —a® :
b f( ) f(b) 7/(1 )Cf( ) 5 L» (a3p,b3p)L‘1 (‘f’(a)|q7’f/(b)|q)

2

Corollary 4.6. Under the assumption of Theorem 4.4, we can also write the following inequality:

K&Q;i@jézﬂmﬂgﬁgkjfﬁ<f@ﬁﬂm' @mﬂmj. (“44)

2
p\ »\3
Proof. By using the property of (5) < <5) for ¢ € [0, 1] in the inequality (4.3), we obtain the desired result. O

Corollary 4.7. Under the assumption of Theorem 4.4, if we take my = my = 1 in the inequality (4.4), then we have the following inequality:

2 a 7a2 b n na l
M‘/K,xﬂw!ﬁ% (I @17 ®)|")

Theorem 4.8. Let f: Ry = [0,%0) — R be a differentiable function and f' € L([a,b]) for 0 < a < b < oo and assume that ¢ > 1. If | f'|T is a
(m1,my)-GG convex function on the interval [a,b], then the following inequality holds

M _/a.bxf(x)dx < 7lnb;lnaL1,$ <a3,b3> Li (a3 r (a"’lil> ’qml b

%)

2

gy
) , 4.5)

where L is the arithmetic mean.

Proof. From Lemma 4.1, well known power-mean integral inequality and the property of the (m,m;)-GG convex function of | |7, we

obtain

M_/bxf(x)dx < Lbilna/lam*”by Vi al”b’) dt
2 a - 2 0
1 1
mb—Ina (1 30 53 N[ Y s | (MO oyme\ |1
< =5 (/ bdt) /Oa ar; <a1) (b2> dt
_ 1-1 1 my(1—t) mat 3
< lnb Ina 1’b3’dt) q(/ a1 f’(ﬁn)(") (f’(b%)‘q) dt)
0

b3 b3 — a3

= 7 (bm 7' (am \qm‘ q
lnb3flna3) ( 2 <a l>
ln<b3

P ()" (@l (@)[")

’ qmy

lnb—lna

e
(

_ Inb—1Ina _;_ 3 3 Ly (2 Ly |am2
= P () (@ ) (o)),
where
1
/ a3<1*’>b3’dt:L(a37b3)
Jo
and
17 2
[ (b)) () i (e o) 04
Jo
This completes the proof of theorem. O

Corollary 4.9. Under the assumption of Theorem 4.8 with g = 1, we get the conclusion of Theorem 4.2 as follow:
2 _ 2 b o
M _/ xf(x)dx < WL (a3 y (a#) ‘ml ,b3 / (b"%z) mz) .
a

Corollary 4.10. Under the assumption of Theorem 4.8 with g = 1 and my = my = 1 in the inequality (4.5), we get the following inequality:

2 a 7612 b nb—Ina
M_/a xf(x)dx| < %L(aﬂf’(a)wﬁ If'(b)})

This inequality coincides with the inequality (4.2).
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Theorem 4.11. Let f : Ry = [0,50) — R be a differentiable function and f' € L([a,b]) for 0 < a < b < . If |f'|? is (m,m>)-GG convex
1
function on the interval [O,max {a’”l ,bm H Sor [my1,ms] € (0, 1}2 and q > 1, then the following integral inequality holds

b’ f(a)—a’f(b) /”x F)dx (4.6)

2

1
gm g

P ) b )

Al )

1
, 1\ 9™ , 1\ |9m2 q
()™ | (%)

)
qm; ERNZ )
7 (%)

- 2 3(Inb—Ina

1
Inb—Ina [L(a3p,b31’)—a3p ’ L(
)

In

qm
+lnbflna [1731’—L(a31’,l7317 ] ’f (b 2)’ 71‘(

2 3(Inb—Ina) In| (ﬁ) n

where L is the logarithmic mean and % + é =1

. NI
Proof. From Lemma 4.1, Holder-Iscan integral inequality and the (m1,m,)-GG convexity of the function | f'|? on the interval [O, max {aml ,bm H ,
we obtain

IO [* epayas

Bt
dt
z |

< lnb;lna [/(;l(l—t) (a3(1,)b3,>f”dl]!]’ {/0'1(1_1) P (<aml7])m1(l—z) (b%)mzl)
+lnb;1na [/olt( -3 ] [/ ( o) mi(1-1) (bm%)mzf) th]i

_ 1 1—1 ot q
< lnbzlna [/ (1-1)a 3p(1— tb3ptdt} 1—t o >‘qm1( ) . <bm¢2)‘qm dt} q
JO
1
1 1 " q
+lnb—lna [/ ‘a p(1— tb3ptdt:| |:/ a‘”l gmy(1—t) f’ (bm%)‘qmztdt} q
2 0 0
1
qml qmy N9 g
— e |:L( ’;p b3p :| L( m] f/ (me)‘ ) - f/ (a'”])’
- _ 1~ (g N\ gm
2 3(Inb 1na) In| 7 (b'"z >’ " E (a'"l ), i

==

(bm2 > ’q”“ —L< I (aﬁ) ‘qml Iy (b%) ‘qmz) ) |
f (b%) ‘qm Cnlp (a’"l )\qml

This completes the proof of theorem. O

2 3(Inb—Ina)

Inb—Ina [b3P ~L (a3p,b3p)}
In

Corollary 4.12. Under the assumption of Theorem 4.11 with my = my = 1 in the inequality (4.6), we get the following inequality:

v f(a)—a’f(b) [P
f_/a xf(x)dx

nb—tna [L(@.5%) a7 [L(f @71 B)9) — £ (@ ]*
- 2 3(Inb—Ina) In|f (b)|7 —1In|f" (a)|?

| Inb—Ina b —L(a’,b°P) ’ @B LIS (@), If (0)|7) é
2 3(Inb—1na) In|f (b)|? —1In|f (a)|?

4.7)

Corollary 4.13. Under the assumption of Theorem 4.11, we can also write the following inequality:

P )L )]

Pl T

)" ) ()™)]

b3 Inb—Ina (l) ,
=6 e

3t 3
roof. By using the property of { =) < (2 or ¢ € |0, 1] in the inequality (4.6), we obtain the desired result.
Proof. By using th f(8 b)" f 0,1] in the inequality (4.6), we obtain the desired resul O

2 ) . B H L(
b f(a)za f(b) —/abxf(x)dx‘ - b3lnb21na (%)

In
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Corollary 4.14. Under the assumption of Theorem 4.11 with my = my = 1 in the inequality (4.7), we get the following inequality:

Jnb—tna (1Y} L(\f’w‘%f’(b%)\")—v'(a)\q “
- bTH in[f (B)[7—n|f (@)]"

v’ f(a)—a’f(b) P
= /a xf(x)dx

2

1 1
Lppinb=tna (17| [f(b N =L(If @I, ®)) | *

2 2 In[f" () =In|f" (a)|*
Theorem 4.15. Let f: Ry = [0,00) — R be a differentiable function and f' € L([a,b]) for 0 < a < b < . If |f'|? is (my,my)-GG convex

1
function on the interval [O7max {aml bm H for [my,m3] € (0, 1} and q > 1, then the following integral inequality holds

v’ f(a)—da’f(b) P
f_/a xf(x)dx

(4.8)

)

)" ) ) -
n (o) (¢=)™) -l ())

(2 () 26|
(ol 2)) =l ()) ]

Proof. By using Lemma 4.1, improved power-mean integral inequality and the property of (1,m;)-GG convexity of the function | /|7 on
1 1
the interval [O,max {aW N }] , we get

1—1
Inb—Ina [L(a3,b3)a3] ‘ L(“

<
- 2 3(Inb—Ina)

2 3(Inb—Ina)

1-1
| Inb—Ina [b3—L(a3,b3)] P |2

where L is the logarithmic mean and % +1=1

Bf(a)—a’f(b) "
fﬁ/a xf(x)dx

< lnbglna {/0'1(1 ( b3;) dt} {/ 1-1) <a3(1—t)b3t)

f’ ((am%)ml(l—l) (b%>m2l)
+1nbglna {/ A0 t}l { 3(1— t)b3t> a1
0
1

() o) ]

S I @ ][l e @) ()]
ez L)l [l “)bﬁf>f<a*>r’”‘“*” ()l
"l )") el ()]

f'<b~‘2 ")l )
{0 G e G )
1n(b3 7 (b *)(qmz)—ln(a £ (a ])\qml) |

Corollary 4.16. Under the assumption of Theorem 4.15 with ¢ = 1, we get the following inequality:

w —/Abxf(x)dx < WL (a3 4 (a”']il> 4 (b'"liz) mz).

Corollary 4.17. Under the assumption of Theorem 4.15 with g = 1 and m| = my = 1 in the inequality (4.8), we get the following inequality:

v’ f(a)—a’f(b) P
f—/a xf(x)dx

Bt
a

1—-

&\—
<=

’"l

2 (Inb—1na) n (5

B lnb—lna{ (@,0%) —d’ [L
B 3

1—-1 b3
Inb—Ina b3—L(a3,b3) a
* 2 3(Inb—Ina)

This completes the proof of theorem.

my

b3

< @L(uﬂf’(uﬂ,lf 7' ®)])-
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