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ABSTRACT: Decision and policymakers need urban footprint data for monitoring human impact on the urban ecosystem 

for politics and services. Deriving urban footprint is a challenging work since it has rapidly changing borders. The existing 

methods for deriving urban footprint map based on raster images have several steps such as determination of indicators and 

parameters of image classification. These steps limit the process by an operator since they require human decisions. This 

paper proposes a new rule-based approach for obtaining urban footprint based on Delaunay triangulation among selected 

centroids of roads and dead-end streets. The selection criterion is determined as maximum road length by using standard 

deviation operator. To produce urban footprints, this method needs no other data or information apart from road network 

geometry. This means that the proposed method uses only intrinsic indicators and measures. The experimental study was 

conducted with OpenStreetMap road data of Washington DC, Madrid, Stockholm, and Wellington. The comparisons with 

authority data prove that the proposed method is sufficient in many parts of urban and suburban lands.  
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1. INTRODUCTION 

 

Natural and artificial entities on Earth surface differ 

from each other with regards to living area of human. 

While natural entities are composed of any habitat such 

as forest, mountain, and sea, an artificial construction 

maybe a tribal temple in a village or a skyscraper, 

highway, train station in a megacity. However, the 

differences between natural and artificial entities are not 

as distinct since there are several semi-natural and semi-

artificial area in urbanised/sub-urbanised lands such as a 

park, open space, zoo, dam or farming land. For these 

purposes,land use/cover processes classify the Earth 

surface into its urban, suburban, green open place, forest, 

dam and/or sea patterns. A land-use map, thematically 

proposed to represent the urbanised area, is called “urban 

footprint map”. Urban footprint represents the border of 

human impact on the land surface. Determination of 

urban footprints in a specified land surface is a 

challenging issue since human activity varies from 

villages to metropole cities. Some measurements used for 

producing spatially significant urban footprint map are 

common with urban sprawl measurements. Many 

methods in the literature use remote sensing imagery as 

the major data source for analysing and predicting urban 

growth, with several classifications and indicators (Musa 

et al. 2017; Karakuş et al. 2017; Canaz Sevgen, 2019). 

Tsai (2005) developed a set of quantitative variables (i.e. 

metropolitan size, density, degree of equal distribution 

and clustering) to characterise urban forms at the 

municipal level. Angel et al. (2007) mentioned the 

metrics used for measuring attributes of sprawl. They 

define urban extents as built-up area (derived from 

satellite imagery), urbanised area (built-up area + 

urbanised open space), urbanised open space, urban 

footprint (built-up area + urbanised open space + 

peripheral open space) and peripheral open space. Bhatta 

et al. (2010) described spatial metrics used to quantify the 

urban sprawl with some examples such as area-density-

edge metrics, shape metrics, isolation-proximity metrics, 

contrast metrics, contagion-interspersion metrics, 

connectivity metrics, and diversity metrics. They claimed 

that the measurement of sprawl from remote sensing data 

is still in its research domain.  

Jiang et al. (2007) measured urban sprawl from the 

spatial configuration, urban growth efficiency and 

external impacts. They developed a geo-spatial indices 

system for measuring sprawl, a total of 13 indicators. For 

this study, they used any different data sources including 

land use maps, former land use planning, land price and 

floor-area-ratio samples, digitised map of the highways 

and city centres, population and statistical data. 

Triantakonstantis and Stathakis (2015) used spatial 

indicators to calculate urban morphological properties 

such as shape, aggregation, compactness and dispersion. 

They applied the indicators to the urban areas in order to 

measure urban sprawl in 24 European countries. 

Esch et al. (2013) presented a fully automated 

processing system for the delineation of human 

settlements worldwide based on the synthetic aperture 

radar (TanDEM-X). They assessed the high potential of 

the TanDEM-X data and the proposed urban footprint 

processor to provide highly accurate geo-data for 

improved global mapping of human settlements. 

Entropy method is one of the widely used techniques 

to measure the extent of urban sprawl with the integration 

of remote sensing and geographic information system 

(GIS) (Kumar et al. 2007; Bhatta et al. 2010). Kumar et 

al. (2007) used buffer zones with Shannon entropy to 

determine the spatial concentration or dispersion of built-

up land. They integrated the observations with the road 

network to check the influence of infrastructure on 

haphazard urban growth. 

Road networks were also used to generate urban maps. 

Owen and Wong (2013) used road networks, shape, 

terrain geomorphology, texture and dominant settlement 

materials (vegetation, soil, asphalt) to distinguish 

informal neighbourhoods from formal ones in developing 

countries. They used dangling nodes to determine the 

ratio of connected nodes. A high value in the ratio implies 

that roads are better connected, and multiple routes 

between endpoints exist. Liu and Jiang (2011) stated that 

the dangling lines inside a block define the field as low 

residential density. They claim that the longer the 

dangling roads, the more sprawling the block. 

Triangulated Irregular Network (TIN) was used in 

many scientific works as part of cartography; contour 

generation, generalisation, surface models and spatial 

analysis (Gökgöz, 2005; Yang et al. 2005; Kang et al. 

2015). Semboloni (2000) proposed a growth model based 

on Delaunay triangles and road network. The model 

based on cellular automata operated within a lattice by 

using the essential elements of cells and roads which 

differ in size and form and the dynamic system functions 

by changing the state of the cells and generating new cells 

and roads.  

This paper proposes a method for obtaining urban 

footprint based on the characteristics of road networks. 

The following section, firstly, presents study area and 

data. Then, the rule-based method is explained step by 

step. In section 3, the proposed method is implemented in 

four capital cities around the world (Washington, 

Stockholm, Madrid and Wellington), and the results are 

given. Section 4 evaluates the results of the study by 

comparing with authority data. Finally, the last section 

discusses the advantages and disadvantages of the method. 

 

2. MATERIALS AND METHOD  

 

2.1 Study Area and Data 

 

This study was conducted using OpenStreetMap 

(OSM) road data of Washington DC, Madrid, Stockholm 

and Wellington (Fig. 1). The study area was determined 

as capital cities in different places of the world to reveal 

the efficiency of the proposed method in different 

metropole cities. They have the urban and suburban areas, 

rural lands, coasts, open spaces and forests. 

Volunteers from all around the world contribute OSM 

road data. Some studies were conducted to determine the 

behaviour of the contributors and the quality of OSM data 

(Neis and Zipf, 2012; Koukoletsos et al. 2012; Corcoran 

et al. 2013; Zhao et al. 2015; Hacar et al. 2018). They 

show that the accuracy of the road data is sufficient for 

most of the GIS applications.  

The authority of land use data is also used to evaluate 

the accuracy of the study. OSM road data and authority 

data were projected into the specific coordinate systems 

for each study area to apply the same measurement units 

(Table 1).  

Some statistics in each study area requires to be 

compared and explained before the experiment. While 
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Fig. 1 can give the observable information that infers the 

most urbanised patterns per city area in both Washington 

DC and Stockholm, Table 2 gives the same information 

quantitatively. In Table 2, the road density (length per 

area) is the highest in Washington DC and Stockholm 

since length per area is maximum, so it is expected that 

the cities have less open places. The density is relatively 

middle or high in Madrid, so it may have more open 

places or forests. However, Wellington is expected to 

have many open place or forests since its density is very 

low. Besides, the measure of length per road may give 

some information about the road characteristics. For 

instance, if a city has a lower value, this means the city 

may have more residential area since the urban lands have 

shorted roads than rural lands. In this assumption, none of 

the cities has a major difference from others. Moreover, 

Table 2 also gives the source information of reference 

authority data. Each authority data (DCGIS, 2019; EEA, 

2019; WCC, 2019) and the city boundaries (GADM, 

2019) have open access facilities. 

 

 
 

Figure 1. OSM road data in Washington DC (a), Madrid 

(b), Stockholm (c) and Wellington (d). 

 

Table 1. Description of coordinate systems. 

 

City 
Coordinate 

System 
Projection 

Washington 

DC 

NAD 1983 

StatePlane 

Maryland 

FIPS 1900 

Lambert 

Conformal Conic 

Madrid 
1870 Madrid 

Spain 

Lambert 

Conformal Conic 

Stockholm 
SWEREF99 

TM 

Transverse 

Mercator 

Wellington 

NZGD 2000 

Wellington 

Circuit 

Transverse 

Mercator 

 

2.2 The Proposed Method: from Road Network to 

Urban Footprint 

 

Transportation is essential in any dynamic human 

land (Polat et al. 2017). Urban and suburban areas tend to 

have relatively short road lines (streets) since residential 

roads relatively have shorter length. The proposed 

method consists of several geometric indicators of road 

lines such as lengths of road and triangle edge and area of 

polygons. It starts with selecting road lines shorter than a 

threshold. The threshold aims to select the residential 

roads from all roads to be used in the rest of the process. 

Standard deviation (σ) of road lengths was pragmatically 

used as the threshold since it is represented by the same 

unit with lengths and emphasize the root square of the 

variations of lengths. The method uses the TIN model 

generated from centroids and dead-ends of selected roads 

to depict the urban land. The fusion of the adjacent 

triangles generates the urban polygons (Fig. 2).

 

Table 2. Statistics of the data. 

 

City 

OSM road data City boundary 
Source of 

authority data Number of 

roads 

Total length 

(km) 

Length per 

road (km) 
Area (km2) 

Length (km) 

per area(km2) 

Washington DC 28446 3707 0.13 166 22.33 
DCGIS Open 

Data 

Madrid 78076 10300 0.13 604 17.05 

European 

Environment 

Agency 

Stockholm 44247 4886 0.11 215 22.73 

European 

Environment 

Agency 

Wellington 10277 1693 0.16 290 5.84 
Wellington 

City Council 
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Figure 2. The workflow of RNUF. 

 

The proposed method is referred hereafter as “RNUF” 

(initial letters of Road Network to Urban Footprint). A 

series of geometric rules with threshold values makes 

RNUF an easy-to-use method. Accordingly, the steps 1 - 

8 were explained with the following definitions below: 

 

Step 1:  

RNUF starts with eliminating the topological 

inconsistencies of the input road network (pre-

processing). After σ threshold calculation with the length 

of raw OSM roads, RNUF conducts a pre-process that 

eliminate the duplication of roads and generate 

topologically structured road networks by merging 

continuous roads and splitting them at intersections.  

 

Step 2:  

RNUF selects and retains the road lines less than σ 

value in length (Eq. (1)), others (longer) are eliminated. 

 

𝐿𝑟 < 𝜎     (1) 

 

𝐿𝑟 represents the lengths of the road lines. In Fig. 3(a), 

red road lines represent the lines that are longer than σ.  

 

Step 3:  

Dangling points are used as parameters for 

determining urban or suburban areas (Owen and Wong, 

2013; Liu and Jiang, 2011). In this study, dangling points 

are generated on the road lines that have dead-ends. Also, 

centroids are generated from the rest of the road lines 

using the formula below. 

   

𝑋𝑔 = ∑
𝑆𝑖𝑥𝑖

∑ 𝑆

𝑤

𝑖=1

 𝑌𝑔 = ∑
𝑆𝑖𝑦𝑖

∑ 𝑆

𝑤

𝑖=1

 (2) 

 

where 𝑋𝑔 and 𝑌𝑔 are the centroid coordinates of a line, 

𝑆𝑖 is the length of segment i of the line, 𝑥𝑖 and 𝑦𝑖 are the 

midpoint coordinates of the segment i, w is the total 

number of segments, and S is the total length of the line. 

 

Step 4:  

Delaunay triangulation is generated using dangling 

points and centroids. In this stage, optionally, a city 

boundary file can be used to get a better result by 

constraining the TIN. 

 

Step 5: 

TIN model is updated by deleting the triangles that 

have at least one edge longer than σ (Fig. 3(b)). This 

criterion helps to eliminate big triangles represent non-

urban areas among far neighbourhoods and the triangles 

connecting them to the far surrounding districts. Below 

Eq. (3), 𝐿𝑒 represents the lengths of the triangle edges.  

 

𝐿𝑒 < 𝜎     (3) 

 

 
 

Figure 3. Dangling points (red) and centroids (blue), (a) 

valid road lines (black) and not valid road lines (red), (b) 

valid triangles (yellow) and not valid triangles (light red). 

 

Step 6:  

All adjacent triangles are merged, and their common 

edges are fused. Unique triangles and merged triangles 

represent the premature footprints (Fig. 4(a)). Many small 

polygons and holes are generated during this step. 

 

Step 7:  

The polygons and holes have a smaller area than the 

threshold σ2 are deleted. 

 

𝐹𝑝 < 𝜎2      𝑎𝑛𝑑     𝐹ℎ < 𝜎2   (4) 

 

where 𝐹𝑝 is the polygon area size and 𝐹ℎ is the hole 

size inside any polygon. In Fig. 4, the south-east polygon 

is eliminated due to the area size.  

 

Step 8:  

With a variety of observations on road networks and 

suburban lands, it was seen that even small 

neighbourhoods have at least three streets that have dead-

ends. This criterion is the last rule of RNUF: 

 

𝑁𝑝𝑑
≥ 3     (5) 

 

where 𝑁𝑝𝑑
 is the number of dangling points in a 

polygon. The polygons have at least three dangling points 

are retained to generate urban footprint (Fig. 4(b)), others 

are eliminated. The rule-based approach retains the 

polygons representing the urban and suburban footprint. 
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Figure 4. (a) Three polygons derived from triangles 

(green), (b) polygon representing urban footprint. 

 

3. EXPERIMENT AND RESULTS 

 

The proposed method has been tested with OSM data 

from the capital cities; Washington DC, Madrid, 

Stockholm, Wellington. Since the road networks in the 

cities have their characteristics in accordance with both 

geometric and topological properties, σ had different 

values (Table 3). Besides, road data had topological 

inconsistencies such as continuous lines at junctions since 

its raw structure consists of node and way geometries 

with their relations. RNUF automatically dealt with such 

situations by splitting lines at connections. 

 

Table 3. σ and σ2 values of study areas. 

 

City σ (m) σ2 (m2) 

Washington DC 196.5 38612.3 

Madrid 242.6 58854,8 

Stockholm 164.0 26896 

Wellington 428.3 183440.9 

 

As mentioned in section 2.2, OSM road data are 

topologically structured by RNUF. Therefore, the 

statistics for the study areas were computed by using 

topologically structured roads. The results for each study 

area are shown in Table 4. RNUF selected the roads more 

than 95% considering the σ values. These values were 

also used for the selection of significant triangles. If this 

criterion was not applied, the small settlements (Fig. 5) 

would have many triangles connecting them to the far 

surrounding settlements. As shown in Fig. 5, red zones 

represent the significant triangles that have all edges 

shorter than related σ. After all the steps were conducted, 

RNUF generated urban footprints of study areas, as 

shown in Fig. 6. 

 
 

Figure 5. Triangle edges longer (grey) and shorter (red) 

than σ in the study areas: (a) Washington DC, (b) Madrid, 

(c) Stockholm, and (d) Wellington. 

 

 
 

Figure 6. Urban footprints (red): (a) Washington DC, (b) 

Madrid, (c) Stockholm, and (d) Wellington (images from 

ESRI (2019)).

 

Table 4. Results of RNUF. 

 

City 
Number 

of roads 

Number of 

selected 

roads 

Selection 

percentages 

(%) 

Number of 

dangling 

points 

Area of 

urban 

footprint 

(km2) 

Dangling 

points per 

km2 

Dangling 

points per 

roads 

Washington DC 60933 58427 96 5901 108.22 55 0.0009 

Madrid 176197 170638 97 13996 249.65 56 0.0003 

Stockholm 89915 85044 95 9236 126.60 73 0.0008 

Wellington 18283 17786 97 4883 77.72 63 0.0034 
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4. EVALUATION OF THE RESULTS 

 

The urban footprint map (UF) generated by RNUF 

were evaluated by using the authority data (AD) as the 

reference to determine the accuracy in each study area 

(Fig. 7). Determination of the accuracy by using the 

overlapped areas between AD and UF ( 𝐹𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ) is 

essential (Eq. (6)), but not sufficient if UF covers a very 

large area containing and exceeding whole reference data. 

For instance, the accuracy is the highest (94%) in 

Wellington, however, UF covered an area, approximately 

two times larger than the area of AD (Table 5 and 6). This 

means that half of the UF did not overlap with AD. This 

case shows that the completeness of UF is also an 

essential measure as its accuracy. To determine the 

completeness, Eq. (7) might be used. F-measure can be 

used to quantify the balance between accuracy and 

completeness (Samal et al. 2004; Song et al. 2011; 

Akbulut et al. 2018; Hacar and Gökgöz, 2019). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐹𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐹𝐴𝐷
 (6) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
2 × 𝐹𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐹𝑈𝐹 + 𝐹𝐴𝐷
 (7) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠
 (8) 

 

 

    

    

 

 
 

Figure 7. (a) Authority urban data (pink), (b) urban footprint (red), and (c) their overlapping area (green) (images from 

ESRI (2019)). 
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Table 5. Comparisons of RNUF with city boundary and 

authority data. 

 

City 
FCA

1 

(km2) 

FAD
2 

(km2) 

FUF
3 

(km2) 

𝐹𝑜𝑣𝑒𝑟𝑙𝑎𝑝
4 

(km2) 

Washington 

DC 
166.05 124.98 108.22 97.69 

Madrid 604.19 266.78 249.65 194.53 

Stockholm 215.24 119.32 126.60 95.80 

Wellington 289.95 45.33 77.72 42.48 

1City area; 2area of urban settlements in authority data; 
3area of urban footprint; 4overlapping areas between 

AD and UF 

 

Table 6. Statistical results of RNUF. 

 

City 
Accuracy 

(%) 

Completeness 

(%) 

F-

measure 

(%) 

Washington 

DC 
78 84 80.9 

Madrid 73 75 74.0 

Stockholm 80 78 79.0 

Wellington 94 69 79.6 

 

FUF values are close to FAD in study areas except for 

Wellington (Table 5) since Wellington had the highest 

tolerances for both linear and polygonal thresholds, σ and 

σ2 values, respectively. Besides, as seen in Fig. 8, in 

Madrid and Wellington, the FAD and FUF is very smaller 

than the areas of their city boundaries (FCA). As a result, 

they have more rural land proportions than in other cities. 

In contrast, it can also be inferred that Washington and 

Stockholm have more urbanised land proportions. These 

two cities also had similar accuracy, completeness, and F-

measure in Washington and Stockholm (Table 6) (Fig. 8). 

Furthermore, the accuracy and completeness had close 

values in Madrid, but in Wellington, they were very 

different. The completeness (69%) in Wellington is very 

low since half of the UF did not overlap with AD (Table 

5). 

 

 
 

Figure 8. The rates of FAD and FUF in FCA (black axis), 

and F-measures (red axis) in each city. 

 

Dangling points are generally located in the cities of 

developing countries, sub-urban lands, and where height 

differences are high in metropole cities of developed 

countries. Since the study data is from the metropole 

cities, the density of the dangling points might show how 

the urban settlements are formed. Wellington had the 

most density of the dangling points (dangling points per 

roads) (Table 4). In other words, it has the most number 

of dead-ends in its urban lands. Therefore, it has more 

sub-urban lands and/or the height differences are very 

high. The dead-end statistics and the accuracy measures 

show that there is a significant relationship between the 

landforms/proportions and confidence of RNUF.  

 

5. CONCLUSION 

 

Producing urban footprint maps by RNUF is an easy 

and efficient way for small and middle scale maps 

represent such an area of a district, city or state. It is not 

recommended for large scale maps since its accuracy is 

dependent on accuracy, date and scale of input network 

data. If input data is not up-to-date, the footprint may not 

represent new small settlements. However, this situation 

may only affect the width of the related local 

neighbourhood in large-scaled studies, not the global 

result in middle and small-scaled studies. In this study, 

the experiment was depended on the completeness of 

OSM road data. One can conduct a completeness study 

for the source data to obtain current urban footprints since 

the higher completeness the data has, more up-to-date 

footprints can be generated. However, this paper does not 

have such aims that choose the more consistent data 

sources. This study remarks the possible usage of the road 

networks for extracting urban lands. 

Conventional ways of generating urban footprint 

maps require many data (especially raster data) and 

indicators; instead, RNUF works independently of the 

aerial views of landscapes and surface models. It works 

with only the road network as the input data, and the used 

parameters are calculated from the network by easy-to-

use GIS methods. RNUF has defined parameters and 

data-dependent thresholds like the minimum number of 

dangling nodes and standard deviation value, respectively. 

Users take advantages of these intrinsic values without 

trying to search complex indicators of urban sprawl like 

population, density, vegetation ratio or geomorphology. 

They may also integrate these indicators as additional 

rules with their thresholds into RNUF. 

RNUF conducted the four instances satisfactorily 

with almost over 80% F-measure in each case. It can be 

said that RNUF can be used as an alternative for the 

methods that use remote sensing data. The experiments 

also show that landforms/proportions may decrease the 

confidence of RNUF. 

Some future works are required to determine the 

thresholds in accordance with the exact scale of the 

resulting map and also the confidence of RNUF. An 

additional study may also be conducted for the last step 

of RNUF to measure how many dead-end streets a 

neighbourhood covers with regards to the urban patterns. 
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